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Abstract
Aimed at eliminating or at least significantly reducing the use of solvents, sodium hypochlorite pentahydrate crystals
(NaOCl·5H2O) in the presence of a catalytic amount of a nitrosyl radical (TEMPO or AZADO) have been successfully used to in-
duce mechanochemical oxidative processes on several structurally different primary and secondary alcohols. The proposed redox
process is safe, inexpensive and performing effectively, especially on the macroscale. Herein, an Ertalyte® jar has been successful-
ly used, for the first time, in a mechanochemical process.
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Introduction
The conversion of primary and secondary alcohols to the corre-
sponding carbonyl compounds (aldehydes and ketones, respec-
tively) is of such importance in organic chemistry that it finds
very few parallels in other synthetic organic processes [1,2].
These transformations can be achieved by using a wide range of
oxidizing reagents [3], but most of them are difficult-to-handle
and suffer from waste problems due to large amounts of by-
products, thus decreasing the atom efficiency [4,5]. The

discovery of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl, common-
ly known as TEMPO by Lebedev and Kazarnowskii in 1960
has been hailed as a significant breakthrough in the field of
redox reactions, allowing the fast and selective oxidation of
alcohols to the related carbonyl compounds under very mild
conditions [6,7]. Initially used in a stoichiometric amount [8],
over the last 20 years it has been exploited successfully in cata-
lytic quantities in combination with other oxidants [9]. A
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Scheme 1: Oxidation of 3-pheny-1-propanol (1a) with N-chlorosuccinimide (NCS) in the presence of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)
under mechanical activation conditions [50]. aPercentages of conversion were calculated by GC–MS using an internal reference standard.

diverse range of co-oxidant agents (N-chlorosuccinimide,
NaOCl, Oxone®, PhIO, PhICl2, PhI(OAc)2, I2, CAN, etc.) has
been intensively investigated with varying results in terms of
yields, chemical selectivity, and environmental sustainability
[10-18]. All oxidation procedures have their advantages and
their flaws, so the search for efficient, selective, high-yielding,
environmentally benign methods and atom-economical pro-
cesses continues to be a pivotal challenge for chemists [19].
Stahl and many other researchers worked in this direction
achieving noteworthy results by using air/oxygen as an
oxidizing agent in the presence of a suitable metal complex [20-
25]. However, even these recent methods suffer from serious
drawbacks, such as the use of precious metals often combined
with sophisticated organic ligands, which makes them expen-
sive, especially if implemented on an industrial scale. In addi-
tion, increasingly restrictive legislation against residual metals
in manufactured goods and active ingredients stimulates the
ongoing search for new metal-free solutions to the problem
making this challenge even topical [26,27]. Based on the
considerations mentioned above, we focused on an alternative
strategy to activate the oxidation process. In particular, in this
s tudy,  we used sodium hypochlor i te  pentahydrate
(NaOCl·5H2O) in the presence of a catalytic amount of a
nitrosyl radical (TEMPO or AZADO) to induce mechanochem-
ical oxidation reactions on suitably selected primary and sec-
ondary alcohols. Performed in a high-energy ball mill and with
the unprecedented utilization of Ertalyte® jars, the mechanical
activation allows obtaining the oxidized products from a broad
spectrum of initial substrates. We show that the proposed
mechanochemical method is definitely safe, performing effec-
tively and inexpensive, thus providing an interesting synthetic
route that can be scaled up to pilot and industrial levels.

Results and Discussion
Since the most commonly employed oxidizing agents are solid
reagents, we decided to develop an efficient and eco-friendly
process for the selective oxidation of alcohols to the corre-

sponding aldehydes/ketones based on a mechanochemical acti-
vation [28]. In comparison to solution-based techniques, ball-
milling procedures provide an ideal solution for overcoming
many of the drawbacks described above, due to the simplicity
of use, shorter reaction times, large-scale production, low cost
and sustainability of this methodology [28-39]. In addition,
impact forces, that are generated by ball-milling media involve
a very minimal fraction of reactive material mimicking the ideal
behavior/trend of highly diluted reactive systems. This peculiar
aspect of mechanochemical reactions, especially in redox pro-
cesses conducted in no-metal reactors, could prevent excessive
heating of the jar, avoid the decomposition of starting materials
and therefore, limit the formation of byproducts [40]. Following
our interest in mechanochemistry and the design of new cost-
effective oxidation procedures, we have tried to combine both
topics to the best [41-49]. In particular, we were mainly inter-
ested in developing a general, selective and versatile alcohol-to-
aldehyde/ketone oxidative protocol applied to primary and sec-
ondary alcohols by using an oxidizing agent as cheap and eco-
friendly as possible.

