Electrochemical advanced oxidation processes using novel electrode materials for mineralization and biodegradability enhancement of nanofiltration concentrate of landfill leachates

To cite this version:

HAL Id: hal-02278696
https://hal.umontpellier.fr/hal-02278696
Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Electrochemical advanced oxidation processes using novel electrode materials for mineralization and biodegradability enhancement of nanofiltration concentrate of landfill leachates.

Marwa El Kateb1,2,4, Clément Trellu1,3,*, Alaa Darwich1, Matthieu Rivallin1, Mikhaël Bechelany1, Sakthivel Nagarajan1, Stella Lacour1, Nizar Bellakhal4, Geoffroy Lesage1, Marc Héran1, Marc Cretin1,*

1IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
2Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092 Tunis, Tunisie
3Laboratoire Géomatériaux et Environnement, LGE – Université Paris-Est, EA 4508, UPEM, 77454 Marne-la-Vallée, France
4Université de Carthage, Institut National des Sciences Appliquées et de Technologie, Laboratoire d’Echo-Chimie, 1080 Tunis, Tunisie

Manuscript submitted to Water Research for consideration

* Corresponding Author:
clement.trellu@u-pem.fr
+33 1 49 32 90 42
Graphical abstract

Electrochemical Advanced Oxidation Processes
Homogeneous/Heterogeneous electro-Fenton
Anodic Oxidation
Abstract

The objective of this study was to implement electrochemical advanced oxidation processes (EAOPs) for mineralization and biodegradability enhancement of nanofiltration (NF) concentrate from landfill leachate initially pre-treated in a membrane bioreactor (MBR). Raw carbon felt (CF) or Fe^{II}Fe^{III} layered double hydroxides-modified CF were used for comparing the efficiency of homogeneous and heterogeneous electro-Fenton (EF), respectively. The highest mineralization rate was obtained by heterogeneous EF: 96% removal of dissolved organic carbon (DOC) was achieved after 8 h of electrolysis at circumneutral initial pH (pH₀ = 7.9) and at 8.3 mA cm⁻². However, the most efficient treatment strategy appeared to be heterogeneous EF at 4.2 mA cm⁻² combined with anodic oxidation using Ti₄O₇ anode (energy consumption = 0.11 kWh g⁻¹ of DOC removed). Respirometric analyses under similar conditions than in the real MBR emphasized the possibility to recirculate the NF retentate towards the MBR after partial mineralization by EAOPs in order to remove the residual biodegradable by-products and improve the global cost effectiveness of the process. Further analyses were also performed in order to better understand the fate of organic and inorganic species during the treatment, including acute toxicity tests (Microtox®), characterization of dissolved organic matter by three-dimensional fluorescence spectroscopy, evolution of inorganic ions (ClO₃⁻, NH₄⁺ and NO₃⁻) and identification/quantification of degradation by-products such as carboxylic acids. The obtained results emphasized the interdependence between the MBR process and EAOPs in a combined treatment strategy. Improving the retention in the MBR of colloidal proteins would improve the effectiveness of EAOPs because such compounds were identified as the most refractory. Enhanced nitrification would be also required in the MBR because of the release of NH₄⁺ from mineralization of refractory organic nitrogen during EAOPs.
Keywords

Electro-Fenton; Anodic oxidation; Modified carbon felt; Sub-stoichiometric titanium oxide;

Landfill leachate; Biodegradability.
1. Introduction

Rainwater percolation through waste layers of landfills generates leachates containing a complex mixture of dissolved organic matter (DOM), inorganic compounds, heavy metals, and xenobiotic organic substances (Kjeldsen et al., 2002), which represents a significant hazard for the environment.

The implementation of a membrane bioreactor (MBR) followed by a nanofiltration (NF) step is one of the most efficient treatment strategy currently used for management of landfill leachates (Campagna et al., 2013; Amaral et al., 2016). However, NF is only a separation process. Biorefractory organic pollutants are accumulated and concentrated. Thus, the concentrate becomes an important residual issue for this treatment strategy (Van der Bruggen et al., 2003; Zhang et al., 2009, 2013). Landfill discharge of the concentrate is commonly performed. However, some national regulations do not allow such practice and it clearly does not fix the long-term issue. In recent years, several processes have been investigated and applied at industrial scale for the treatment of NF concentrate. For example, adsorption processes are effective to remove organic matters in NF concentrate, but they are strongly limited by the high organic charge of such effluents compared to the adsorption capacity of adsorbent materials. Besides, membrane distillation and evaporation processes are substantially limited by the high cost of equipment and energy consumption (Cui et al., 2018).

During the last two decades, electrochemical advanced oxidation processes (EAOPs) have received great attention for efficient degradation of a large range of hazardous and biorefractory organic compounds. They are based on in situ electrogeneration of hydroxyl radicals (*OH), a non-selective and powerful oxidizing agent (E°(*OH/H₂O) = 2.80 V vs SHE) (Brillas et al., 2009; Comninellis et al., 2008; Martínez-Huitle et al., 2015; Panizza and Cerisola, 2009). EAOPs provide also several technical advantages such as high versatility,
easy operation, possibility for automation and low consumption of chemical reagents (Radjenovic and Sedlak, 2015; Sirés et al., 2014). However, complete mineralization of organic compounds requires high energy consumption. Therefore, the combination of EAOPs with biological processes is currently more and more investigated as a feasible option for improving the global cost-effectiveness of the process (Oller et al., 2011; Ganzenko et al., 2014, 2018; Trellu et al., 2016a; Olvera-Vargas et al., 2015). In order to achieve reliable conclusions, the accurate assessment of biodegradability enhancement by EAOPs requires the use of proper measurement tools such as respirometric methods (Reuschenbach et al., 2003).

