Anne-Laure Decombeix 
  
Anaïs Boura 
  
Alexandru M F Tomescu 
  
Plant hydraulic architecture through time: lessons and questions on the evolution of vascular systems

Keywords: fossil, xylem, tracheids, vessels, Paleozoic, Mesozoic, wood, cambium

Studies of anatomically preserved fossils provide a wealth of information on the evolution of plant vascular systems through time, from the oldest evidence of vascular plants more than 400 million years ago to the rise of the modern angiosperm-dominated flora. In reviewing the key contributions of the fossil record, we discuss knowledge gaps and major outstanding questions about the processes attending the evolution of vascular systems. The appearance and diversification of early vascular plants in the late Silurian-Devonian was accompanied by the evolution of different types of tracheids, which initially improved the hydraulics of conduction but had less of a mechanical support function. This was followed in the Devonian and Carboniferous by an increase in complexity of the organization of primary vascular tissues, with different types of steles evolving in response to mechanical, hydraulic, and developmental regulatory constraints. Concurrently, secondary vascular tissues, such as wood, produced by unifacial or bifacial cambia are documented in a wide array of plant Revised Manuscript Click here to access/download;Revised Manuscript;Decombeix Boura & Tomescu_revised ms FINAL.docx groups, including some that do not undergo secondary growth today. While wood production has traditionally been thought to have evolved independently in different lineages, accumulating evidence suggests that this taxonomic breadth reflects mosaic deployment of basic developmental mechanisms, some of which are derived by common ancestry. For most of vascular plant history, wood contained a single type of conducting element: tracheids (homoxyly). However, quantitative (e.g. diameter and length) and qualitative (e.g. pitting type) diversity of these tracheids allowed various taxa to cover a broad range of hydraulic properties. A second type of conducting elements vessels, is first documented in an extinct late Permian (c. 260 Ma) group. While the putative hydraulic advantages of vessels are still debated, wood characterized by presence of vessels (heteroxyly) would become the dominant type, following the diversification of angiosperms during the Cretaceous.

INTRODUCTION

The term "hydraulic architecture" was first used in the title of a 1978 paper by Martin Zimmermann that compared water flow in different parts of trees with diffuse porous wood.

Hydraulic architecture has since received several definitions (see [START_REF] Cruiziat | Hydraulic architecture of trees: main concepts and results Ann[END_REF] for a review), the simplest and most general of which defines it as "the structure of the water conducting system" [START_REF] Tyree | The hydraulic architecture of trees and other woody plants[END_REF]. The functioning of plants as hydraulic systems has always intrigued botanists and the continued development of new techniques to assess and quantify xylem hydraulic properties has provided a wealth of data on the physical laws and structure-function relationships that control water flow in plants [START_REF] Mcculloh | Water transport in plants obeys Murray's law[END_REF][START_REF] Hacke | Efficiency versus safety tradeoffs for water conduction in angiosperm vessels versus gymnosperm tracheids[END_REF][START_REF] Sperry | Size and function in conifer tracheids and angiosperm vessels[END_REF][START_REF] Sperry | Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees[END_REF][START_REF] Choat | Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function[END_REF][START_REF] Pittermann | Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns[END_REF].

Understanding the anatomy of vascular tissues, the pipelines of the plant's hydraulic system [START_REF] Cruiziat | Hydraulic architecture of trees: main concepts and results Ann[END_REF], remains an essential aspect of these studies (e.g., [START_REF] Pittermann | Torus-margo pits help conifers compete with angiosperms[END_REF]Pittermann et al. , 2006a)).

Among paleobotanists, the question of the evolution of vascular systems is almost as old as the first observations of fossil plants (e.g., [START_REF] Witham | Observations on fossil vegetables accompanied by representation of their internal structure, as seen through the microscope[END_REF][START_REF] Witham | The internal structure of fossil vegetables found in the carboniferous and oolitic deposits of Great Britain. A & C Black[END_REF][START_REF] Unger | Chloris protogaea. Beiträge zur flora der vorwelt[END_REF]Göppert & Stenzel 1892;[START_REF] Renault | Structure comparée de quelques tiges de la flore carbonifère[END_REF]. Xylem, the water conducting tissue of vascular plants, typically contains cells with thickened secondary walls (tracheary elements, which are a type of sclerenchyma cells), usually lignified, which are resistant to degradation and, consequently, often well-preserved in the fossil record. The high preservation potential of xylem has underpinned the discovery of major steps in the evolution of vascular tissues, which can be traced back to the appearance of the first vascular plants more than 400 million years ago. The continued discovery of new fossils, combined with the development of new observational techniques and mathematical models, allow access to a steady flow of novel information on the hydraulic architecture of extinct plants, some of which have no living equivalent or were growing in very different environmental conditions (e.g., in terms of climate or atmospheric CO2 levels). In this review, we summarize the state of the art and main developments in studies of the evolution of vascular systems based on the fossil record, and outline some outstanding questions about the processes that led to the appearance of plant structures that we observe today.

