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Biodiversity Information Retrieval Through Large Scale Content-Based Identification: A Long-Term Evaluation

come   L'archive ouverte pluridisciplinaire

sity have been shared with the scientific community to allow repeatable and longterm experiments. This paper describes the methodology of the conducted evaluation campaigns as well as providing a synthesis of the main results and lessons learned along the years.

Introduction

Identifying organisms is a key for accessing information related to the uses and ecology of species. This is an essential step in recording any specimen on earth to be used in ecological studies. Unfortunately, this is difficult to achieve due to the level of expertise necessary to correctly record and identify living organisms (for instance plants are one of the most difficult groups to identify with an estimated number of 400,000 species). This taxonomic gap has been recognized since the Rio Conference of 1992, as one of the major obstacles to the global implementation of the Convention on Biological Diversity. Among the diversity of methods used for species identification, [START_REF] Gaston | Automated species identification: why not? Philosophical Transactions of the Royal Society of London B[END_REF]) discussed in 2004 the potential of automated approaches typically based on machine learning and multimedia data analysis. They suggested that, if the scientific community is able to (i) overcome the production of large training datasets, (ii) more precisely identify and evaluate the error rates, (iii) scale up automated approaches, and (iv) detect novel species, it will then be possible to initiate the development of a generic automated species identification system that could open up vistas of new opportunities for theoretical and applied work in biological and related fields. Since the question raised by [START_REF] Gaston | Automated species identification: why not? Philosophical Transactions of the Royal Society of London B[END_REF], automated species identification: why not?, a lot of work has been done on the topic (e.g. [START_REF] Lee | Contour matching for a fish recognition and migration-monitoring system[END_REF][START_REF] Cai | Sensor network for the monitoring of ecosystem: Bird species recognition[END_REF][START_REF] Trifa | Automated species recognition of antbirds in a mexican rainforest using hidden markov models[END_REF][START_REF] Towsey | A toolbox for animal call recognition[END_REF]Glotin et al, 2013a,b;Joly et al, 2014b)) and it is still attracting much research today, in particular on deep learning techniques. In parallel to the emergence of automated identification tools, large social networks dedicated to the production, sharing and identification of multimedia biodiversity records have increased in recent years. Some of the most active ones like eBird 1 [START_REF] Sullivan | The ebird enterprise: an integrated approach to development and application of citizen science[END_REF], iNaturalist 2 , iSpot [START_REF] Silvertown | Crowdsourcing the identification of organisms: A case-study of ispot[END_REF], Xeno-Canto 3 or Tela Botanica 4 , SABIOD and EADM CNRS 5 federations on machine learning for bioacoustics (respectively initiated in the US for the two first ones, and in Europe for the others), federate hundreds of thousands of active members, producing millions of observations each year. Noticeably, Pl@ntNet was the first initiative attempting to combine the force of social networks with automated identification tools (Joly et al, 2014b) through the release of a mobile application and collaborative validation tools. As a proof of their increasing reliability, most of these networks have started to contribute to global initiatives on biodiversity, such as the Global Biodiversity Information Facility (GBIF 6 ) which is the largest and most recognized one. Nevertheless, this explicitly shared and validated data is only the tip of the iceberg. The real potential lies in the automatic analysis of the millions of raw observations collected every year through a growing number of devices but for which there is no human validation at all. The performance of state-of-the-art multimedia analysis and machine learning techniques on such raw data (e.g., mobile search logs, soundscape audio recordings, wild life webcams, etc.) is still not well understood and is far from reaching the requirements of an accurate generic biodiversity monitoring system. Most existing research before LifeCLEF actually considered only a few dozen or up to hundreds of species, often acquired in wellcontrolled environments [START_REF] Goëau | The imageclef 2011 plant images classification task[END_REF][START_REF] Nilsback | Automated flower classification over a large number of classes[END_REF][START_REF] Kumar | Leafsnap: A computer vision system for automatic plant species identification[END_REF]. On the other hand, the total number of living species on earth is estimated to be around 10K for birds, 30K for fish, 400K for flowering plants (cf. State of the Worlds Plants 2017 7 ) and more than 1.2M for invertebrates [START_REF] Baillie | IUCN red list of threatened species: a global species assessment[END_REF]. To bridge this gap, it is required to boost research on large-scale datasets and real-world scenarios. In order to evaluate the performance of automated identification technologies in a sustainable and repeatable way, the LifeCLEF 8 research platform was created in 2014 as a continuation of the plant identification task (Goëau et al, 2013b) that was run within the ImageCLEF lab 9 the three years before [START_REF] Goëau | The imageclef 2011 plant images classification task[END_REF](Goëau et al, , 2012a[START_REF] Goëau | The imageclef 2013 plant identification task[END_REF]. LifeCLEF enlarged the evaluated challenge by considering birds and marine animals in addition to plants, and audio and video contents in addition to images. More concretely, the lab is organized around three tasks:

PlantCLEF: an image-based plant identification task making use of Pl@ntNet collaborative data, Encyclopedia of Life' data, and Web data BirdCLEF: an audio recordings-based bird identification task making use of Xenocanto collaborative data SeaCLEF: a video and image-based identification task dedicated to sea organisms (making use of submarine videos and aerial pictures).

As described in more detail in the following sections, each task is based on big and real-world data and the measured challenges are defined in collaboration with biologists and environmental stakeholders so as to reflect realistic usage scenarios. 

