N

N

Overview of LifeCLEF 2019: Identification of
Amazonian Plants, South & North American Birds, and
Niche Prediction
Alexis Joly, Hervé Goéau, Christophe Botella, Stefan Kahl, Maximilien
Servajean, Hervé Glotin, Pierre Bonnet, Robert Planqué, Fabian-Robert
Stoter, Willem-Pier Vellinga, et al.

» To cite this version:

Alexis Joly, Hervé Goéau, Christophe Botella, Stefan Kahl, Maximilien Servajean, et al.. Overview
of LifeCLEF 2019: Identification of Amazonian Plants, South & North American Birds, and Niche
Prediction. CLEF 2019 - 10th International Conference of the Cross-Language Evaluation Forum for
European Languages, Sep 2019, Lugano, Switzerland. pp.387-401, 10.1007/978-3-030-28577-7_29 .
hal-02281455

HAL Id: hal-02281455
https://hal.umontpellier.fr /hal-02281455
Submitted on 15 Nov 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.umontpellier.fr/hal-02281455
https://hal.archives-ouvertes.fr

Overview of LifeCLEF 2019: Identification of
Amazonian Plants, South & North American
Birds, and Niche Prediction

Alexis Joly', Hervé Goéau?, Christophe Botella'?, Stefan Kahl”, Maximillien
Servajean®, Hervé Glotin*, Pierre Bonnet?, Robert Planqué®, Fabian
Robert-Stéter, Willem-Pier Vellinga®, Henning Miiller®

! Inria, LIRMM, Montpellier, France
2 CIRAD, UMR AMAP, France
3 INRA, UMR AMAP, France
4 Univ. Toulon, Aix Marseille Univ., CNRS, LIS, DYNI SABIOD, Marseille, France
5 Xeno-canto foundation, The Netherlands
6 HES-SO, Sierre, Switzerland
7 Chemnitz University of Technology, Germany
8 LIRMM, Université Paul Valéry, University of Montpellier, CNRS, Montpellier,
France

Abstract. Building accurate knowledge of the identity, the geographic
distribution and the evolution of living species is essential for a sustain-
able development of humanity, as well as for biodiversity conservation.
Unfortunately, such basic information is often only partially available
for professional stakeholders, teachers, scientists and citizens, and often
incomplete for ecosystems that possess the highest diversity. In this con-
text, an ultimate ambition is to set up innovative information systems
relying on the automated identification and understanding of living or-
ganisms as a means to engage massive crowds of observers and boost
the production of biodiversity and agro-biodiversity data. The LifeCLEF
2019 initiative proposes three data-oriented challenges related to this vi-
sion, in the continuity of the previous editions but with several consistent
novelties intended to push the boundaries of the state-of-the-art in sev-
eral research directions. This paper describes the methodology of the
conducted evaluations as well as the synthesis of the main results and
lessons learned.

1 LifeCLEF Lab Overview

Identifying organisms is a key for accessing information related to the uses and
ecology of species. This is an essential step in recording any specimen on earth
to be used in ecological studies. Unfortunately, this is difficult to achieve due
to the level of expertise necessary to correctly record and identify living organ-
isms (for instance plants are one of the most difficult groups to identify with an
estimated number of 400,000 species). This tazonomic gap has been recognized
since the Rio Conference of 1992, as one of the major obstacles to the global



implementation of the Convention on Biological Diversity. Among the diversity
of methods used for species identification, Gaston and O’Neill [10] discussed in
2004 the potential of automated approaches typically based on machine learning
and multimedia data analysis. They suggested that, if the scientific community
is able to (i) overcome the production of large training datasets, (ii) more pre-
cisely identify and evaluate the error rates, (iii) scale up automated approaches,
and (iv) detect novel species, it will then be possible to initiate the development
of a generic automated species identification system that could open up vistas
of new opportunities for theoretical and applied work in biological and related
fields.

Since the question raised by Gaston and O’Neill[T0], automated species identifica-
tion: why not?, alot of work has been done on the topic (e.g. [27535I34T2I31122])
and it is still attracting much research today, in particular in deep learning
[IT1328]. In order to measure the progress made in a sustainable and repeat-
able way, the LifeCLEFEI research platform was created in 2014 as a continuation
of the plant identification task [20] that was run within the ImageCLEF lab |E|
the three years before [I8[I9/T7]. LifeCLEF enlarged the evaluated challenge
by considering animals in addition to plants, and audio and video contents in
addition to images. In 2018, a new challenge dedicated to the location-based
prediction of species was finally introduced (GeoLifeCLEF). The main novelties
of the 2019 edition of LifeCLEF compared to the previous year are the following:

1. PlantCLEF focus on tropical flora: The main novelty of the 2019 edition
of PlantCLEF is to focus the challenge on the flora of data deficient trop-
ical regions, i.e. regions having the richest biodiversity but for which data
availability is much lower than northern countries.