Anodic oxidation (AO) and electro-Fenton (EF) are the most popularized EAOPs (Brillas et al., 2009; Panizza and Cerisola, 2009; Martínez-Huitle et al., 2015; Oturan et al., 2015). AO is based on the generation of hydroxyl radicals (OH) via water oxidation at the surface of anodes (M) with high overvoltage for oxygen evolution reaction (Eq. 1) (Panizza and Cerisola, 2009; Trellu et al., 2017; Özcan et al., 2008), while OH are generated homogeneously in the bulk during the EF process through the Fenton’s reaction (Eq. 2) (Brillas et al., 2009; Ma et al., 2016; Zhang et al., 2007). H₂O₂ and iron (II) are continuously electrognerated at the cathode by reduction of dissolved oxygen (Eq. 3) and iron (III) reduction (Eq. 4), respectively. External oxygen supply is required and an iron source must be either initially added at catalytic amount to the treated solution (homogeneous EF) or embedded onto suitable electrode materials (heterogeneous EF).

\[
\begin{align*}
M + H_2O &\rightarrow M(\cdot OH) + H^+ + e^- \quad \text{(Eq. 1)} \\
Fe^{2+} + H_2O_2 + H^+ &\rightarrow Fe^{3+} + \cdot OH + H_2O \quad \text{(Eq. 2)} \\
O_2(g) + 2H^+ + 2e^- &\rightarrow H_2O_2 \quad \text{(Eq. 3)} \\
Fe^{3+} + e^- &\rightarrow Fe^{2+} \quad \text{(Eq. 4)}
\end{align*}
\]
Homogeneous EF requires external iron source and acidic pH (i.e. pH 2.5 – 3.5) that prevents iron precipitation (Brillas et al., 2009). Besides, heterogeneous EF using for example pyrite (Ammar et al., 2015) or iron loaded sepiolite (Iglesias et al., 2013) as iron source has been developed in order to operate the process over a wide pH range (Ganiyu et al., 2018; Pozan-Nogueiras et al., 2018). Innovative electrodes have been also synthesized and studied as both heterogeneous catalyst source and cathode materials (Zhang et al., 2012; Wang et al., 2013; García-Rodríguez et al., 2016; Ganiyu et al., 2017a). Particularly, the modification of raw carbon felt (CF) with CoFe or FeIIFeIII-layered double hydroxide (LDH) also led to an increase of the electroactive surface area, which in turn improved the generation of H$_2$O$_2$ and the global efficiency of the heterogeneous EF process (Ganiyu et al., 2017a, 2018). However, to the best of our knowledge, none study focused on the application of such promising electrodes for the treatment of real wastewaters.

As regards to anode materials, sub-stoichiometric titanium oxides (especially Ti$_4$O$_7$) recently received great attention for application in wastewater treatment by AO (Guo et al., 2016; Ganiyu et al., 2016; Trellu et al., 2018b). Ti$_4$O$_7$ anode is able to generate large amounts of physisorbed hydroxyl radicals (Ti$_4$O$_7$(•OH)) for the degradation and mineralization of organic contaminants. Besides, this material has the potential to become a low-cost anode compared to the well known boron-doped diamond anode (Ganiyu et al., 2017b; Trellu et al., 2018b). However, to the best of our knowledge, such anode material has also still not been applied for the treatment of real effluents.

The objective of this study was to investigate the application of these novel electrode materials for the treatment of a NF concentrate of landfill leachate initially pre-treated in a MBR, which represents an important challenge for environmental engineering. Various configurations (i.e. homogeneous EF, heterogeneous EF, heterogeneous EF/AO) and operating conditions were studied. The efficiency for mineralization of organic compounds
was compared. A particular attention was also given to the understanding of mineralization mechanisms by using various analytical tools: (i) DOM was characterized by three-dimensional excitation and emission matrix fluorescence (3DEEM), (ii) degradation by-products such as short-chain carboxylic acids were identified and quantified by ion-exclusion HPLC, and (iii) inorganic ions released during the mineralization process were identified and quantified by ion chromatography. Moreover, acute toxicity of the effluent was assessed by Microtox® analysis and the possibility to use such EAOPs as a pre-treatment before recirculation towards the MBR was assessed by using respirometric method under similar conditions than in the real industrial MBR. Finally, recommendations were given by taking into consideration the interdependence of MBR process and EAOP in a combined treatment strategy.

2. Materials and methods

2.1 Chemicals

For the preparation of FeII-FeIII-LDH modified CF, iron III nitrate nonahydrate Fe(NO\textsubscript{3})\textsubscript{3}.9H\textsubscript{2}O (CAS 7782-61-8, 98% purity), iron II sulfate heptahydrate FeSO\textsubscript{4}.7H\textsubscript{2}O (CAS 7782-63-0, >99% purity), urea CO(NH\textsubscript{2})\textsubscript{2} (CAS 57-13-6) and ammonium fluoride NH\textsubscript{4}F (CAS 12125-01-8, 99% purity) were supplied by Sigma Aldrich. Ultra-pure water (Millipore Mill-Q system, resistivity >18 M\textOmega.cm at 25 °C) was used for the preparation of all solutions.

2.2 Landfill leachate (NF concentrate)

The NF concentrate was collected from a landfill leachate wastewater treatment plant (WWTP) in the south of France. The raw landfill leachate was initially treated in a MBR, then
followed by a NF step. The concentrate from the NF step was collected and stored in a refrigerator at 4 °C.