Methodology

The plant identification challenge of CLEF has been run since 2011, offering today a seven-year follow-up of the progress made in image-based plant identification. A particularity of the benchmark is that it always focused on real-world collaborative data contrary to many other test beds that were created beforehand in the context of well controlled laboratory conditions. Additionally, the evaluation protocol was defined in collaboration with biologists so as to reflect realistic usage scenarios. In particular, we considered the problem of classifying plant observations based on several images of the same individual plant rather than considering a classical image classification task. Indeed, it is usually required to observe several organs of a plant to identify it accurately (e.g. the flower, the leaf, the fruit, the stem, etc.). As a consequence, the same individual plant is often photographed several times by the same observer resulting in contextually similar pictures and/or near-duplicates. To avoid bias, it is crucial to consider such image sets as a single plant observation that should not be split across the training and the test set. In addition to the raw pictures, plant observations are usually associated with contextual and social data. This includes geo-tags or location names, time information, author names, collaborative ratings, vernacular names (common names), picture type tags, etc. Within all PlantCLEF challenges, the use of this additional information was considered as part of the problem because it was judged as potentially useful for a real-world usage scenario.

We provide in Fig. 1 an overview of the data that was shared along the years within the PlantCLEF challenge. Each year, the data was considerably enriched and the number of species was increased from 71 species in 2011 to 10,000 species in 2017 (illustrated by more than 1 million images). This durable scaling-up was made possible thanks to the close collaboration of LifeCLEF with several important actors in the digital botany domain. First of all, the TelaBotanica social network. This network of expert and amateur botanists is one of the largest in the world (with about 40 thousand members) and is in charge of many citizen science projects relying on the collection of botanical observations by its members. TelaBotanica develops several collaborative tools dedicated to this purpose, in particular IdentiPlante10 aimed at revising and validating the identification of the observations shared by the network. Most of the data used within the PlantCLEF challenge was collected and revised by the TelaBotanica network. Another source of data were contributions of the users of the Pl@ntNet application and the members of the TelaBotanica social network who validated many observations every year.

The evaluation metric that was used from 2011 to 2015 was an extension of the mean reciprocal rank [START_REF] Voorhees | The trec-8 question answering track report[END_REF], classically used in information retrieval. The difference is that it is based on a two-stage averaging rather than a flat averaging such as:

S = 1 U U ∑ u=1 1 P u P u ∑ p=1 1 r u,p (1) 
where U is the number of image authors within the test set, P u the number of individual plants observed by the u-th author (within the test set), r u,p is the rank of the correct species within the ranked list of species returned by the evaluated system (for the p-th observation of the u-th author). If the correct species does not appear in the returned list, its rank r u,p is considered as infinite. Overall, the proposed metric makes it possible to compensate the long-tail distribution effects of social data. As in any social network, a few people actually produce huge quantities of data whereas the vast majority of contributors (the long tail) produce much less data.

Main Outcomes

Tables 1 and2 give a year-to-year overview of the shared data and of the best performing systems (detailed descriptions of the results and systems can be found in the technical overview papers of each year (Goëau et al, 2011b(Goëau et al, , 2012b[START_REF] Goëau | The imageclef 2013 plant identification task[END_REF][START_REF] Goëau | The lifeclef 2014 plant images identification task[END_REF][START_REF] Goëau | The lifeclef 2015 plant images identification task[END_REF](Goëau et al, , 2016(Goëau et al, , 2017) ) and participant working notes papers. To allow a comprehensive comparison along the years, we isolated in Table 1 the leaf scans and white background image categories that were part of the evaluation of the three first years but that were abandoned afterwards. Table 2 focuses on photographs of plants in their natural environment (only leaves in 2011-2012, diverse organs and plant views in the following years). For a fair comparison, we also removed from the overview, the submissions that were humanly assisted in some point (e.g. involving a manual segmentation of the leaves). The main conclusion we can derive from the results of Table 1 is that the classical approach to plant identification consisting of analyzing the morphology of the leaves reached its limit. Leaf shape boundary features and shape matching techniques have been studied for 30 years and can be considered as sufficiently mature for capturing shape information in a robust and invariant way. The limited performance is thus rather due to the intrinsic limitation of using only the leaf morphology for discriminating a large number of species. The fact that scientists focused on leaf-based identification for many years is more related to the fact that the leaf was easier to scan and to process with state-of-the-art computer vision techniques of that period (segmentation, shape matching, etc.). With the arrival of more advanced computer vision techniques, we were progressively able to make use of other parts of the plant such as flowers or fruits, and to work on larger number of species. For this reason, metrics on leaf scans were abandoned from the PlantCLEF evaluation after 2013.

Table 2 gives the five-year synthesis of this approach to plant identification that we promoted through PlantCLEF. The most interesting conclusion we can derive is that we observed considerable improvements of the scores along the years whereas the difficulty of the task was increasing. The number of classes almost doubled every year between 2011 and 2015, starting from 71 species in 2011 and reaching 10,000 species in 2017. The increase of the performance can be explained by two major technological breakthroughs.