In order to optimize all the experimental conditions, we fine-
tuned the reaction by using 3-phenyl-1-propanol as a model
reagent and N-chlorosuccinimide (NCS) as an oxidizing agent.
NCS is one of the most widely used co-oxidizing reagents in
homogeneous-phase TEMPO-assisted oxidation reactions and,
we have gained valuable experience in handling this reagent in
several mechanochemical applications [45,46].

N-Chlorosuccinimide (1.1 mmol) and 3-pheny-1-propanol
(1.0 mmol) were milled together in the presence of TEMPO
(5 mol %), K2CO3 (4.0 mmol) and KBr (3.0 mol %) for
10 minutes in a zirconia jar containing 5 balls (5 mm Ø) of the
same material (Scheme 1).

For all the experiments, we never observed a complete conver-
sion of the alcohol into the aldehyde. Moreover, the first experi-



Beilstein J. Org. Chem. 2019, 15, 1786–1794.

1788

Scheme 2: Hypothesized pathways for the TEMPO-assisted oxidation of alcohols in a) basic or b) acidic reaction conditions.

Scheme 3: TEMPO-assisted oxidation of 3-pheny-1-propanol (1a) under mechanical activation conditions. aPercentages of conversion were calcu-
lated by GC–MS using an internal reference standard.

mental results showed the key role of the base in the conver-
sion of an alcohol into an aldehyde: it fails in the absence of
K2CO3, reaches a maximum of 51% with 4 equivalents and
decreases (27%) for higher amounts (Scheme 1). This is mainly
due to the fact that the concentration of the active oxidizing
agent, HOCl is strongly dependent on the amount and strength
of the base used in the grinding mixture [51].

Two different mechanisms have been postulated for similar
reactions in homogeneous phase: one occurs under acidic
conditions, while the other works better in a basic medium
through a cyclic dipolar mechanism (Scheme 2) [52,53]. On the
contrary, under ball-milling conditions, it is possible to hypoth-
esize that only the cyclic dipolar mechanism, which operates
mostly in basic conditions, allowed to gain access to the desired
aldehyde.

Interestingly, the formation of a significant amount of over-oxi-
dation [54] and elimination byproducts was observed for
3-pheny-1-propanol (1a) when increasing the reaction time (up
to 20 min, Scheme 1). In contrast, comparable results were ob-
tained when the milling time was reduced to 3 minutes, leading
to an alcohol/aldehyde ratio very similar to that one obtained

after ten minutes. Any attempt to improve this conversion by
varying other parameters such as the number (up to 15 balls,
5 mm Ø) and the diameter of balls (from 3 up to 10 mm Ø), or
using a different base (KHCO3 or Na2CO3) turned out to be un-
successful.

The use of other solid oxidants such as trichloroisocyanuric acid
(TCCA) did not bring any advantage to the process (Scheme 3),
and the aldehyde was only detected in negligible amounts
(GC–MS analyses). The (diacethoxyiodo)benzene acid (PIDA)
allowed to further improve the alcohol-to-aldehyde conversion
by a few percentage points (57%), but the formation of 2 equiv-
alents of acetic acid makes it unsuitable for a mechanochemical
process [55]. Also, Oxone® and NH2CONH2·H2O2 appeared to
fail in the oxidation of 3-phenyl-1-propanol (1a) to the corre-
sponding aldehyde.

Subsequently, we turned our attention to sodium hypochlorite
(NaOCl), an inexpensive and widely used oxidizing reagent
also applied as a disinfectant and household bleaching agent,
usually sold as a 3–6% solution in water. Commercially avail-
able NaOCl is highly basic (pH ≈ 12.7) that dramatically slows
down the oxidation process, and NaHCO3 has to be added to
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Table 1: Oxidation of 3-phenyl-1-propanol (1a) with aqueous NaOCl (6%, bleach) under mechanical activation conditions [50].