2.3 Electrochemical setup and electrode materials

Experiments were conducted in an undivided cylindrical glass containing 220 mL of NF concentrate at room temperature (25 °C). The electrochemical cell was similar to the one used in several previous studies (Ganiyu et al., 2016; Trellu et al., 2016b). Either raw CF (for homogeneous EF) or FeIIFeIII-LDH modified CF (for heterogeneous EF) was employed as cathode (20 x 6 cm; 120 cm2), positioned on the inner wall of the cylindrical cell. CF (99.0%, 6.35 mm thick) was provided by Alfa Aesar. FeIIFeIII-LDH modified CF was prepared by \textit{in-situ} solvothermal process as reported elsewhere (Ganiyu et al., 2018). LDH coating was 0.62 ± 0.04 mg cm-2, which was also in agreement with what has been reported previously (Ganiyu et al., 2018). For homogeneous EF experiments, 0.2 mM of Fe2+ was added to the solution and initial pH was adjusted at 3 (values usually reported as optimal). For heterogeneous EF experiments, none Fe2+ was externally added and pH was not initially adjusted.

The anode was either a 24 cm2 (3 x 8 cm) platinum mesh (for homogeneous and heterogeneous EF) or a 32 cm2 (4 x 8 cm) Ti\textsubscript{4}O\textsubscript{7} thin film plasma deposited on Ti substrate (for heterogeneous EF/AO) from Saint-Gobain Research Provence, France. Ti\textsubscript{4}O\textsubscript{7} powder used for plasma deposition was prepared by carbothermal reduction of TiO\textsubscript{2} as already reported by our group (Ganiyu et al., 2016, 2017b). These rectangular-shaped anodes were placed at the center of the cylindrical electrochemical cell, with an average inter electrode distance of 3 cm.

Electrodes were connected to a DC power supply (CNB Electronique) with applied current set at 1000 mA (j = 8.3 mA cm-2, calculated from the cathode surface, which is the working
electrode during the EF process) or 500 mA (j = 4.2 mA cm$^{-2}$). A magnetic stirrer was used to improve mass transport of chemical species toward/from the electrodes. The solution was saturated with O$_2$ by bubbling compressed air through a glass frit 10 min before starting the experiments and all along the electrolysis. The conductivity of the NF concentrate was high enough to ensure the electrolysis without any additional supporting electrolyte. For comparison, a reference experiment was also carried out using raw carbon felt cathode, Pt anode, without adding any source of iron and without initial pH adjustment.

2.4 Dissolved organic carbon and chemical oxygen demand analysis

Mineralization rate of NF concentrate was determined by total organic carbon (TOC) analyses using the Shimadzu TOC-L analyzer based on the 680 °C combustion catalytic oxidation method. All samples were filtrated through 0.45 µm regenerated cellulose (RC) membrane filters. Therefore, results are reported as dissolved organic carbon (DOC).

Chemical oxygen demand (COD) was analyzed by the method AFNOR NFT 90-101 using Hach COD kits.

2.5 Respirometric method for the determination of biodegradability

Biodegradability was assessed with a BM-T Advance Respirometer (SURCIS S.L, Spain), which consists in a 1 L capacity vessel, provided with an oxygen probe (Hamilton) and temperature control system. The activated sludge used in the bioassays was collected from the aerated tank of the landfill leachate WWTP using MBR and was thus acclimatized to the effluent. The samples were evaluated without pH adjustment because of the high buffer capacity of the landfill leachate samples. Continuous aeration and agitation were applied to
ensure air saturation conditions. Temperature was maintained at 20 °C during the tests and the standardization with sodium acetate method was applied (conversion rate adjustment according to instructions given by the respirometer’s manufacturer). In order to inhibit the nitrification process and measure the sample effect only on the heterotrophic bacteria, 1.5 mg gVSS⁻¹ of N-allylthiourea was added before the beginning of each trial.

For biodegradability assays, 700 mL of endogenous activated sludge and 300 mL of target sample were introduced in the respirometer. The biodegradability of samples pre-treated by EAOPs was assessed through R tests (Fig. SI 1). The ratio between biodegradable COD (bCOD) and DOC (bCOD/DOC) was used for determination of the biodegradable character of each sample. A biodegradability enhancement index (BE) was calculated by using Eq. 5.

\[
BE = \frac{\text{bCOD}_t}{\text{DOC}_t} \div \frac{\text{bCOD}_0}{\text{DOC}_0}
\]

(Eq. 5)

Where bCODₜ and DOCₜ are bCOD (in gO₂ L⁻¹) and DOC (in gC L⁻¹) after t hours of treatment by EAOPs.

2.6 Characterization of dissolved organic matter by three-dimensional excitation and emission matrix fluorescence (3DEEM)

Natural organic matter was characterized by 3DEEM fluorescence using a Perkin-Elmer LS-55 spectrometer (USA). The dilution factor was 200 for all samples. The procedure reported by Jacquin et al. (2017) was used for fluorescence spectra acquisition and data extraction. Chen et al. (2003) divided fluorescence spectra into five different areas corresponding to different groups of fluorophores, i.e. regions I and II for aromatic proteins, region III for fulvic acid-like (FA-like) fluorophores, region IV for soluble microbial by-product-like (SMP-like) fluorophores and region V for humic acid-like (HA-like) fluorophores (Chen et
Similarly to the study of Jacquin et al. (2017), 3DEEM results were analyzed by taking into consideration only 3 different zones, i.e. zone I’ for region I + II (aromatic proteins), zone II’ for region IV (SMP-like) and zone III’ for region III + V (HA + FA-like). Calculation of the volume of fluorescence in these different zones was achieved following the method from Jacquin et al. (2017).