The first was the use of aggregation-based or coding-based image representation methods such as the Fisher Vector representation [START_REF] Sánchez | Image classification with the fisher vector: Theory and practice[END_REF], which was used by the best performing system of Nakayama et al. [START_REF] Nakayama | Nlab-utokyo at imageclef 2013 plant identification task[END_REF] in 2013 and Qiang et al. [START_REF] Chen | Ibm research australia at lifeclef2014: Plant identification task[END_REF] in 2014. These methods consist of producing high-dimensional representations of the images by aggregating previously extracted sets of hand-crafted local features into a global vector representation. They rely on a two step process: (i) the learning of a set of latent variables that explain the distribution of the local features in the training set (denoted as the codebook or vocabulary), and (ii) the encoding of the relationship between the local features of a given image and the latent variables. Overall, this allows to embed the fine-grained visual content of each image into a single representation space in which classes are easily separable even with linear classifiers.

The second technological step explaining the latest increase of performance is the use of deep learning methods, in particular convolutional neural networks (CNN) such as GoogLeNet [START_REF] Szegedy | Going deeper with convolutions[END_REF]. In 2015, the 10 best evaluated systems were based on CNNs. The performance difference is mainly due to particular system design improvements such as the use of bagging in the best run of Choi (Choi, 2015b). CNNs recently received a high amount of attention caused by the impressive performance they achieved in the ImageNet classification task [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. The force of these technologies relies on their ability to learn discriminant visual features directly from the raw pixels of the images without falling into the trap of the curse of dimensionality. This is achieved by stacking multiple convolutional layers, i.e. the core building blocks of a CNN. A convolutional layer basically takes images as input and produces as output feature maps corresponding to different convolution kernels, i.e looking for different visual patterns. Looking at the impressive results achieved by CNN's in the 2015 edition of PlantCLEF there is absolutely no doubt that they are able to capture discriminant visual patterns of the plants in a much more effective way than previously engineered visual features. The editions of PlantCLEF 2016 and 2017 have also clearly confirmed the capacity of CNNs to take advantage of large noisy datasets. Indeed, in the 2017 edition, all networks trained solely on the noisy dataset (coming from web crawl) outperformed the same models trained on the trusted data (coming from the trusted Encyclopedia of Life website). Even at a constant number of training iterations (i.e. at a constant number of images passed to the network), it was more profitable to use the noisy training data. This means that diversity in the training data is a key factor to improve the generalization ability of deep learning. The noise itself seems to act as a regularization of the model. The amazing performance of the best runs, which reached a score higher than 90% of correct identification on 10,000 classes opens new perspectives on the potential of automated plant species capacities at the world level.

3 Birdclef: A 4 Year Long Evaluation Of Bird Sound Identification Systems

Methodology

The bird identification challenge of LifeCLEF, initiated in 2014 in collaboration with Xeno-Canto, considerably increased the scale of the seminal challenges. The first bird challenge ICML4B (Glotin et al, 2013a) initiated in 2012 by DYNI/SABIOD had only 35 species, but received 400 runs. The next at MLSP had only 15 species, the third (NIPS4B (Glotin et al, 2013b) in 2013 by SABIOD) had 80 species. Meanwhile, Xeno-canto, launched in 2005, hosts bird sounds from all continents and daily receives new recordings from some of the remotest places on Earth. It currently archives with 379472 recordings, 9779 species of birds, making it one of the most comprehensive collections of bird sound recordings worldwide, and certainly the most comprehensive collection shared under Creative Commons licenses.

For the BirdCLEF challenge, it was decided to not consider the whole Xeno-Canto dataset but to rather focus on a specific region. The objective was to find a good trade-off between scalability and biodiversity coverage. A sufficient number of species had to be considered so as to evaluate the feasibility of a real-world biodiversity monitoring system. But on the other side, it was necessary to limit the volume of data to be processed by the participating research groups so as to mitigate computational challenges and data management. The chosen region of interest has been the Amazonian rain forest because it is one of the richest in the world in terms of biodiversity but also one of the most endangered. For the first edition of the challenge, in 2014, the evaluation dataset was restricted to the 500 species having the most records in an Amazonian area straddling Brazil and neighboring countries. The geographical extent and the number of species were progressively increased over the years so as to reach 1000 species in 2015/2016, and 1500 in 2017. By nature, the Xeno-Canto data as well as the BirdCLEF subset has a massive class imbalance. For instance, the 2017 dataset contains 48,843 recordings in total, with a minimum of four recordings for Laniocera rufescens and a maximum of 160 recordings for Henicorhina leucophrys.

A comprehensive overview of the data shared11 over the years is provided in Fig. 2. Each year, selected Xeno-canto recordings were split in two parts: 2/3 of the data was shared as training data so as to allow participants to train and optimize their system, and the other 1/3 of the recordings were kept as official test samples and shared to the participants a few weeks after the training set. To avoid participants tuning their system on the test data, the species names were removed from the test set and kept secret over the years (i.e. participants have to run their system in a blind manner). To allow a long-term evaluation of the progress made, it was also ensured that the test data provided each year were a superset of the test data of the previous years. Furthermore, the recordings were shared using a stable format along the years. Each audio file was associated with an XML file containing the available meta-data such as the date, the geo-location, the author, the type of sound (call, song, alarm, flight, etc.) or some collaborative quality ratings. For the training set, the meta-data also included the information related to the species of the bird(s) vocalizing within the recording (taxonomic names and sometimes common names). Most Xeno-Canto recordings are captured using mono-directional devices in order to focus on a single vocalizing bird. The name of the species of this primary singing bird is annotated in the meta-data through a field entitled "foreground species". But often, there is also a number of other birds that can be heard in the background. The names of the species of the other birds are often annotated in the meta-data through a field entitled "background species".