Entry Base NaCl (g)a Time (min) Aldehyde (%)b Byproducts (%)b

1 NaHCO3 (2.0 g) 3.5 15 73 16
2 NaHCO3 (2.0 g) 3.0 15 77 22
3 NaHCO3 (1.0 g) 5.0 15 78 8
4 NaHCO3 (1.0 g) 5.0 30 78 6
5 NaHCO3 (2.5 g) 2.5 15 88 4
6 NaHCO3 (6.5 g) – 22 >99 –
7 Na2CO3 (2.0 g) 3 22 61 37
8 Na2CO3 (6.0 g) – 22 55 41

aNaCl was used as an adsorbent [58] in combination with NaHCO3 or Na2CO3. bPercentages of conversion were calculated by GC using an internal
reference standard.

both maximize the concentration of the active oxidizing agent
HOCl, and to absorb bleach [56]. The addition of a catalytic
amount of KBr promotes the in situ generation of HOBr, which
is a stronger oxidant than HOCl [57].

The results improved remarkably by using as oxidant a 6%
aqueous solution of NaOCl (1.14 mL, 1.1 mmol) adsorbed on
NaHCO3 (6.5 g) in the presence of a catalytic amount of
TEMPO (5.0 mol %) and KBr (3.0 mol %) (Table 1, entry 6).
Within 20 minutes, the alcohol was completely and selectively
oxidized into the corresponding aldehyde (as assessed by
GC–MS analyses). The use of NaCl, alone or in combination
with NaHCO3, as an adsorbent [58] (Table 1, entries 1–5, 7) or
bases (Na2CO3, Table 1, entries 7 and 8) other than NaHCO3
significantly reduces the alcohol-to-aldehyde conversions.

Based on these preliminary results, we decided to replace
aqueous NaOCl (bleach) with Ca(OCl)2 that has been reported
previously as a valid alternative to NaOCl aqueous solutions for
mechanochemical chlorination reactions of hydantoins [41,59].
However, also using this oxidant, we observed low conversions
(31%) and the formation of significant amounts of byproducts,
mainly halides and olefins (elimination byproducts). The use of
liquid-assisted grinding (LAG) procedures [60-62] by adding
small quantities of water (250 μL) improved the performance of
the reaction (alcohol-to-aldehyde conversion: 41%), but also
raised the percentage of elimination products (38%). Solid
NaOCl·5H2O, which has been discovered over a century ago,
represented a turning point in our search for a suitable reagent,
avoiding some of the previously described shortcomings. As of
2013, this reagent is commercially available [63], inexpensive

and sufficiently stable and safe for potential applications in
mechanochemistry (Figure S1a, Supporting Information File 1)
[64-67].

Once the most promising oxidant was identified, NaOCl·5H2O
(1.1 mmol), 3-phenyl-1-propanol (1.0 mmol), NaHCO3
(2.2 mmol), and KBr (3 mol %) were milled together in the
presence of TEMPO (5 mol %) for 20 minutes in a zirconia jar
containing 6 balls (5 mm Ø) of the same material. NaHCO3
plays the double role of base and adsorbent for liquid alcohols
(Table 2, entry 1). The first results were promising and showed
a good alcohol-to-aldehyde conversion (75%). We have also
used a Teflon jar, but we observed lower conversions (<50%).
In addition, the reproducibility of data was often poor. In our
ongoing efforts to develop mechanochemical reactions in jars
manufactured from thermoplastic materials as alternatives to
Teflon, having high mechanical resistance, rigidity, and hard-
ness, we were pleased to find that Ertalyte® displayed an excel-
lent performance in the mechanical process. All other parame-
ters being equal, the conversion efficiency improved signifi-
cantly by switching to an Ertalyte® jar (86%) [68] which could
be further enhanced (93%) by slightly increasing the amount of
the oxidant agent (1.5 equiv). Ertalyte® jars (Figure S1b, in
Supporting Information File 1) are composed of polyethylene
terephthalate (PET-P) and characterized by wear- and abrasion-,
chemical and moderate acid resistance, with a low coefficient of
friction and FDA approved [69].

