J. K. Baillie, M. W. Barnett, K. R. Upton, D. J. Gerhardt, T. A. Richmond et al., Somatic retrotransposition alters the genetic landscape of the human brain, Nature, vol.479, pp.534-537, 2011.

R. Belshaw, A. L. Dawson, J. Woolven-allen, J. Redding, A. Burt et al., Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity, J. Virol, vol.79, pp.12507-12514, 2005.

K. Bojkowska, F. Aloisio, M. Cassano, A. Kapopoulou, F. Santoni-de-sio et al., Liver-specific ablation of Krüppel-associated box-associated protein 1 in mice leads to male-predominant hepatosteatosis and development of liver adenoma, Hepatology, vol.56, pp.1279-1290, 2012.

F. Cammas, M. Mark, P. Dollé, A. Dierich, P. Chambon et al., Mice lacking the transcriptional corepressor TIF1beta are defective in early postimplantation development, Development, vol.127, pp.2955-2963, 2000.

E. B. Chuong, M. A. Rumi, M. J. Soares, and J. C. Baker, Endogenous retroviruses function as species-specific enhancer elements in the placenta, Nat. Genet, vol.45, pp.325-329, 2013.

L. Conti, S. M. Pollard, T. Gorba, E. Reitano, M. Toselli et al., Niche-independent symmetrical self-renewal of a mammalian tissue stem cell, PLoS Biol, vol.3, 2005.

N. G. Coufal, J. L. Garcia-perez, G. E. Peng, G. W. Yeo, Y. Mu et al., L1 retrotransposition in human neural progenitor cells, Nature, vol.460, pp.1127-1131, 2009.

M. Cowley and R. J. Oakey, Transposable elements re-wire and fine-tune the transcriptome, PLoS Genet, vol.9, 2013.

R. Douville, J. Liu, J. Rothstein, and A. Nath, Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis, Ann. Neurol, vol.69, pp.141-151, 2011.

J. Ellis, A. Hotta, and M. Rastegar, Retrovirus silencing by an epigenetic TRIM, Cell, vol.131, pp.13-14, 2007.

G. D. Evrony, X. Cai, E. Lee, L. B. Hills, P. C. Elhosary et al., Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain, Cell, vol.151, pp.483-496, 2012.

C. Feschotte, Transposable elements and the evolution of regulatory networks, Nat. Rev. Genet, vol.9, pp.397-405, 2008.

M. Guttman and J. L. Rinn, Modular regulatory principles of large non-coding RNAs, Nature, vol.482, pp.339-346, 2012.

L. K. Hutnick, X. Huang, T. C. Loo, Z. Ma, and G. Fan, Repression of retrotransposal elements in mouse embryonic stem cells is primarily mediated by a DNA methylation-independent mechanism, J. Biol. Chem, vol.285, pp.21082-21091, 2010.

L. Isbel and E. Whitelaw, Endogenous retroviruses in mammals: an emerging picture of how ERVs modify expression of adjacent genes, Bioessays, vol.34, pp.734-738, 2012.

L. Jackson-grusby, C. Beard, R. Possemato, M. Tudor, D. Fambrough et al., Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation, Nat. Genet, vol.27, pp.31-39, 2001.

J. Jakobsson, M. I. Cordero, R. Bisaz, A. C. Groner, V. Busskamp et al., KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress, Neuron, vol.60, pp.818-831, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00350884

B. H. Jeong, Y. J. Lee, R. I. Carp, and Y. S. Kim, The prevalence of human endogenous retroviruses in cerebrospinal fluids from patients with sporadic Creutzfeldt-Jakob disease, J. Clin. Virol, vol.47, pp.136-142, 2010.

P. Jern and J. M. Coffin, Effects of retroviruses on host genome function, Annu. Rev. Genet, vol.42, pp.709-732, 2008.

J. Jurka, V. V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany et al., Repbase Update, a database of eukaryotic repetitive elements, Cytogenet. Genome Res, vol.110, pp.462-467, 2005.

H. Karlsson, S. Bachmann, J. Schröder, J. Mcarthur, E. F. Torrey et al., Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia, Proc. Natl. Acad. Sci. USA, vol.98, pp.4634-4639, 2001.

Y. Kumaki, M. Oda, and M. Okano, QUMA: quantification tool for methylation analysis, Nucleic Acids Res, vol.36, pp.170-175, 2008.

G. Kunarso, N. Y. Chia, J. Jeyakani, C. Hwang, X. Lu et al., Transposable elements have rewired the core regulatory network of human embryonic stem cells, Nat. Genet, vol.42, pp.631-634, 2010.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

J. Li, K. Akagi, Y. Hu, A. L. Trivett, C. J. Hlynialuk et al., Mouse endogenous retroviruses can trigger premature transcriptional termination at a distance, Genome Res, vol.22, pp.870-884, 2012.

W. Li, L. Prazak, N. Chatterjee, S. Grüninger, L. Krug et al., Activation of transposable elements during aging and neuronal decline in Drosophila, Nat. Neurosci, vol.16, pp.529-531, 2013.

T. Matsui, D. Leung, H. Miyashita, I. A. Maksakova, H. Miyachi et al., Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET, Nature, vol.464, pp.927-931, 2010.

A. R. Muotri, V. T. Chu, M. C. Marchetto, W. Deng, J. V. Moran et al., Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition, Nature, vol.435, pp.903-910, 2005.