Identifying birds from mono-directional recordings such as the ones discussed above is of high interest for many scenarios. In particular, this could help nonexperts as well as experts in the process of collecting and identifying such new recordings. To complement this, there is also an interest in identifying birds from omnidirectional recordings (i.e. the target is the foreground species) or soundscape. This enables more passive monitoring scenarios such as setting up a network of static recorders that would continuously capture the surrounding sound environment. Therefore, we started to integrate soundscape recordings within the BirdCLEF challenge in 2016. A significant number of recordings tagged as soundscapes actually already existed in the Xeno-Canto collection. They usually correspond to longer recordings than the mono-directional ones and they do not have any foreground species in the meta-data. 925 of such soundscapes were found in the Amazonian area and were integrated as a new test within the BirdCLEF 2016 challenge. One of the limitations of this new content, however, was that the vocalizing birds were not localized in the recordings. The set of species audible in the recording was identified in the meta-data but the vocalizing specimens were not localized in time. Thus, to allow a more accurate evaluation, it was decided to introduce new time-coded soundscapes within the BirdCLEF 2017 challenge. In total, 6.5 hours of recordings were collected in the Amazonian forests and were manually annotated by two experts including a native of the Amazon forest, in the form of time-coded segments with associated species name.

The evaluation protocol of BirdCLEF remained roughly the same during the 4 years it ran. Participants were asked to run their system so as to identify all the actively vocalizing bird species in each test recording (or in each test segment of 5 seconds for the soundscape). Up to 4 run files per participant could be submitted to allow evaluating different systems or system configurations (a run file is a formatted text file containing the species predictions for all test items). Each species had to be associated with a normalized score in the range [0, 1] reflecting the likelihood that this species is singing in the test sample. For each submitted run, participants had to signal if the run was performed fully automatically or with human assistance, and if they used a method based only on audio analysis or with the use of the metadata. The evaluation metric used was the mean Average Precision (mAP) averaged across all queries, considering each recording in the test set as a query and computed as:

mAP = ∑ Q q=1 AveP(q) Q ,
where Q is the number of test samples and AveP(q) for a given test file q is computed as

AveP(q) = ∑ n k=1 (P(k) × rel(k)) number of relevant documents .
Here k is the rank in the sequence of returned species, n is the total number of returned species, P(k) is the precision at cut-off k in the list and rel(k) is an indicator function equaling 1 if the item at rank k is a relevant species (i.e. one of the species in the ground truth).

Main Outcomes

Between 60 and 90 research groups registered each year for the BirdCLEF challenge and about 20 of them submitted run files to at least one of the yearly campaigns (with a variation of 5 to 10 participants depending on the year). This durable evaluation allowed to accelerate the progress made along the years by measuring it accurately thanks to the re-used sub-set test data. As a synthesis of this long-term effort, Fig. 3 displays the evolution of the best mAP scores that were obtained over the years.

The curve corresponding to the 2014 test set, in particular, shows the impressive progress that was made from the beginning of the challenge. The best mAP value actually increased from 0.51 to 0.76 in 4 years (for the mono-directional recordings). A big step was particularly observed between 2015 and 2016 (Goëau et al, 2016). It was exclusively due to the progress of the underlying methods and algorithms since the training set shared within BirdCLEF was exactly the same for these The second main outcome of BirdCLEF which can be observed in Fig. 3, is that the soundscape task appears to be much more challenging than the classical task that we shall consider here as mono-species recordings. The identification performance actually remains pretty high for the mono-species recordings, even when considering all the species vocalizing in the background (yellow curve).

On the contrary, the best mAP obtained on the 2016 soundscape data set is very low and did not improve between 2016 and 2017 (red curve). One of the main difficulties of such recordings is that many individual birds of several species are often singing simultaneously. This profusion of overlapping sources causes the classical CNN models trained on the mono-species to fail. A good method on the soundscape task seemed to be the feature engineering based method of Lasseck et al. [START_REF] Lasseck | Towards Automatic Large-Scale Identification of Birds in Audio Recordings[END_REF], as the deep learning methods employed by the other participants in 2016

and 2017 were less efficient on the non time-coded soundscape 2016 test set. It is likely that the strength of the features engineering method is based on the extraction of very species-specific time-frequency features. This expert fine-grained approach may allow the extraction of features more robust to the species overlap problem. This verdict was the main reason why we introduced a new soundscape dataset in 2017 (Goëau et al, 2017), in the form of time-coded segments of 5 seconds, each associated with the list of species vocalizing in this small segment. The goal was to encourage the participants to output predictions at that temporal resolution instead of processing the whole soundscape as a classical recording. The performance achieved on this new test set (dark red point Fig. 3) confirmed that the temporal resolution of the prediction was one of the issues and that processing each chunk of 5 seconds separately improves the results over the previous soundscape test set. However, the best performance remains much lower than for the mono-species task. One of the most likely reasons is the bias between the training data (mono-species) and the test data (soundscape). The overlap of all the birds vocalizing simultaneously actually induces audio patterns that cannot be captured directly from the mono-species recordings. A solution to learn such patterns would be to integrate soundscape with time-coded annotations in the training set itself. This approach is unfortunately not realistic because of the cost to produce such content. Another more realistic perspective is to run data augmentation synthesizing new training data from the monospecies recordings themselves. The improvement of the quality of automatic bird activity detection (BAD) is also being taken in consideration as recently depicted in the BAD challenge [START_REF] Stowell | Bird detection in audio: A survey and a challenge[END_REF]. Finally, we are investigating a more advanced paradigm towards binaural source diarization and joint classification from stereo soundscape in future BirdCLEF sessions.