In the absence of TEMPO, the oxidation reaction did not work
anymore, while in the absence of KBr, the conversion rate was
considerably reduced. The use of bases other than NaHCO3
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Table 2: Oxidation of 3-phenyl-1-propanol (1a) with NaOCl·5H2O crystals under mechanical activation conditions using ZrO2 or Ertalyte® jars. Optimi-
zation of the reaction conditions.

Entry NaOCl·5H2O (mmol) Jar Aldehyde (%)a Alcohol (%)a Byproducts (%)a

1 1.1 Zirconia 75 19 6
2b 1.1 Zirconia 70 11 19
3 1.1 Ertalyte® 86 9 5
4 1.5 Ertalyte® 93 5 2
5c 1.5 Ertalyte® 69 27 4

aPercentages of conversion were calculated by GC using an internal reference standard. bThe reaction time was extended to 40 min. cThe amount of
TEMPO was decreased from 5 to 3 mol %.

Scheme 4: Scope of primary alcohol oxidation under mechanical activation conditions. aAll yields refer to isolated pure products. bThe compound was
prepared according to the general procedure A (see Supporting Information File 1) without adding TEMPO catalyst, and the reaction was completed
within ten minutes.

(Na2CO3 or sodium citrate) resulted in low alcohol-to-aldehyde
conversions (<40%) and promoted, conversely, the formation of
significant amounts of olefins (>25%) resulting from halide
elimination. Any attempt to lower the amount of the nitrosyl
catalyst resulted in a poor conversion (69%, Table 2, entry 5).
Once the reaction conditions were fine-tuned, this procedure
was applied to a range of alcohols to assess the scope of the
reaction. The results are shown in Scheme 4.

Aliphatic alcohols 1a–5a with carbon chains of different length
were oxidized to give the corresponding aldehydes 1b–5b in
good yields and no carboxylic acid derivatives were observed in
any sample. Similar results were obtained for alcohols contain-
ing an aliphatic carbon ring in their backbone, such as cyclo-
hexylmethanol (5a). Interestingly, the oxidation reaction of
benzylic alcohols proceeded smoothly to completeness in about
10 minutes even without need for TEMPO.
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Scheme 5: Proposed mechanism for the oxidation of benzylic alcohols 6a and 7a under mechanochemical conditions and in the presence of KBr.

The results changed significantly with benzylic alcohols deco-
rated with an electron-withdrawing group in the aromatic ring
such as 4-nitrobenzylalcohol (and 4-cyanobenzylalcohol),
which required 5 mol % of TEMPO to be oxidized.

Based on these experimental results, we hypothesize that the
reaction proceeded by a mechanism different from the classical
solution-based TEMPO-assisted oxidation of alcohols, as illus-
trated in Scheme 5 [65]. In the first step of the reaction, potas-
sium bromide, used as a co-catalyst, generates in situ sodium
hypobromite, a more favorable oxidizing reagent than sodium
hypochlorite. Ion metathesis due to the presence of KCl may
lead to KOBr (Scheme 5, reaction 1). Subsequently, the species
MOBr (M = Na, K) reacts with water to form HOBr, which is
the active oxidizing agent (Scheme 5, reaction 2). Once the
oxidizing agent formed, it reacts with the benzylic alcohols 6a
or 7a to afford the corresponding intermediate benzyl hypo-
bromites 6c or 7c (Scheme 5, reaction 3). In the final step, the
base deprotonates the acidic benzylic proton leading to the cor-
responding benzaldehyde 6b or 7b (Scheme 5, reaction 4).