The procedures for ICP-MS analysis, toxicity test (Microtox®), identification/quantification of inorganic ions and identification/quantification of short-chain carboxylic acids are provided in Supplementary Information (SI).

3. Results and Discussion

3.1 Characterization of the NF concentrate effluent

The characteristics of the NF concentrate are presented in SI (Table SI 1). The effluent was a dark brown liquid having a slightly alkaline pH and high organic charge. The conductivity (3.1 mS cm\(^{-1}\)) was between 3 and 10 times lower than values reported in the literature (10 – 33 mS.cm\(^{-1}\)) (Li et al., 2015; Hu et al., 2018; Xu et al., 2017). This might be ascribed to the high diversity of landfill leachate and to a lower retention of ionic species by the NF step. In fact, the concentration factor of divalent (Mg\(^{2+}\) and Ca\(^{2+}\)) and monovalent (Na\(^{+}\) and K\(^{+}\)) inorganic cations was only 3.1 ± 0.3 and 1.7 ± 0.2, respectively. Monovalent ions are less retained by the NF membrane because of lower charge interactions (Van der Bruggen et al., 2004). The COD content (2.1 gO\(_2\) L\(^{-1}\)) of the NF concentrate was also in the low range of values usually reported in the literature (1.7 – 5.5 gO\(_2\) L\(^{-1}\)) (Li et al., 2015; Hu et al., 2018; Xu...
et al., 2017) because of (i) operation of the NF process with a lower concentration factor
and/or (ii) lower initial organic loading rate of the effluent pre-treated by the MBR.

The ratio between bCOD and total COD or total DOC was low (bCOD/COD = 0.12 or
bCOD/DOC = 0.26), thus indicating the low biodegradability of the concentrate owing to the
presence of high-molecular weight and non-biodegradable compounds. A high concentration
of nitrate ([NO$_3^-$] = 90 mg L$^{-1}$) was observed due to the complete nitrification of NH$_4^+$ in the
MBR and a partial denitrification in the anoxic tank. As regards to metals, Sr ion was the
most concentrated (6.0 mg L$^{-1}$) and high concentrations of As (0.38 mg L$^{-1}$) and Cr (0.67 mg
L$^{-1}$) ions were also reported. These metals are released by different wastes discarded in
landfills such as glass products (Ponthieu et al., 2007), fluorescent lights and ceramics
(Mahindrakar and Rathod, 2018). Besides, the high concentration of Sb (1.2 mg L$^{-1}$) indicates
an important contamination from plastic decomposition (Westerhoff et al., 2008).

3.2 Mineralization efficiency by EAOPs

Various experiments were performed in order to evaluate the efficiency of different EAOPs
(i.e. homogeneous EF, heterogeneous EF, heterogeneous EF/AO).

First, volatilization and adsorption phenomena were evidenced by bubbling oxygen into the
electrochemical reactor without any current applied. Under these conditions, DOC content
decreased and reached a plateau after 1 h with around 16±2% removal due to volatilization of
volatile organic compounds and adsorption of hydrophobic compounds on CF. Besides, it was
also observed that initial pH adjustment at 3 decreased the DOC value by 15±5% because of
the precipitation of humic acids.

Second, experiments were carried out under constant current density applied to the electrodes.
As shown in Fig. 1A, 96% of DOC removal was obtained after 8 h of electrolysis by
heterogeneous EF with an applied current density of 8.3 mA cm$^{-2}$. The excellent mineralization efficiency achieved without any initial pH adjustment was ascribed to heterogeneous EF reaction occurring on the surface of the FeIIFeIII-LDH catalyst, which catalyzed the decomposition of H$_2$O$_2$ to generate large amounts of hydroxyl radicals •OH (Ganiyu et al., 2018). By comparison, only 59% removal of DOC was obtained in the reference experiment with analogous operating conditions but using raw CF as cathode instead of FeIIFeIII-LDH modified CF, thus highlighting the benefits obtained from the use of the modified cathode. Heterogeneous EF was also even more efficient than conventional homogeneous EF (90% removal of DOC after 8 h) with external addition of iron catalyst (0.2 mmol L$^{-1}$) and initial adjustment of pH at 3. Therefore, FeIIFeIII-LDH modified CF appeared as an ideal cathode material that enhances the mineralization efficiency of the EF process and avoids both initial pH adjustment and external addition of iron. The stability and reusability of the prepared FeIIFeIII-LDH modified CF cathode was assessed by reusing the same electrode for 4 successive electrolysis cycles (Fig. 2). The slight but continuous decrease of the efficiency could be ascribed to (i) the initial loss of loosely bounded FeIIFeIII-LDH at the external surface of the CF substrate due to vigorous stirring and/or (ii) iron leaching at acidic pH for which FeIIFeIII-LDH coating is less stable. Indeed, a progressive reduction of pH to values in the range 3 - 4 was noticed during electrolysis, which was explained by the generation of short-chain carboxylic acids. This leaching phenomenon was confirmed by comparison of SEM images of raw CF, FeIIFeIII-LDH modified CF before use and FeIIFeIII-LDH modified CF after 4 cycles of electrolysis (Fig. SI 2). While an extensive growth on the CF of dense platelets of FeIIFeIII-LDH with uneven and porous structure was initially obtained, a partial degradation of the global FeIIFeIII-LDH structure was observed after 4 cycles. Thus, in order to avoid the depletion of the catalyst, a continuous pH control
regulation would be recommended rather than a unique pH re-adjustment at the end of the treatment.