SeaCLEF: A 4-year Evaluation Of Sea Organisms Identification

The need for automated methods for sea-related multimedia data is driven by the recent sprout of marine and ocean observation approaches (mainly imaging systems) and their employment for marine ecosystem analysis and biodiversity monitoring. Indeed in recent years we have witnessed an exponential growth of searelated multimedia data in the forms of images/videos/sounds, for disparate reasons ranging from fish biodiversity monitoring to marine resource managements to fishery to educational purposes. However, the analysis of such data is particularly expensive for human operators, thus limiting the impact that the technology may have in understanding and sustainably exploiting the sea/ocean. Within LifeCLEF, we investigated several highly demanding annotation scenarios including coral reef fish species monitoring, humpback whale individual recognition, salmon detection for water turbine monitoring and picture-based marine animal species recognition.

In the following two subsections, we give an overview of the two challenges that attracted the most participants and that were conducted over several consecutive years.

Underwater Coral Reef Species Monitoring: Methodology And Main Outcomes

Underwater imaging systems are increasingly used in a range of monitoring or exploratory applications, in particular for biological (e.g. benthic community structure, habitat classification), fisheries (e.g. stock assessment, species richness), geological (e.g. seabed type, mineral deposits) and physical surveys (e.g. pipelines, cables, oil industry infrastructure). Their usage has benefitted from the increasing miniaturization and cost-effectiveness of submersible ROVs (remotely operated vehicles) and advances in underwater digital cameras. These technologies have revolutionized our ability to capture high-resolution images in challenging aquatic environments and are also greatly improving our ability to effectively manage natural resources, increasing our competitiveness and reducing operational risks in industries that operate in both marine and freshwater systems. Despite these advances, the analysis of the produced data usually requires very time-consuming and expensive input by human observers. This is particularly true for ecological and fishery video data, which often requires laborious visual analysis. This analytic bottleneck greatly restricts the use of these otherwise powerful video technologies and demands effective methods for automatic content analysis to enable proactive provision of analytic informa-tion. The underwater video dataset used within LifeCLEF was derived from the Fish4Knowledge video repository, which contains about 700,000 10-minute video clips that were taken in the past five years to monitor Taiwan's coral reefs. The Taiwan area is particularly interesting for studying the marine ecosystem, as it holds one of the largest fish biodiversities of the world with more than 3,000 different fish species12 . The dataset contains videos recorded from sunrise to sunset showing several phenomena, e.g. murky water, algae on camera lens, etc., which make the identification task more complex. Each video has a resolution of either 320x240 or 640x480 with 5 to 8 fps.

The data set used for the coral reef challenge of LifeCLEF 2015, LifeCLEF 2016 and LifeCLEF 2017 was a small annotated subset of the Fish4Knowledge repository [START_REF] Spampinato | Fine-grained object recognition in underwater visual data[END_REF]. It was composed of about 90 videos manually annotated for a list of 15 fish species. Each video was labelled and agreed by two expert annotators and the ground truth consists of a set of bounding boxes (one for each instance of the given fish species list) together with the fish species. In total the dataset contained more than 9000 annotations (bounding boxes + species) with a relatively high imbalance in the number of instances of fish species: for instance it contained 3165 instances of "Dascyllus Reticulates" and only 72 instances of "Zebrasoma Scopas". For each considered fish species, its fishbase.org link was also given. In the fishbase webpage, participants could find more detailed information about fish species including also high quality images that could be used as additional training data. In order to make the identification process independent from tracking, temporal information was not exploited. This means that the annotators only labelled fish for which the species was clearly identifiable, i.e., if at frame t the species of fish A is not clear, it was not labelled, no matter if the same fish was in the previous frame (t-1). Each video was accompanied by an xml file that contains instances of the provided list species as well as information on the camera location e.g.

Since the end-to-end objective of the task was to count the number of specimens per species (for biodiversity monitoring), we introduced two related evaluation metrics: the "Counting Score (CS)" and the "Normalized Counting Score (NCS)", defined as:

CS = e -d N gt (2)
with d being the difference between the number of occurrences in the run (per species) and, N gt , the number of occurrences in the ground truth. The Normalized Counting Score instead depends on precision Pr:

NCS = CS × Pr = CS × T P T P + FP (3)
with Pr = T P/(T P + FP), T P and FP being the true positives and the false positives. A detection was considered as true positive if the intersection over union score of its bounding box and the ground truth was over 0.5 and the species was correctly identified.

Fig. 4 shows an overview of the score obtained by the best systems evaluated in 2015, 2016 and 2017 on the same coral reef data set. In the previous fish classification challenge the hierarchical LBP classifier (DYNI team [START_REF] Joalland | Efficient instance-based fish species visual identification by global representation[END_REF])) won. However, CNN was the best system of 2015 (by SNUMED (Choi, 2015a)), and it was not outperformed in the following years. Contrary to all other LifeCLEF challenges, no real progress were thus observed over the years. The system of SIAT-MMLAB in 2017 [START_REF] Zhuang | Marine animal detection and recognition with advanced deep learning models[END_REF] was devised as an improvement of the one of SNUMED but its precision was still lower resulting in a lower Normalized Counting Score in the end. The right plots of Fig. 4 show that the main strength of the SNUMED system is to be more stable than the other systems across the different species. Importantly, this is rather due to a better detection of the candidate fish instances than a better performance of the classification of the resulting bounding boxes. The SIATMMLAB system actually used a more advanced convolutional neural network model for the classification but it was less accurate in the preliminary detection phase.