The oxidation of furfuryl alcohol gave furfural (10b), but in low
and irreproducible yields together with significant amounts of
byproducts. As expected, the reaction with conjugated alcohols
(cinnamic alcohol, propargyl alcohol, etc.) was less successful
due to the competing chlorination of the multiple bonds.
Prompted by these findings, we further explored the efficacy of
the protocol with a variety of secondary alcohols. Unfortu-
nately, the oxidation reaction tested on 4-phenyl-2-butanol
proceeded with low conversion yields (45%). An increase in
both the amount of the oxidant (2 equiv) and the nitrosyl radical

(10 mol %), as well as longer reaction times (up to 1.5 h), did
not lead to any significant improvement. However, we were
pleased to find that the less hindered 2-aza-adamantane-N-oxyl
(AZADO) was more effective than TEMPO in terms of conver-
sion and yield with the model alcohol substrate, promoting an
almost quantitative conversion of 4-phenyl-2-butanol into
benzylacetone in only 30 min (Scheme 6, ketone 11b). This
protocol was successfully extended to other secondary alcohols
to afford the corresponding ketones 11b–19b in high conver-
sions and yields.

The oxidation of sterically hindered secondary alcohols such as
adamantan-2-ol (Scheme 4, alcohol 16a) required doubling of
the quantity of the nitrosyl catalyst (AZADO, 2 mol %) and
longer reaction times (from 30 to 60 min) to achieve comple-
tion. Another useful feature of this protocol can be seen in the
case of secondary benzyl alcohols, where the oxidation reac-
tion to the corresponding ketones proceeded smoothly even
without the necessity to use the nitrosyl catalyst (Scheme 6, ke-
tones 17b–19b). With all benzylic alcohols examined, the
GC–MS analyses showed that the reactions were nearly com-
plete in about 15 minutes, ketones 17b–19b being isolated in
high yields and purities. Finally, we investigated if this protocol
could be potentially implemented on a larger scale. Pleasingly,
we were able to scale-up the oxidation of 1a and 11a from a
1 mmol up to a 10 mmol scale without any significant drop in
terms of purity and yield, thus confirming the method’s poten-
tial adaptability to industrial settings.

The proposed mechanism for the TEMPO-based oxidative
conversion of primary and secondary alcohols to the corre-
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Scheme 6: Scope of secondary alcohols in the oxidation under mechanical activation conditions. aAll yields refer to isolated pure products. b2-Aza-
adamantane-N-oxyl (AZADO, 2 mol %), 60 min. cOxidation carried out without AZADO catalyst, 15 min. The title compound was prepared according
to the general procedure B (see Supporting Information File 1).

sponding carbonyl compounds is described in Scheme 7 and
shares similarities with that postulated in other previous studies
in solution.

Scheme 7: Possible mechanism for the TEMPO-mediated oxidation of
primary and secondary alcohols by using NaOCl·5H2O and catalytic
KBr.

In general, NaOCl works as a co-oxidant agent, and in the cata-
lytic cycle reacts with KBr generating in situ −OBr, a stronger

oxidizing species. Subsequently, a catalytic amount of −OBr
oxidizes the TEMPO radical to the N-oxo-ammonium ion A.
The latter in turn rapidly oxidizes the alcohol to the correspond-
ing carbonyl compound and gives the reduced form of TEMPO,
the hydroxylamine C, TEMPOH. Then hydroxylamine C is
reoxidized by −OBr regenerating the starting TEMPO radical or
directly the N-oxo-ammonium species A, thus closing the cata-
lytic cycle (Scheme 7).

Conclusion
The conversion of primary and secondary alcohols to alde-
hydes and ketones, respectively, is one of the most important
reactions in the panorama of organic chemistry. Although the
literature describes a plethora of reagents and methodologies,
most of them use toxic/harmful reagents that often cause serious
environmental and public health concerns. Crystalline sodium
hypochlorite (NaOCl·5H2O) in the presence of a catalytic
amount of a nitrosyl radical allowed developing a redox process
without using any metal catalyst. With the aim to eliminate or at
least reduce the use of solvents, NaOCl·5H2O, among all the
oxidants tested, was the one that best fitted with a general
mechanochemical oxidative process of alcohols in Ertalyte®

jars. The latter material never has been explored before in any
of the mechanochemical transformations described in the litera-
ture and produced outperforming results compared to those ob-
tained in zirconium oxide jars.
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Supporting Information
Supporting Information File 1
Experimental procedures, characterization of new
compounds and copies of 1H and 13C NMR spectra.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-15-172-S1.pdf]
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