Third, experiments were also performed at lower current density (4.2 mA cm\(^{-2}\), Fig. 1B). Lower DOC removal rates were obtained, e.g. 72% vs 96% removal of DOC after 8 h of treatment by heterogeneous EF at 4.2 mA cm\(^{-2}\) and 8.3 mA cm\(^{-2}\), respectively. Indeed, high current density enhances the generation of hydrogen peroxide and regeneration rate of Fe(II).

Thus, further \(^{\bullet}\)OH are produced for oxidation and mineralization of organic compounds.

Fourth, the influence of the anode material was also investigated (Fig. 1B). After 8h of treatment by heterogeneous EF/AO using Ti\(_4\)O\(_7\) anode at 4.2 mA cm\(^{-2}\), 77% removal of DOC was achieved, compared to 72% by heterogeneous EF using Pt anode. The higher efficiency of Ti\(_4\)O\(_7\) anode was ascribed to the generation at the anode surface of physisorbed Ti\(_4\)O\(_7\)(\(^{\bullet}\)OH) with great oxidation ability, because of the higher overvoltage for oxygen evolution reaction (>0.7 V), compared to Pt anode (<0.4 V) (Trellu et al., 2018a; Ganiyu et al., 2018). Therefore, by taking also into consideration the lower cost of Ti\(_4\)O\(_7\), this anode material appeared as a suitable electrode to combine AO and EF processes.
Figure 1 – DOC removal efficiency vs time during the mineralization of NF concentrate.

Comparison of different configurations and operating conditions.

(A) $j = 8.3 \text{ mA cm}^{-2}$: (○) Homogeneous EF with CF cathode, Pt anode, $[\text{Fe}^{2+}] = 0.2 \text{ mmol L}^{-1}$, $\text{pH}_0 = 3$; (△) Heterogeneous EF with FeIIFeIII-LDH modified CF cathode, Pt anode, $[\text{Fe}^{2+}] = 0 \text{ mmol L}^{-1}$, $\text{pH}_0 = 7.9$; (□) Reference experiment with CF cathode, Pt anode, $[\text{Fe}^{2+}] = 0 \text{ mmol L}^{-1}$, $\text{pH}_0 = 7.9$. Three homogeneous EF experiments were performed in order to assess the reproducibility of the experimental procedure. Standard deviations are reported in Figure 1A.

(B) $j = 4.2 \text{ mA cm}^{-2}$: (○) Homogeneous EF with CF cathode, Pt anode, $[\text{Fe}^{2+}] = 0.2 \text{ mmol L}^{-1}$, $\text{pH}_0 = 3$; (△) Heterogeneous EF with FeIIFeIII-LDH modified CF cathode, Pt anode, $[\text{Fe}^{2+}] = 0 \text{ mmol L}^{-1}$, $\text{pH}_0 = 7.9$; (□) Heterogeneous EF/AO with FeIIFeIII-LDH modified CF cathode, Ti$_4$O$_7$ anode, $[\text{Fe}^{2+}] = 0 \text{ mmol L}^{-1}$, $\text{pH}_0 = 7.9$.

One of the main challenges for EAOPs is to reduce the energy consumption (EC). The EC was expressed as kWh per g of DOC removed and calculated from Eq. 6 (Brillas et al., 2009).
\[EC_{DOC} \text{ (kWh g}^{-1}\text{ of DOC)} = \frac{E_{cell} \cdot I \cdot t}{V \cdot \Delta(\text{DOC})_{exp}} \]

(Eq. 6)

where \(E_{cell} \) is the average cell voltage (V), \(I \) the applied current (A), \(t \) the duration of electrolysis (h), \(V \) the volume of solution treated (L) and \(\Delta(\text{DOC})_{exp} \) the experimental decays of DOC (mgC \text{ L}^{-1}).

For example, 96% removal of DOC by heterogeneous EF at 8.3 mA cm\(^{-2}\) required 0.35 kWh g\(^{-1}\) of DOC removed. By comparison, 77% DOC removal by heterogeneous EF/AO using Ti\(_4\)O\(_7\) anode at 4.2 mA cm\(^{-2}\) required only 0.13 kWh g\(^{-1}\) of DOC. This value decreased to 0.11 kWh g\(^{-1}\) of DOC for 45% removal of DOC by the same process (4 h of treatment instead of 8 h). In fact, high current density strongly increased energy consumption because of concomitant rise in total cell voltage (from 7.2 to 10.4 V). Parasitic reaction such as hydrogen evolution, 4 e\(^{-}\) reduction of O\(_2\) to H\(_2\)O and 2 e\(^{-}\) oxidation of water to O\(_2\) are also promoted at higher current density. Moreover, at high removal rate of DOC and low residual DOC, the current efficiency is strongly decreased by mass transport limitations. Therefore, in order to achieve high DOC removal rate with low energy consumption, it was proposed to combine EAOPs with a biological post-treatment, since EAOPs are able to transform biorefractory organic compounds into by-products that are more biodegradable than initial compounds (Ganzenko et al., 2014; Olvera-Vargas et al., 2015; Trellu et al., 2016a). In practice, that would mean implementing the EAOP as a preliminary treatment before recirculation of the NF concentrate towards the MBR. Thus, the next objective of this study was to monitor the evolution of the biodegradability of the effluent, as well as to better understand the evolution of organic and inorganic compounds during EAOPs.
Figure 2 – DOC removal after 8h of electrolysis vs number of cycles for the heterogeneous EF treatment using FeIIFeIII-LDH/CF cathode and Pt anode at 8.3 mA cm$^{-2}$.

3.3 Biodegradability enhancement

Respirometric measurements performed have the advantage of being a direct and rapid biological assessment of aerobic degradation under similar conditions than in the real industrial MBR (Reuschenbach et al., 2003). The calculated biodegradability enhancement (BE) values are presented in Fig. 3 after 4 and 8h of treatment for different EAOP configurations and current densities applied.