Individual Whale Identification: Methodology And Main Outcomes

The problem of automatically identifying individual organisms rather than species has received much less attention. Yet, for some groups, it is preferable to monitor the organisms at the individual level rather than at the species level. This is notably the case of big animals, such as whales and elephants, of which the populations are scarcer and are traveling longer distances. Monitoring individual animals allows gathering valuable information about population sizes, migration, health, sexual maturity and behavior patterns. Tracking devices and tagging technologies are only part of the solution because of their invasive character, relatively high cost and limited lifetime. Morphological/biometric approaches are a complementary approach that is less invasive, more durable and cheaper for nature watchers mobilized on a given spot. Using natural markings to identify individual animals over time is usually known as photo-identification. This research technique is used on many species of marine mammals. Initially, scientists used artificial tags to identify individual whales, but with limited success (most tagged whales were actually lost or died).

In the 1970s, scientists discovered that individuals of many species could be recognized by their natural markings. These scientists began taking photographs of individual animals and comparing these photos against each other to identify individual animal movements and behavior over time. Since its development, photoidentification has proven to be a useful tool for learning about many marine mammal species including humpbacks, right whales, finbacks, killer whales, sperm whales, bottlenose dolphins and other species to a lesser degree. This process is still mostly done manually making it impossible to get an accurate count of all the individuals in a given large collection of observations. Researchers usually survey a portion of the population, and then use statistical formulae to determine population estimates. To limit the variance and bias of such an estimator, it is however required to use sufficiently large samples that still make it a very time-consuming process. Automating the photo-identification process could drastically scale-up such surveys and open brave new research opportunities for the future.

To evaluate this scenario, we did set up a test-bed in collaboration with Cetamada, a Malagasy Non-Profit Association created in May 2009, whose goal is to protect marine mammal population and their habitat in Madagascar through sustainable ecotourism and scientific research. There are presently 4 citizen sciences data collection sites (St. Marys, Majunga, Ifaty and Fort Dauphin) for which hotel-establishments and their customers have become sentinels for data collection. This method helps obtain more than 250 photo IDs each year, which effectively helps produce a photo catalogue of humpback whales reproducing on Malagasy coasts. From that data, we built an evaluation dataset of 2005 images of humpback whales that were collected between 2009 and 2014. After acquisition, each photograph was manually cropped so as to focus only on the caudal fin that is the most discriminant pattern for distinguishing one individual whale from another. Actually, the fins can be distinguished thanks to the natural markings and/or the scars that appear along the years. Automatically finding such matches in the whole dataset and rejecting the false alarms is difficult for three main reasons. The first reason is that the number of individuals in the dataset is high, around 1, 200, so that the proportion of true matches is actually very low (around 0.05% of the total number of potential matches). The second difficulty is that distinct individuals can be very similar at a first glance and that it is often difficult to distinguish them even for a human annotator. To discriminate the true matches from such false positives, it is required to detect very small and finegrained visual variations such as in a spot-the-difference game. The third difficulty is that all images have a similar water background of which the texture generates quantities of local mismatches.

Concretely, the task consisted in detecting as many true matches as possible from the whole dataset, in a fully unsupervised way. Each evaluated system had to return a run file (i.e., a raw text file) containing as many lines as the number of discovered matches, each match being a triplet of the form:

< imageX. j pg imageY. j pg score >
where score is a confidence score in [0, 1] (1 for highly confident matches). The retrieved matches had to be sorted by decreasing confidence score. A run should not contain any duplicate match (e.g., < image1. j pg image2. j pg score > and < image2. j pg image1. j pg score > should not appear in the same run file). The metric used to evaluate each run was Average Precision:

AveP = ∑ K k=1 P(k) × rel(k) M
where M is the total number of true matches in the groundtruth, k is the rank in the sequence of returned matches, K is the number of retrieved matches, P(k) is the precision at cut-off k in the list, and rel(k) is an indicator function equaling 1 if the match at rank k is a relevant match, 0 otherwise. The same challenge was run for two consecutive years, in 2016 and 2017. An overview of the results achieved by the best system of each participant (yearly) is provided in Fig. 5. In 2016, the best result was achieved by the INRIA-ZENITH team who used a large-scale matching system based on SIFT visual features, approximate k-nn search and a RANSAC-like spatial consistency refinement step to reject false positives [START_REF] Joly | Unsupervised individual whales identification: spot the difference in the ocean[END_REF]. In 2017, a similar system was re-implemented by BMEMIT and extended with an additional clustering step which provided a consistent improvement (Dvid [START_REF] Papp | Image matching for individual recognition with sift, ransac and mcl[END_REF]. Interestingly, the whale photoidentification challenge is the only one within LifeCLEF for which deep learning technologies do not provide the best performance (although several attempts were made). The main reason is that it is very different from the classical challenges studied in the machine learning community. This is actually an unsupervised classification problem but for which the visual patterns to be discovered are very small and lost among a high amount of other highly similar patterns. Only an explicit spatial verification based on the hypothesis of an epipolar geometry allows to distinguish the real matches from the distractors. Without supervision, convolutional neural networks fail to capture this property.