2. Big soundscape data for BirdCLEF: The main novelty of the 2019 edi-
tion of BirdCLEF is the introduction of a very large dataset of 350 hours
of manually annotated soundscape recordings in addition to the historical
mono-species recordings provided by the Xeno-canto community.

3. New data and evaluation metric for GeoLifeCLEF: The 2019 edition
of the GeoLifeCLEF challenge tackles some of the methodological weaknesses
that were revealed by the pilot 2018 edition and introduces a new big dataset
fixing some issues of the previous one.

About 250 researchers or students registered to at least one of the three chal-
lenges of the lab and 16 of them finally crossed the finish line by completing
runs and participating in the collaborative evaluation. In the following sections,
we provide a synthesis of the methodology and main results of each of the three
challenges of LifeCLEF2019. More details can be found in the overview reports of
each challenge and the individual reports of the participants (references provided
below).

9 http://www.lifeclef.org/
10 http://www.imageclef . org/
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2 Taskl: PlantCLEF

A detailed description of the task and a more complete discussion of the results
can be found in the dedicated working note [16].

2.1 Methodology

The PlantCLEF challenge considers the problem of classifying plant observations
based on several images of the same individual plant rather than considering a
classical single-image classification task. Indeed, it is usually required to observe
several organs of a plant to identify it accurately (e.g. the flower, the leaf, the
fruit, the stem, etc.). As a consequence, the same individual plant is often pho-
tographed several times by the same observer resulting in contextually similar
pictures and/or near-duplicates. To avoid bias, it is crucial to consider such im-
age sets as a single plant observation that should not be split across the training
and the test set. In addition to the raw pictures, plant observations are usually
associated with contextual and social data. This includes geo-tags or location
names, time information, author names, collaborative ratings, vernacular names
(common names), picture type tags, etc. Within all PlantCLEF challenges, the
use of this additional information was considered as part of the problem because
it was judged as potentially useful for a real-world usage scenario.

In 2018, a novelty of the challenge was to involve expert botanists in the evalu-
ation in order to evaluate how fare automated systems are from their expertise.
In particular, 9 of the best expert botanists of the French flora accepted to com-
pete with AI algorithms on a difficult subset of the whole test set. The results
confirmed that identifying plants from images is a difficult task, even for some of
the highly skilled specialists who accepted to participate in the experiment. The
results showed that there is still a margin of progression but that it is becoming
tighter and tighter. The best system was able to correctly classify 84% of the test
samples, better than 5 of the 9 experts. The main novelty of the 2019 edition of
PlantCLEF is to transpose this methodology to the flora of tropical regions, that
is expected to be much more challenging because of the much lower amount of
available training data for that species. Indeed, tropical regions are the richest
in terms of biodiversity but unfortunately also the poorest in terms of data.

2.2 Dataset and Evaluation Protocol

We provided a new training data set of 10K species mainly focused on the
Guiana shield and the Amazon rain forest, known to be the largest collection
of living plants and animal species in the world (see ﬁgur. As for the pre-
vious two years, this training data was mainly aggregated by querying popular
image search engines with the binomial Latin name of the targeted species. We
actually did show in previous editions of LifeCLEF that training deep learning
models on such noisy big data is as effective as training models on cleaner but
smaller expert data[l4], [I5]. The average number of images per species in that
new data set is much lower than the data set used in the previous editions of



PlantCLEF (about 1 vs. 3). Many species contain only a few images and some
of them might even contain only 1 image, making a much more challenging task.
Moreover, in this context of lack of data, image search engines very often return
the same image several times for different species. This typically happens when
an image is displayed in a web page that contains a text list of several species, for
example a web page of a genus in Wikipedia: if the species in the list are quite
rare and poorly illustrated on the web, an image search engine will return the
same image for most species on the list. The training data were organized into
sub-directories (one for each species), but each image was named according to
its content with an MD5 like hash technique, in order to facilitate the detection
of ”duplicated” images.