In all cases, heterogeneous EF shows an increase in the biodegradability of the NF concentrate, which validate the potential positive role of EAOPs as a pre-treatment before recirculating the NF concentrate to the MBR. In general the more the mineralization rate is achieved the more the biodegradability enhancement is observed. After 8 h of treatment by heterogeneous EF at 4.2 mA cm$^{-2}$, the BE index reached 11 with Ti$_4$O$_7$ anode, compared to 5.9 with Pt anode, which validate the positive effect of combining EF with AO. We could
state that a satisfactory biodegradability enhancement (between 4.1 and 9.1) was reached after 4 h with optimal energy consumption efficiency.

![Biodegradability enhancement](image)

Figure 3 – Biodegradability enhancement at two different treatment times for different EAOPs and current densities.

3.4 Acute toxicity of the effluent

Toxicity evolution of the NF concentrate during its electrolysis by both heterogeneous and homogeneous EF was evaluated by Microtox® standard method (Fig. 4). Initially (i.e. before any treatment of the NF concentrate), around 50±5% of *V. fischeri* luminescence inhibition was observed because of the presence of large amount of toxic trace metals and organic pollutants. *V. fischeri* luminescence inhibition can be sensitive to various phenomena that cannot be controlled and studied separately during the treatment of such complex effluent, e.g. the removal of toxic organic pollutants, the formation of toxic degradation by-products, the
formation of non-toxic degradation by-products (which could promote stimulation of bacterial luminescence), the release of inorganic compounds and the evolution of metal speciation. Therefore, it is difficult to draw reliable conclusions from these analyses. However, results show that EAOPs are not able to remove completely the acute toxicity from such complex effluent containing both organic and inorganic toxic compounds. Luminescence inhibition might even increases significantly, particularly after achieving high mineralization rates (for example during heterogeneous EF at 8.3 mA cm\(^{-2}\) and heterogeneous EF at 4.2 mA cm\(^{-2}\)). From the comparison of heterogeneous EF experiments performed with either Pt or TiO\(_7\) anode, it seems that anodic oxidation participate to avoid the accumulation of toxic by-products in the bulk.

Figure 4 – Evolution of *Vibrio fisheri* luminescence inhibition (Microtox® test) vs electrolysis time according to EAOP configuration and current density (in brackets, mA cm\(^{-2}\))
3.5 Characterization of the organic matter by 3DEEM

3DEEM has been reported to be a useful tool for characterization of colloidal and dissolved organic matter. Particularly, Jacquin et al. (2017) recently emphasized a correlation between the volume of fluorescence of zone III' (HA+FA-like fluorophores) and the concentration in a full-scale MBR of humic substances (MW ≈ 1000 Da) and building blocks (degradation by-products from humic substances, with MW ≈ 300-500 Da) measured by size exclusion liquid chromatography coupled with organic carbon and organic nitrogen detector. Similarly, a correlation was also obtained between the volume of fluorescence of zone II' (SMP-like fluorophores) and the concentration of proteins from biopolymers (MW ≈ 20,000 - 7.5 x 10^{11} Da). Besides, no correlation was obtained for the volume of fluorescence of zone I' because fluorophores of this zone would be mostly associated with colloidal proteins that could not be analyzed by size exclusion liquid chromatography (Jacquin et al., 2017). In this study, we proposed to use these results with the view to obtain indications on the evolution of the nature of the organic matter during EAOPs.

The initial effluent was mainly constituted of HA+FA-like fluorophores from zone III' as shown in Fig. 5A and 5B. This result is consistent with the pre-treatment of the effluent in the MBR because microfiltration membranes have lower retention capacity for these low MW compounds. A strong decrease of fluorophores of zone III' was then observed during both heterogeneous EF (Fig. 5C) and EF/AO (Fig. 5D) due to (i) precipitation of humic acids at acidic pH and (ii) fast degradation and mineralization of these low MW compounds with an aromatic structure that reacts quickly with 'OH (Trellu et al., 2016b). By comparison, fluorescence from colloidal proteins of zone I' decreased much more slowly. This phenomenon might be ascribed to the lower availability of colloids for reaction with 'OH in the aqueous phase. In the context of the global combined process, this result means that improving the retention of colloidal proteins in the MBR would then have a positive effect on
the efficiency of the EAOP. Finally, it was also observed that the use of Ti$_4$O$_7$ anode for the heterogeneous AO/EF process promoted significantly the decrease of the fluorescence of proteins from biopolymers (zone II’, Fig. 5D). This might be ascribed to the higher electrocatalytic activity of Ti$_4$O$_7$ for anodic oxidation of organic compounds, compared to Pt anode (Ganiyu et al., 2016).

Figure 5 – Fluorescence evolution of the NF concentrate effluent treated by EAOPs, as a function of time treatment. Zone I’: colloidal proteins; zone II’: Soluble Microbial by-Product (SMP)-like fluorophores; zone III’: Humic and Fulvic acids (HA + FA)-like fluorophores.
3.6 Identification and quantification of short-chain carboxylic acids