5 Cross-task Analysis Of The Use Of Contextual Meta-data

Most of the data sets shared within LifeCLEF since 2011 included contextual metadata in addition to the raw audio-visual contents. As an illustration, Tab.3 lists the meta-data shared for each image of the training set of PlantCLEF 2016. A large fraction of the plant and bird observations, in particular, were associated with their date and geo-location. This information was expected to be highly useful for species identification. Indeed, most plants and animals live in specific ecological niches and are likely to be observed at some specific periods.

Table 4 reports the results obtained by the participants of the plant and the bird tasks who attempted to evaluate the potential benefit of this meta-data over the years. However, the benefit of using the temporal and spatial information has never been decisive in any of the LifeCLEF challenges. Worse, it often degraded the performance compared to using the raw audio-visual data solely. To better highlight this finding, Table 4 provides an overview of all the experiments for which it was possible to evaluate the performance of the same system with or without the use of meta-data. The best improvement was achieved by the Inria team in 2013 for the plant task and 2014 for the bird task. Both were obtained by post-filtering the list of candidate species based on a temporal histogram constructed for each species based on the training meta-data. However, these runs were still outperformed by purely content-based methods developed by other participants. This difficulty of successfully using geography and seasonality is quite surprising.

It is actually accepted that the habitat of a given species is highly correlated with its ecological profile. Several reasons explain this paradox. The first one is that the occurrence data of the training set is too sparse to accurately model the distribution of the species. The second reason is that the used machine learning techniques were too straightforward to well address the problem. As discussed in Section 6, species distribution modeling from occurrence data is still a hard problem in ecology, in particular in the context of uncontrolled observations such as the one used in the PlantCLEF challenge.

Concerning the use the observation date, which was the second most used meta-data by participants, there is several difficulties to appropriately exploit it. First, the plant phenology (plant life cycle events) for a given species is different according to its location (i.e the same species will present different flowering periods, if individuals are not at the same altitude in mountain conditions, are not exposed along the year to the same light conditions, etc.). Secondly, it's now well accepted that the plant phenology for a given species is changing from one year to another one, according to the climate changes. It is then difficult to find a regular pattern over several years, even if observations are produced at the same location. Thirdly, as plant phenology is profoundly influenced by human activity (fertilizer, pruning, greenhouse cultivation, etc.), the phenology of most of the plants observed in urban areas can be different than the individuals growing in natural conditions. According to these various factors, and the limited number of observations per species, one can understand that it is not easy to find a method which is robust on a large scale for a strong improvement of the identification performance. The potential of the use of meta-data, which is recognized as highly relevant by naturalists, has still to be demonstrated, and will be a central part of a new challenge entitled GeoLifeClef, that will be launched in 2018. In order to increase the interest of the computer science community in the use of the undisclosed potential of meta-data for automated species identification, we designed a new challenge within LifeCLEF to be ran in 2018 for the first time. In particular, the new task called GeoLifeClef will focus on location-based species recommendation. Automatically predicting the list of species that are the most likely to be observed at a given location is useful for many scenarios in biodiversity informatics: a) it could improve species identification processes and tools by reducing the list of candidate species that are observable at a given location; b) it could facilitate biodiversity inventories through the development of location-based recommendation services (typically on mobile phones) as well as the involvement of non-expert nature observers; c) last but not least, it might serve educational purposes thanks to biodiversity discovery applications providing functionalities such as contextualized educational pathways. This new challenge will contribute to increase exchanges between the computer science community and ecological statisticians working on species distribution modelling problems, who would both have lots to gain by sharing their experiences and knowledge.

Concretely, the objective of the challenge will be to predict the list of species that are the most likely to be observed at a given location. Therefore a large training set of species occurrences will be provided, each occurrence being associated with a multi-channel image characterizing the local environment. Indeed, it is usually difficult to learn a species distribution model directly from spatial positions because of the limited number of occurrences and the sampling bias. What is usually done in ecology is to predict the distribution on the basis of a representation in the environmental space, typically a feature vector composed of climatic variables (average temperature at that location, precipitation, etc.) and other variables such as soil type, land cover, distance to water, etc. As illustrated in Fig. 6 the originality of GeoLife-CLEF is to generalize such a niche modeling approach to the use of an image-based environmental representation space. Instead of learning a model from environmental feature vectors, the goal of the task will be to learn a model from k-dimensional image patches, each patch representing the value of an environmental variable in the neighborhood of the occurrence. From a machine learning point of view, the challenge will thus be treatable as an image classification task.

According to the huge volume of new data produced by large scale citizen science initiatives, such as eBird, iNaturalist, or Pl@ntNet, and the accessibility of various environmental data based on the open science movement, the adaptation potential (to various living organism groups, environments, regions, etc.) of the result of this task is extremely important. The hope with this new task is to open new interdisciplinary research opportunities based on the analysis of a very large amount of data that was never mobilized beforehand. 