A. R. Muotri, M. C. Marchetto, N. G. Coufal, and F. H. Gage, The necessary junk: new functions for transposable elements, Hum. Mol. Genet, issue.2, pp.159-167, 2007.

A. R. Muotri, M. C. Marchetto, N. G. Coufal, R. Oefner, G. Yeo et al., L1 retrotransposition in neurons is modulated by MeCP2, Nature, vol.468, pp.443-446, 2010.

P. N. Perrat, S. Dasgupta, J. Wang, W. Theurkauf, Z. Weng et al., Transposition-driven genomic heterogeneity in the Drosophila brain, Science, vol.340, pp.91-95, 2013.

C. Qin, Z. Wang, J. Shang, K. Bekkari, R. Liu et al., Intracisternal A particle genes: Distribution in the mouse genome, active subtypes, and potential roles as species-specific mediators of susceptibility to cancer, Mol. Carcinog, vol.49, pp.54-67, 2010.

J. Reichmann, J. H. Crichton, M. J. Madej, M. Taggart, P. Gautier et al., Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells, PLoS Comput. Biol, vol.8, 2012.

M. T. Reilly, G. J. Faulkner, J. Dubnau, I. Ponomarev, and F. H. Gage, The role of transposable elements in health and diseases of the central nervous system, J. Neurosci, vol.33, pp.17577-17586, 2013.

D. Ribet, F. Harper, A. Dupressoir, M. Dewannieux, G. Pierron et al., An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus, Genome Res, vol.18, pp.597-609, 2008.

H. M. Rowe and D. Trono, Dynamic control of endogenous retroviruses during development, Virology, vol.411, pp.273-287, 2011.

H. M. Rowe, J. Jakobsson, D. Mesnard, J. Rougemont, R. S. Aktas et al., KAP1 controls endogenous retroviruses in embryonic stem cells, Nature, vol.463, pp.237-240, 2010.

H. M. Rowe, A. Kapopoulou, A. Corsinotti, L. Fasching, T. S. Macfarlan et al., TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells, Genome Res, vol.23, pp.452-461, 2013.

R. Sachdeva, M. E. Jönsson, J. Nelander, A. Kirkeby, C. Guibentif et al., Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors, Proc. Natl. Acad. Sci. USA, vol.107, pp.11602-11607, 2010.

F. R. Santoni-de-sio, B. I. Offner, S. Kapopoulou, A. Corsinotti, A. Bojkowska et al., KAP1 regulates gene networks controlling T-cell development and responsiveness, FASEB J, vol.26, pp.4561-4575, 2012.

F. R. Santoni-de-sio, J. Massacand, I. Barde, S. Offner, A. Corsinotti et al., KAP1 regulates gene networks controlling mouse Blymphoid cell differentiation and function, Blood, vol.119, pp.4675-4685, 2012.

D. C. Schultz, K. Ayyanathan, D. Negorev, G. G. Maul, and F. J. Rauscher, SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins, Genes Dev, vol.16, pp.919-932, 2002.

G. O. Sperber, T. Airola, P. Jern, and J. Blomberg, Automated recognition of retroviral sequences in genomic data-RetroTector, Nucleic Acids Res, vol.35, pp.4964-4976, 2007.

S. P. Sripathy, J. Stevens, and D. C. Schultz, The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression, Mol. Cell. Biol, vol.26, pp.8623-8638, 2006.

J. D. Sweatt, The emerging field of neuroepigenetics, Neuron, vol.80, pp.624-632, 2013.

J. H. Thomas and S. Schneider, Coevolution of retroelements and tandem zinc finger genes, Genome Res, vol.21, pp.1800-1812, 2011.

L. Thompson, P. Barraud, E. Andersson, D. Kirik, and A. Björklund, Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections, J. Neurosci, vol.25, pp.6467-6477, 2005.

F. Tronche, C. Kellendonk, O. Kretz, P. Gass, K. Anlag et al., Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety, Nat. Genet, vol.23, pp.99-103, 1999.

P. Weber, F. Cammas, C. Gerard, D. Metzger, P. Chambon et al., Germ cell expression of the transcriptional co-repressor TIF1beta is required for the maintenance of spermatogenesis in the mouse, Development, vol.129, pp.2329-2337, 2002.

N. C. Whitelaw, S. Chong, D. K. Morgan, C. Nestor, T. J. Bruxner et al., Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise, Genome Biol, vol.11, 2010.

M. Wiznerowicz, J. Jakobsson, J. Szulc, S. Liao, A. Quazzola et al., The Kruppel-associated box repressor domain can trigger de novo promoter methylation during mouse early embryogenesis, J. Biol. Chem, vol.282, pp.34535-34541, 2007.

D. Wolf and S. P. Goff, Embryonic stem cells use ZFP809 to silence retroviral DNAs, Nature, vol.458, pp.1201-1204, 2009.

. Fasching, , vol.12

, Author manuscript; available in PMC, Cell Rep, 2015.

, Europe PMC Funders Author Manuscripts Europe PMC Funders Author Manuscripts (E) Screen shot from the USCS genome browser (mm9) showing induced transcription of BC048671

G. , I. , and K. , Activation of ERVs results in the expression of lncRNAs. Screen shot from the USCS genome browser (mm9)

F. , H. , J. Rna-;-trim28, and ?. Npcs, Primers are indicated as green bars and include primers over the ERV junction as well as close and more distant from the 3? end of the ERVs. Data are presented as mean of relative values ± SEM