J. Qiao, Y. Liu, F. Hong, J. Zhang-;-b, ). L. Zhang et al., Nanostructured Materials for Heterogeneous Electrocatalytic CO 2 Reduction and their Related Reaction Mechanisms, Angew. Chem., Int. Ed, vol.43, issue.2, p.1700275, 2014.

J. Liu, C. Liu, L. Zhao, J. Zhang, L. Zhang et al., Effect of different structures of carbon supports for cathode catalyst on performance of direct methanol fuel cell, Int. J. Hydrogen Energy, vol.41, issue.3, pp.1859-1870, 2016.

J. Li, D. Tang, P. Hou, G. Li, M. Cheng et al., The effect of carbon support on the oxygen reduction activity and durability of single-atom iron catalysts, MRS Commun, vol.8, issue.3, pp.1158-1166, 2018.

C. Genovese, C. Ampelli, S. Perathoner, G. Centi-;-c.-genovese, C. Ampelli et al., Electrocatalytic conversion of CO 2 on carbon nanotubebased electrodes for producing solar fuels, J. Energy Chem, vol.308, issue.2, pp.202-213, 2013.

O. A. Baturina, Q. Lu, M. A. Padilla, L. Xin, W. Li et al., High-Selectivity Electrochemical Conversion of CO 2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode, Catal. Today, vol.4, issue.10, pp.2-10, 2014.

Y. Huo, X. Peng, X. Liu, H. Li, and J. Luo, High Selectivity Toward C 2 H 4 Production over Cu Particles Supported by Butter?y-Wing-Derived Carbon Frameworks, ACS Appl. Mater. Interfaces, vol.10, issue.15, pp.12618-12625, 2018.

A. S. Varela, N. Sahraie, J. Steinberg, W. Ju, H. Oh et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO 2, Electrochemical Reduction of CO 2 Catalyzed by Fe-N-C Materials: A Structure-Selectivity Study, vol.54, pp.8078-8081, 2015.

, J. Am. Chem. Soc, issue.42, pp.14889-14892, 2017.

K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang et al., Unveiling Active Sites of CO 2 Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts, Facile Synthesis of Ironand Nitrogen-Doped Porous Carbon for Selective CO, vol.11, pp.6255-6264, 2018.

. Electroreduction, Nano Mater, issue.7, pp.3608-3615, 2018.

D. U. Nielsen, X. Hu, K. Daasbjerg, and T. Skrydstrup, Chemically and electrochemically catalysed conversion of CO 2 to CO with follow-up utilization to value-added chemicals, Nat. Catal, vol.1, issue.4, pp.244-254, 2018.

A. Wuttig and Y. Surendranath, Impurity Ion Complexation Enhances Carbon Dioxide Reduction Catalysis, ACS Catal, vol.5, issue.7, pp.4479-4484, 2015.

V. Armel, J. Hannauer, and F. Jaouen, Effect of ZIF-8 Crystal Size on the O 2 Electro-Reduction Performance of Pyrolyzed Fe-N-C Catalysts, Catalysts, vol.5, issue.3, pp.1333-1351, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01180246

A. Murata, Y. R. Hori-;-m, K. I. Thorson, P. J. Siil, and . Kenis, Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO 2 and CO at a Cu Electrode, Bull. Chem. Soc. Jpn, vol.64, issue.1, pp.69-74, 1991.

M. R. Singh, Y. Kwon, Y. Lum, J. W. Ager, A. T. Bell-;-d et al., Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO 2 over Ag and Cu, J. Am. Chem. Soc, issue.39, pp.11277-11287, 2016.

C. Ge, W. Li, Y. Li, B. Li, J. Du et al., Signi?cance and Systematic Analysis of Metallic Impurities of Carbon Nanotubes Produced by Different Manufacturers, J. Nanosci. Nanotechnol, vol.11, issue.3, pp.1476-1484, 2008.

J. Zhu, A. Holmen, and D. Chen, Carbon Nanomaterials in Catalysis: Proton Affinity, Chemical and Electronic Properties, and their Catalytic Consequences, ChemCatChem, vol.5, issue.2, pp.378-401, 2013.

L. Zhao, Z. Wang, X. Sui, and G. Yin, Effect of multiwalled carbon nanotubes with different speci?c surface areas on the stability of supported Pt catalysts, J. Power Sources, vol.245, pp.637-643, 2014.

H. Mo and D. Ra?ery, Pre-SAT180, a simple and effective method for residual water suppression, J. Magn. Reson, vol.190, issue.1, pp.1-6, 2008.