Conclusion

This chapter has discussed the experience of running the LifeCLEF challenges from 2011 to 2017. Several large-scale and repeatable experiments were designed over the years in order to boost research on biodiversity information retrieval. A high number of research groups participated in and benefited from this joint research effort. Overall, LifeCLEF has had an important impact in different fields including multimedia information retrieval, machine learning and biodiversity informatics (more than 500 citations at the end of 2017 according to Google scholar). The main lessons we learned in the design of attractive, sustainable and impacting challenges are the following:

• Data is a key factor: sharing original, valuable and large-scale data sets is a key factor for attracting researchers on a given challenge. Within LifeCLEF, tens of men months have been spent in integrating, cleaning and annotating the raw content of data providers. • Hard problems but simple tasks: if the task is too specific or too complex in terms of objectives, it is not attractive. For instance, it is crucial to avoid fragmenting the challenge in many subtasks even if at a first glance it can appear as a good way to better understand the results. What happens in practice is that the participation is fragmented as well: only a few systems are run for each subtask and there is not enough output data to conduct relevant analyses. A single task relying on a hard scientific problem is the best way to federate a community around a given topic. • Sustaining the community requires a good trade-off between novelty and continuity: research relies on long-term efforts and investigations. Thus, it is important to avoid switching to a new problem when the previous one is not solved. On the other hand, sticking exactly to the same challenge over years is counterproductive in terms of attractiveness and emulation. The good trade-off consists in progressively increasing the complexity and/or the difficulty of the task but preserving a sufficient continuity to allow former participants to build on top of their acquired knowledge and technologies.
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 3 Fig. 3 Overview of the performance of the best systems evaluated within the BirdCLEF challenge (for different test data sets)
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 6 Fig. 6 Overview of the GeoLifeClef challenge

Table 1

 1 Three-year synthesis of the PlantCLEF challenge restricted to leaf scans and pseudoscans.

	Year #Species #Images Evaluated systems Score of best system Brief description of best system
	2011	71	3,967	20	0.574	Various local features (around
						Harris points) + Hash-based in-
						dexing + RANSAC based match-
						ing
	2012 126	9,356	30	0.565	Shape and texture global features
						+ SVM classifier
	2013 250	11,031	33	0.607	Shape and texture global features
						+ SVM classifier

Table 2

 2 Seven-year synthesis of the results of the PlantCLEF challenge

	Year #Species #Images Evaluated systems Performance of	Brief description of best system
					best system		
	2011	71	1,469	20	0.251	Model-driven	segmentation
						Shape features . Random forest
	2012 126	2,216	30	0.320	. Multi-scale local (color) tex-
						ture SIFT + Sparse coding Spa-
						tial Pyramidal Matching . Linear
						SVM	
	2013 250	11,046	33	0.393	. Dense-SIFT, C-SIFT, Opponent
						SIFT HSV-SIF, self-similarity
						SSIM . Fisher Vectors . Linear
						Logistic Regression . Late fusion
	2014 500	60,962	28	0.471	. ROI segmentation dense-SIFT +
						Color Moment . Fisher Vectors .
						SVM on FVs	
	2015 1000	113,205	18	0.667	. GoogLeNet CNN . 5-fold bag-
						ging + Borda fusion	
	2016 1000	121,205	29	0.827	. VGGNet, combine outputs of a
						same observation	
	2017 10,000 1,256,287	28	0.92	. Average of many fine-tuned
						CNNs	

Table 3

 3 Types of metadata shared within PlantCLEF challenge Type of metadata Metadata description ObservationId the plant observation ID from which several pictures can be associated MediaId the ID of the image View Content Description of the content visible in the image : Entire or Branch or Flower or Fruit or Leaf or LeafScan, etc.

	ClassId	the class number ID that must be used as ground-truth. It is a numerical taxonomical number used by Tela Botanica
		the species names (containing 3 parts: the Genus name,
	Species name	the specific epithet, the author(s) who discovered or
		revised the name of the species)
	Family	the name of the Family, two levels above the Species in the taxonomical hierarchy used by Tela Botanica
	Date	(if available) the date when the plant was observed
	Vote	the (round up) average of the user ratings of image quality
	Location	(if available) locality name, a town most of the time
		(if available) the GPS coordinates of the observation in the EXIF metadata,
	Latitude & Longitude	or if no GPS information were found in the EXIF the GPS coordinates of the locality where the plant was observed
		(only for the towns of metropolitan France)
	Author	name of the author of the picture
	YearInCLEF	ImageCLEF2011, ImageCLEF2012, ImageCLEF2013, PlantCLEF2014, PlantCLEF2015

Table 4

 4 Impact of the use of metadata for plants and birds identification

	Year	Task	Team	Metadata type Improvement
	2011 PlantCLEF	UAIC	GPS, Date, Author Id	-35.89%
	2012 PlantCLEF	BTU DBIS (Böttcher et al, 2012)	GPS	-4.76%
	2013 PlantCLEF Inria (Bakic et al, 2013)	Date	+9.06%
	2015 PlantCLEF	SABANCI-OKAN (Ghazi and Ozdemir, 2015)	Date	+1.23%
	2014 BirdCLEF	Inria (Joly et al, 2014a)	GPS, Date	+11.28%
	2017 BirdCLEF	TUCMI (Kahl et al, 2017)	GPS	-32.67%

http://www.gbif.org/

https://stateoftheworldsplants.com/

http://www.lifeclef.org

http://www.imageclef.org/

http://www.tela-botanica.org/appli:identiplante (in French)

some sample can be listen at http://sabiod.org/DYNITAG/BIRDCLEF

for which a taxonomy is available at http://fishdb.sinica.edu.tw
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