For the test set, on the other hand, we relied on highly trusted expert data (with
a presumably very low error rate). The test set contains 742 plant observations
that all had to be classified by the participating systems. However, only a small
part was used for the comparison with the 5 human experts who participated to
the evaluation (actually 117 observations).

Participants were allowed to use complementary training data (e.g. for pre-
training purposes) but at the condition that (i) the experiment is entirely repro-
ducible, i.e. that the used external resource is clearly referenced and accessible
to any other research group in the world, (ii) the use of external training data or
not is mentioned for each run, and (iii) the additional resource does not contain
any of the test observations. The main evaluation measure for the challenge was
the top-1 accuracy in order to be comparable with the latter’s task concerning
flora in temperate regions. Mean Reciprocal Rank and and the top-3 accuracy
have also been used as complementary measures to allow a fair comparison with
the human experts since they have been allowed to make up to three species
proposals.

Fig. 1. Regions of origin of the 10k species selected for PlantCLEF 2019: French
Guiana, Suriname, Guyana, Brazil (states of Amapa, Para, Amazonas)



2.3 Participants and Results

167 participants registered for the PlantCLEF challenge 2019 and downloaded
the data set, but only 6 research groups succeeded in submitting runs, i.e. files
containing the predictions of the system(s) they ran. Details of the methods and
systems used in the runs are synthesized in the overview working note paper of
the task[16] and further developed in the individual working notes of most of the
participants (Holmes [7], CMP [32], MRIM-LIG [9]). We report in Figure 2] the
performance achieved by the 26 collected runs and the 5 participating human
experts, while Figurd3| reports the results on the whole test data set.

= Top1 Human Experts
0.60 u Top1 Machines

S

Fig. 2. Scores between Experts and Machine

The tropical flora is much more difficult to identify. Results are sig-
nificantly lower than last year both for machines and human experts with an
equivalent number of species of 10k, confirming the assumption that a tropical
flora is inherently more difficult than the more generalist flora. The best of the
experts, actually recognized by peers as the most expert in the world of the
Guyanese flora, reached a topl of 0.675 (against 0.96 for the best expert during
Expert CLEF 2018]15]). Comparison of medians (0.376 vs 0.8 ) and minimums
(0.154 vs 0.613) over the two years further highlights theses difficulties.

Deep learning algorithms were defeated from far by the best experts.
The best automated system is half as good as the best expert with a gap of 0.365,
whereas last year the gap was only 0.12. Moreover, there is a strong disparity
in results between participants despite the use of popular and recent Convo-
lutional Neural Networks (DensetNet, ResNet, Inception-ResNet-V2, Inception-
V4), while during the last four PlantCLEF editions a homogenization of high
results forming a ”skyline” has often been observed. These differences in accu-
racy can be explained in part by the way participants managed the training set.



Although previous investigations have shown the unreasonable effectiveness of
noisy data for fine-grained recognition [24], [14], several teams considered that
the training dataset was too noisy and too imbalanced. They made consistent ef-
forts for removing duplicates pictures (Holmes), for removing non plant pictures
(Holmes, CMP), for adding new pictures (CMP), or for reducing the classes im-
balance with smoothed re-sampling and other data sampling schemes (MRIM).
Removing duplicate images seems to be effective. Even if it reduces dra-
matically the training dataset to 230k pictures and from 8,263 species, and even
if it may remove images for valuable for poorly illustrated species, the Holmes
team reported in their preliminary tests that removing all the duplicate pictures
allowed to significantly increase the topl from 43,7% to 47,97% on a validation
set of 20k images extracted from the training set [7].

Removing non plant images would not really be useful. The Holmes team
reported that if 29k non-plant images are automatically removed in addition to
duplicates, it actually slightly decrease the topl from 47.97% to 47.76%. It is as
if most of the non-plant noise is finally carried by the duplicate images. Extend-
ing the training data set improve the performances. The CMP team did
not remove duplicate images but automatically eliminated about 20k non-plant
images. Above all, they considerably extended the training set by adding more
than 238k images from the GBIF, exploiting finally more than 666k images. At
first glance, their best method obtained a topl of 8.5%, far behind the Holmes
team which reached 31.6% with considerably fewer images (250k vs 666k) and
a system based on same architectures (InceptionV4 and Inception-ResNet-V2).
However, the CMP team reported a bug in their submission files, and the real
best top-1 accuracy that they should have achieved was actually at best 41%, 10
points more than the winning Holmes run file. It is worth noting that this out-
of-competition run could made better predictions than the third human expert.
Open questions. Could the CMP team have obtained even better accuracy if
they had massively eliminated duplicate images like the Holmes team? To what
extent the 238k additional images from GBIF are noisy? If the GBIF website
showed that there are few non plant pictures like faces and drawings, there is
actually a high proportion of herbarium images for rare species, and it is dif-
ficult to evaluate how much pictures are duplicated in several species or/and
incorrectly identified. Therefore, the management of different types of noise (du-
plicates, identification errors, non-plants, different domains like herbariums, ...)
in a data deficient context require further investigations.