Short-chain carboxylic acids are common degradation by-products generated during the degradation of organic compounds by EAOPs (Oturan et al., 2008). In this study, they were identified by ion-exclusion HPLC and chromatograms revealed five well defined peaks corresponding to acetic, formic, succinic, malonic and oxamic acids. Results were firstly analyzed by following the evolution of the concentration of the sum of carboxylic acids analyzed. The evolution of the concentration according to treatment time was determined for homogeneous EF at 8.3 mA cm$^{-2}$. An initial increase of the concentration was observed until $t = 6$ h (Σ carboxylic acids] = 55 mgC L$^{-1}$) because of the degradation of aromatic pollutants. Then, the concentration decreased (Σ carboxylic acids] = 34 mgC L$^{-1}$ at $t = 8$ h). In fact, the lower concentration of organic compounds after 6 hours of treatment resulted in lower formation rate of carboxylic acids compared to the degradation rate. Interestingly, Fig. 6A shows a linear correlation ($R^2 = 0.92$) between DOC removal (%) and proportion of carboxylic acids among the residual DOC. This correlation took into consideration all analyzes performed for the different configurations tested. The higher the DOC removal achieved, the higher was the proportion of carboxylic acids among the residual DOC. This result is consistent with the lower reaction rate constant of short-chain carboxylic acids with *OH (10^7 - 10^8 M$^{-1}$ s$^{-1}$) compared to aromatic compounds (10^9 - 10^{10} M$^{-1}$ s$^{-1}$) from which they are formed (Oturan et al., 2008). The evolution of the proportion of each single carboxylic acid was also studied (Fig. 6B). It was noticed that the proportion of acetic acid among total carboxylic acid concentration was continuously increased over time during homogeneous EF at 8.3 mA cm$^{-2}$. This phenomenon is also consistent with the lower reaction rate constant of acetic acid with *OH (1.6×10^7 M$^{-1}$ s$^{-1}$) compared to other carboxylic acids (Oturan et al., 2008). Similar trend was observed after 8 h of electrolysis using heterogeneous EF at 8.3 mA cm$^{-2}$ or 4.2 mA cm$^{-2}$ and homogeneous EF at 4.2 mA cm$^{-2}$, i.e. the higher the DOC removal
rate (Fig. 1), the higher the proportion of acetic acid. Heterogeneous EF/AO using Ti$_4$O$_7$ was the only experiment exhibiting a different trend, thus indicating that Ti$_4$O$_7$ might modify mineralization mechanisms, compared to Pt anode. Higher proportion of N-containing oxamic acid and lower proportion of acetic acid were observed with Ti$_4$O$_7$ anode, which might be attributed to the better electro-catalytic ability of Ti$_4$O$_7$ anode for the degradation of organic nitrogen and acetic acid, compared to Pt anode. As regards to oxamic acid, these results were consistent with 3DEEM. In fact, Ti$_4$O$_7$ anode further degraded proteins from biopolymers (zone II'), which usually contain high concentration of N (ratio C/N around 3) (Jacquin et al., 2017). Overall, the increase of the proportion of carboxylic acids over time confirms the suitability of the combination of EAOPs with a biological treatment (Fig. 3), because of the well-known high biodegradability of such compounds.

Figure 6 – Generation of short-chain carboxylic acids during EAOPs: (A) correlation between DOC removal (%) and proportion of carboxylic acids among the residual DOC; (B) evolution of the proportion of each single carboxylic acid among the total carboxylic acid concentration as a function of configurations and operating conditions (current density in bracket, mA cm$^{-2}$).
Mineralization of Cl\(^{-}\) and N-containing organic compounds was accompanied by the formation of inorganic ions. The main inorganic species of interest (NO\(_{3}^{-}\), NH\(_{4}^{+}\), ClO\(_{3}^{-}\) and ClO\(_{4}^{-}\)) were analyzed by ion chromatography. Results are presented in Fig. 7. In all experiments, a stronger increase of the concentration of NH\(_{4}^{+}\) was observed compared to NO\(_{3}^{-}\) (Fig. 7A and 7B). These results can be explained by (i) the direct release of NH\(_{4}^{+}\) from mineralization of organic nitrogen and (ii) the release of NO\(_{3}^{-}\) followed by reduction of NO\(_{3}^{-}\) into NH\(_{4}^{+}\) at the cathode. Actually, the latter reaction is often observed during EF and AO, while oxidation of NH\(_{4}^{+}\) at the anode is hindered by the positive charge of this ion (Martin de Vidales et al., 2016; Mousset et al., 2018). The amount of NH\(_{4}^{+}\) in the solution increased with treatment time and current density because of the higher mineralization rate of organic nitrogen (Fig. 7B). Higher concentration of NH\(_{4}^{+}\) was also obtained using Ti\(_{4}O_{7}\) anode (heterogeneous EF/AO), compared to Pt anode (heterogeneous EF). This phenomenon is consistent with the results obtained from 3DEEM and with the higher concentration of oxamic acid previously reported, and supports the higher electro-catalytic activity of Ti\(_{4}O_{7}\) for the degradation of organic nitrogen. In the context of a treatment strategy including a recirculation of the effluent back to the MBR, the release of NH\(_{4}^{+}\) during EAOPs would require further biological nitrification in the MBR.

Oxidation of Cl\(^{-}\) resulted in a strong increase of ClO\(_{3}^{-}\) concentration (Fig. 7C). The reaction mechanisms usually go through Cl\(^{-}\) oxidation into Cl\(_{2}\), followed by hydrolysis of Cl\(_{2}\) into hypochlorous acid HOCl. Further oxidation of HOCl lead to the formation of ClO\(_{2}^{-}\) (which was not detected because of the fast oxidation kinetic) and subsequently ClO\(_{3}^{-}\). No formation of ClO\(_{4}^{-}\) was detected in any experiment because higher current density (> 30 mA cm\(^{-2}\)) is required to form this compound (Mousset et al., 2018). Besides, it was also observed that the formation of ClO\(_{3}^{-}\) mainly occurred between 4 and 8 h of treatment, most probably because of
the preferential reaction of HOCl with organic species and NH$_4^+$ (break-point chlorination) between 4 and 8 h of treatment (Martin de Vidales et al., 2016; Mousset et al., 2018). These results confirm the suitability to stop the treatment after 4 h of treatment in order to avoid the accumulation of ClO$_3^-$ and NH$_4^+$. While ClO$_3^-$ can be toxic for the biomass in the MBR, the formation of NH$_3$ at basic pH is also highly toxic for the autotrophic biomass (Jacquin et al., 2018).
Figure 7 – Concentration evolution of main inorganic species of interest during EAOPs as a function of configurations and operating conditions (current density in bracket, mA cm\(^{-2}\)): (A) ClO\(_3^\text{−}\), (B) NO\(_3^\text{−}\) and (C) NH\(_4^+\). ClO\(_4^\text{−}\) was not detected.
NF concentrate of landfill leachate pre-treated in a MBR contains high concentration of biorefractory organic pollutants that makes very difficult to treat or detoxify by conventional techniques. The investigation of different configurations of EAOPs applied to this complex effluent showed that heterogeneous EF/AO using Ti$_4$O$_7$ anode and FeII/FeIII-LDH modified CF cathode is the most efficient process for mineralization of organic pollutants. Without initial pH adjustment and external addition of Fe$^{2+}$ in the bulk, 45% removal of DOC was achieved at 4.2 mA cm$^{-2}$ with limited energy consumption (0.11 kWh g$^{-1}$ of DOC removed, i.e. 49.5 kWh m$^{-3}$). Up to 96% removal of DOC was also obtained by using higher current density (8.3 mA cm$^{-2}$) during the heterogeneous EF process. The use of Ti$_4$O$_7$ anode appeared to be a key parameter for improving the degradation and mineralization of organic nitrogen. From 3DEEM analysis, colloidal proteins were observed to be the most refractory organic compounds. Therefore, improving the retention of such compounds in the MBR could improve the efficiency of the EAOP.

The acute toxicity of the effluent was not removed but strong biodegradability enhancement was observed after 4 h of treatment by heterogeneous EF/AO, thus making possible the recirculation of the residual DOC towards the MBR in order to achieve total COD removal without longer electrochemical treatment time. This result was consistent with the identification and quantification of more biodegradable and less toxic by-products such as carboxylic acids. In fact, a linear correlation was observed between DOC removal rate and proportion of carboxylic acids in the residual DOC. As regards to the fate of inorganic species, the formation of ClO$_3^-$ could be limited by stopping electro-oxidation at 4 h, but enhanced nitrification would be required in the MBR because of the release of NH$_4^+$ from mineralization of organic nitrogen. Overall, these results emphasized the interdependence
between the MBR process and the EAOP in a combined treatment strategy and demonstrated that the use of EAOPs using suitable electrode materials can be useful for the management of such complex effluent.

Acknowledgements

We gratefully acknowledge the National French Agency of Research ‘ANR’ for funding the project ECOTS/CELECTRON. Authors are also grateful to Saint Gobain Research Provence for supplying TiO$_7$ electrodes.

https://doi.org/10.1016/j.watres.2015.02.006

https://doi.org/10.1021/cr900136g

https://doi.org/10.1016/j.wasman.2012.12.010

https://doi.org/10.1039/C6TA09100H

https://doi.org/10.1016/j.watres.2016.09.056

https://doi.org/10.1016/j.electacta.2017.05.047

https://doi.org/10.1016/j.apcatb.2018.04.044

https://doi.org/10.1016/j.jelechem.2016.01.035

https://doi.org/10.1021/acs.est.5b04366

https://doi.org/10.1007/s11356-013-1610-4

Jacquin, C., Monnot, M., Hamza, R., Kouadio, Y., Zaviska, F., Merle, T., Lesage, G., Héran, M.,

Anodic oxidation of surfactants and organic compounds entrapped in micelles – Selective
https://doi.org/10.1016/j.watres.2017.04.013

Trellu, C., Péchaud, Y., Oturan, N., Mousset, E., Huguenot, D., van Hullebusch, E.D., Esposito,
G., Oturan, M.A., 2016b. Comparative study on the removal of humic acids from drinking
water by anodic oxidation and electro-Fenton processes: Mineralization efficiency and
modelling. Applied Catalysis B: Environmental 194, 32–41.
https://doi.org/10.1016/j.apcatb.2016.04.039

Van der Bruggen, B., Koninckx, A., Vandecasteele, C., 2004. Separation of monovalent and
divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Research

Van der Bruggen, B., Lejon, L., Vandecasteele, C., 2003. Reuse, Treatment, and Discharge of
the Concentrate of Pressure-Driven Membrane Processes. Environmental Science &
Technology 37, 3733–3738. https://doi.org/10.1021/es0201754

Wang, Yujing, Zhao, G., Chai, S., Zhao, H., Wang, Yanbin, 2013. Three-Dimensional
Homogeneous Ferrite-Carbon Aerogel: One Pot Fabrication and Enhanced Electro-Fenton
Reactivity. ACS Applied Materials & Interfaces 5, 842–852.
https://doi.org/10.1021/am302437a

polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Research 42,

leachate nanofiltration concentrate by a two-stage process of tight ultrafiltration membrane.
Journal of Cleaner Production 161, 84–94. https://doi.org/10.1016/j.jclepro.2017.05.095

Heterogeneous/Homogeneous Fenton Oxidation of Amaranth Using Supported Nano-FeOOH
https://doi.org/10.1021/jp210167b

https://doi.org/10.1016/j.jhazmat.2006.11.016

dissolved organic matter (DOM) from landfill leachate rejected by nanofiltration. Waste

characteristics of leachate and concentrated leachate in three landfill leachate treatment