3 Task2: BirdCLEF

A detailed description of the task and a more complete discussion of the results
can be found in the dedicated overview paper [23].
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Fig. 3. Scores achieved by all systems evaluated within the plant identification task of
LifeCLEF 2019

3.1 Methodology

The bird identification challenge of LifeCLEF, initiated in 2014 in collaboration
with Xeno-Canto, considerably increased the scale of the seminal challenges. The
first bird challenge ICMLA4B [12] initiated in 2012 by DYNI/SABIOD, contained
only 35 species, but received 400 runs. The next at MLSP only included 15
species, the third (NIPS4B [31] in 2013 by SABIOD) had 80 species. The com-
munity platform Xeno-canto launched in 2005 and hosts bird sounds from all
continents and daily receives new recordings from some of the remotest places on
Earth. The Xeno-canto archive currently consists of more than 460,000 record-
ings covering over 10,000 species of birds, making it one of the most compre-
hensive collections of bird sound recordings worldwide, and certainly the most
comprehensive collection shared under Creative Commons licenses. The first
BirdCLEF challenge in 2014 however, solely focused on recordings originating
from the Amazonian rain forest. This region can be considered one of the rich-
est in the world in terms of biodiversity, but also one of the most endangered.
The geographical extent and the number of species were progressively increased
over the years and reached 1,000 species in 2015/2016, and 1,500 in 2017/2018.
One of the signature characteristics of the Xeno-Canto data—and therefore the
BirdCLEF subset—are the weakly labeled samples with varying recording qual-
ity and (most notably) a massive class imbalance. For instance, the 2017/2018
dataset contained 48,843 recordings in total, with a minimum of four recordings
for Laniocera rufescens and a maximum of 160 recordings for Henicorhina leu-
cophrys.

In 2016, the Bird CLEF challenge was extended and also featured complex sound-
scape recordings in addition to the classical mono-species Xeno-Canto record-
ings. This enables research for more passive monitoring scenarios such as setting



up a network of mobile recorders that would continuously capture the surround-
ing sound environment. One of the limitations of this new content, however,
was that the vocalizing birds were not localized in the recordings. Thus, to al-
low a more accurate evaluation, new time-coded soundscapes were introduced
within the Bird CLEF 2017 and 2018 challenges. In total, 6.5 hours of recordings
were collected in the Amazonian forests and were manually annotated by two
experts including a native of the Amazon forest, in the form of time-coded seg-
ments with associated species name. Unfortunately, past editions of Bird CLEF
showed no significant improvements in that domain, despite excellent scores for
mono-species recordings. Therefore, the 2019 edition of the Bird CLEF challenge
mainly focused on this soundscape scenario but extended it to North American
bird species for which the available data is considerably bigger.

3.2 Dataset and Evaluation Protocol

The new data includes about 350 hours of manually annotated soundscapes
from past editions and soundscapes that were recorded using 30 field recorders
between January and June of 2017 in Ithaca, NY, USA. This dataset was split
into a validation set with labels provided to the participants (about 10%) and
a test set to be processed by the evaluated systems. As for training data, we
provided an newly composed Xeno-Canto subset covering 659 species from South
and North America. Additionally, eBird.org frequency lists were provided to
enable participants to decide which species are plausible for a given time, date
and location.

The goal of the task was to localize and identify all audible birds within the
provided soundscape test set. Each soundscape was divided into segments of 5
seconds, and a list of species associated to probability scores had to be returned
for each segment. The used evaluation metric was the classification mean Average
Precision (¢cmAP), considering each class ¢ of the ground truth as a query. This
means that for each class ¢, all predictions with ClassId = ¢ are extracted
from the run file and ranked by decreasing probability in order to compute the
average precision for that class. The mean across all classes is computed as the
main evaluation metric. More formally:

Zle AveP(c)
C

where C' is the number of classes (species) in the ground truth and AveP(c) is
the average precision for a given species ¢ computed as:

AveP(c) = ve, P(k) x rel(k).
nrel(c)

cmAP =

where k is the rank of an item in the list of the predicted segments containing c,
n. is the total number of predicted segments containing ¢, P(k) is the precision
at cut-off k in the list, rel(k) is an indicator function equaling 1 if the segment
at rank k is a relevant one (i.e. is labeled as containing ¢ in the ground truth)
and n.¢;(c) is the total number of relevant segments for class c.
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Fig. 4. Scores achieved by all systems evaluated within the bird identification task of
LifeCLEF 2019

3.3 Participants and Results

103 participants registered for the BirdCLEF 2019 challenge and downloaded
the dataset. Five of them succeeded in submitting runs. Details of the meth-
ods and systems used in the runs are synthesized in the overview working notes
paper of the task [23] and further developed in the individual working notes of
the participants (MfN [26], ASAS [6], NWPU [21], MIHAI [§]). In Figure El we
report the performance achieved by the 25 collected runs.

In this edition, participants built on established systems from previous years,
all submitted runs featured a CNN classifier trained on spectrograms—very deep
networks once again performed best. Participants were able to significantly im-
prove the detection performance. In fact, we saw an increase of more than 180%
for the best performing runs (2018: 0.193 - 2019: 0.356). This result is probably
largely due to the high number of North American soundscapes that are less
complex than their South American counterparts. However, the recognition per-
formance for South American soundscapes also increased significantly compared
to 2018 with a cmAP of 0.293 in 2019 over 0.222 from last year. Participants were
allowed to use any publicly available metadata and even the provided validation
data to improve the performance of their systems. Although expert annotations
are not an adequate (or even easy-to-acquire) addition for the training of a
recognition system for unseen habitats, the increase in overall performance is
considerable. The highest scoring run submitted by MfN achieved a sample-wise
mean average precision (our secondary metric) of 0.446 without the use of val-
idation samples and 0.745 when validation data was used for training. These
scores imply that domain adaption to new acoustic environments (and recorder
characteristics) plays a crucial role and should be subject of investigation in
future editions.



4 Task3: GeolLifeCLEF

A detailed description of the task and a more complete discussion of the results
can be found in the dedicated working note [4].

4.1 Methodology

Predicting the shortlist of species that are likely to be observed at a given geo-
graphical location should significantly help to reduce the candidate set of species
to be identified. However, none of the attempt to do so within previous Life-
CLEF editions successfully used this information. The GeoLifeCLEF challenge
was specifically created in 2018 to tackle this problem through a standalone
task. More generally, automatically predicting the list of species that are likely
to be observed at a given location might be useful for many other scenarios
in biodiversity informatics. It could facilitate biodiversity inventories through
the development of location-based recommendation services (typically on mo-
bile phones) as well as the involvement of non-expert nature observers. It might
also serve educational purposes thanks to biodiversity discovery applications
providing functionalities such as contextualized educational pathways.

The aim of the challenge is to predict the list of species that are the most likely
to be observed at a given location. Therefore, we provide a large training set of
species occurrences, each occurrence being associated to a multi-channel image
characterizing the local environment. Indeed, it is usually not possible to learn a
species distribution model directly from spatial positions because of the limited
number of occurrences and the sampling bias. What is usually done in ecology
is to predict the distribution on the basis of a representation in the environ-
mental space, typically a feature vector composed of climatic variables (average
temperature at that location, precipitation, etc.) and other variables such as soil
type, land cover, distance to water, etc. The originality of GeoLifeCLEF is to
generalize such niche modeling approach to the use of an image-based environ-
mental representation space. Instead of learning a model from environmental
feature vectors, the goal of the task will be to learn a model from k-dimensional
image patches, each patch representing the value of an environmental variable
in the neighborhood of the occurrence. As last year, the task consists of predict-
ing plant species from location, but we added a very large and newly published
dataset of plant occurrences from a citizen science project. We also proposed
to participants to use an even bigger dataset of non-plant species that might
interact with plants.

4.2 Data Set and Evaluation Protocol

Training set - The training data provided for the task included three distinct
occurrences data sets:

— Pl@ntNetFranceRaw: 2,367,145 occurrences of plants that were collected
via the Pl@ntNet application and automatically identified (using a convo-
lutional neural network). These original data is described and permanently
hosted in [3].



— Pl@ntNetFranceTrusted: a subset of Pl@ntNetFranceRaw including only
the occurrences for which the prediction score (softmax output of the CNN)
was higher than a threshold equal to 0.98.

— GBIFPlantFrance: 291,392 occurrences of 3,336 plant species collected by
experts on the French territory between 1835 and 2017 (coming from the
GBIF databasd™]

— GBIFAIllFrance: 10,618,839 occurrences of species from other kingdoms
than plants including mammals, birds, amphibians, insects and fungus (also
coming from the GBIF database).

Environmental data - We provided 33 geographic rasters of various spatial res-
olutions containing containing bioclimatic, pedologic, topologic, hydrographic
and land cover variables suited for modeling plant species distributions. The
original data compilation is freely downloadable and described in details at [2].
We also provided a python tool allowing to extract the automatically environ-
mental patches: A 3 dimensions array where each layer is the is a window matrix
cropped into one raster, and centered at the specified location.

Test set - We used 25,000 plant occurrences of high location accuracy (inferior
to 50 meters) and identification certainty collected by the Mediterranean Na-
tional Botanical Conservatory (CBNmed) and their partners over the French
Mediterranean region. They have been selected to insure that spatial coverage
is uniform and that locally each present species have an equivalent number of
occurrences.

Ewvaluation - Several tens of plant species coexist in some square meters. Thus,
we have chosen to evaluate the ability of algorithms to predict the true species
label of an occurrence among the predicted 30 highest ranked species. We thus
used the top30 accuracy as primary metric:

n_occ
E:izl H{SiELi}

Top30(L1, .., Ln_oce) = oce

Where s; is the species label of occurrence ¢ and L; is the list of the 30 species
labels predicted with highest probability for occurrence ¢ by the algorithm.

4.3 Participants and Results

61 participants registered for the GeoLifeCLEF 2019 challenge and downloaded
the dataset. Five of them succeeded in submitting 44 runs in total. Details of the
methods and systems used in the runs are synthesized in the overview working
note paper of the task [4] and further developed in the individual working notes of

11www.gbif.org
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the participants (LIRMM [30], SaraSi [33], SSN_CSE [25], sergiu_atodiresei
[1] and Lot_of_Lof [29]). In Figure[5] we report the performance achieved by the
44 collected runs.

The 5 best runs of this challenge all used Convolutional Neural Network mod-
els applied to environmental patches, which confirms results of last year edi-
tion. This performance gap might be also due to the fact that those models
training included both Pl@ntNetFranceRaw and GBIFPlantFrance plant
occurrences, whereas non-CNN methods only used Pl@ntNet occurrences. The
best run included non plant occurrences (corresponding species labels were added
to the model output) along with plants occurrences. It had sharp performance
improvement compared to the similar architecture learnt without including this
data by the same participant (see run 27006). This strongly suggests that the
model takes advantages of the correlations existing between plant species and
other groups to reconstruct a more faithful biotic context that helps the predic-
tion of plants species.

There may be significant room for improvement for the implementation of the
best run. Indeed, the architecture or learning process employed by LIRMM for
the CNN may be limitating as we can see the same method learnt on plants
only (run 27006) achieved lower performance than SaraSi CNN implementa-
tions (runs 27086, 27087, 27088). More generally, further investigations should
build on this approach of using a wide range of species in learning models. Also
it would be important to compare Pl@ntNetFranceRaw and GBIFPlant-
France data sets and their fusion, to deal for example with observers preferences
bias towards species.

5 Conclusions and Perspectives

The main outcome of this collaborative evaluation is a new snapshot of the per-
formance of state-of-the-art computer vision, bio-acoustic and machine learning
techniques towards building real-world biodiversity monitoring systems. This
study shows that recent deep learning techniques still allow some consistent
progress for most of the evaluated tasks. The results of GeoLifeCLEF, in par-
ticular, revealed for the first time that deep neural networks are able to transfer
knowledge from a kingdom to another one in a very effective way. However, our
study also shows that data availability is a major issue to be resolved if we want
to transpose the best results obtained to any habitat on earth. The results of
BirdCLEF have once again shown significant progress on a difficult task based
on soundscapes even if the newly introduced North American soundscapes seems
to be less complex than their South American counterparts. Domain adaption
to new acoustic environments (and recorder characteristics) played a crucial role
and should be subject of investigation in future editions. The results of Plant-
CLEF, in particular, reveal that the identification performance on Amazonian
plants is considerably lower than the one obtained on temperate plants of Europe
and North America. The analysis of the results showed that the management
of different types of noise (duplicates, errors, non-plants), of different type of
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domains (in the field vs herbarium), and of different data sampling schema (for
reducing the imbalance) in a such data deficient context require further investi-
gations.
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