THE FIRST VASCULAR PLANTS

Vascular plants, also known as tracheophytes [START_REF] Kenrick | The origin and early diversification of land plants[END_REF]; Fig. 1), largely dominate modern terrestrial ecosystems, where they represent over 380 000 species [START_REF] Willis | State of the world's plants 2017[END_REF]. Tracheophytes are characterized by the possession of specialized water-conducting cells (tracheary elements) that are longitudinally elongated, non-living at maturity, and have a secondary cell wall laid down in different thickening patterns: annular, helical, scalariform, and reticulate or pitted. Pits are cell wall areas without secondary wall (i.e., holes in the secondary wall), through which water can move from one cell to the next, typically through a permeable membrane formed by the primary wall and middle lamella.

Microscopic tubes with internal thickenings found in early Silurian to Early Devonian (c. 440-410 Ma) deposits were initially interpreted as fossil tracheids [START_REF] Martin | Palynofacies et microfacies du Silurien inférieur à Deerlijk[END_REF].

However, the wall ultrastructure of these banded tubes is distinctly different from that of vascular plant tracheary elements (tracheids and vessels) and their role, as well as the organisms they belonged to, remain highly conjectural [START_REF] Gray | Early vascular plants: proof and conjecture[END_REF][START_REF] Taylor | Ultrastructure of enigmatic phytoclasts (banded tubes) from the Silurian-Lower Devonian: evidence for affinities and role in early terrestrial ecosystems[END_REF]). The oldest unequivocal tracheids are a little younger, dating back to the late Silurian-Early Devonian, a little over 400 million years ago [START_REF] Edwards | Oldest recorded in situ tracheids[END_REF]. Early Devonian coalified fragments of Cooksonia (Paratracheophyta) possess a central strand composed of a few tracheids that are 2-11 µm in diameter [START_REF] Lang | On the plant-remains from the Downtonian of England and Wales[END_REF][START_REF] Edwards | A vascular conducting strand in the early land plant Cooksonia[END_REF]).

Because Cooksonia is first recorded in the Silurian (Fig. 2), and tracheids have also been reported from late Silurian sterile axes in a fossil assemblage containing Cooksonia-type sporangia [START_REF] Edwards | Oldest recorded in situ tracheids[END_REF], Cooksonia is traditionally regarded as the oldest vascular plant. However, the anatomy of Silurian Cooksonia specimens is unknown and since recent analyses show that the various species of the genus do not form a monophyletic group [START_REF] Gonez | A new definition and a lectotypification of the genus Cooksonia Lang 1937[END_REF], the vascular plant status of the oldest Cooksonia remains equivocal.

Investigations of early tracheids with scanning electron microscopy, starting in the 1990s, have led to the recognition of several types that are based on the structure of their wall thickenings [START_REF] Kenrick | Water-conducting cells in early fossil land plants: implications for the Early Evolution of Tracheophytes[END_REF][START_REF] Friedman | The origin and early evolution of tracheids in vascular plants: integration of palaeobotanical and neobotanical data[END_REF][START_REF] Edwards | Xylem in early tracheophytes[END_REF]Fig. 3). S-type tracheids have large and simple annular or helical thickenings. The spongy material of the wall thickenings is covered on the lumen side by a thin decay-resistant microporate layer [START_REF] Kenrick | The origin and early diversification of land plants[END_REF]; Fig. 3B). S-type tracheids, named after the first fossil plant in which they were described, Sennicaulis (Paratracheophyta, Fig. 1), are also found in a few other fossil plants of Early and Middle Devonian age [START_REF] Pfeiler | An Early Devonian permineralized rhyniopsid from the Battery Point Formation of Gaspé (Canada)[END_REF]. The G-type tracheid, exemplified by the fossil plant Gosslingia (Zosterophyllales, Fig. 1), has annular or helical thickenings that can take a scalariform or reticulate aspect through the development of connections between horizontal thickenings. The cell wall between thickenings bears multiple minute perforations (Fig. 3C). G-type tracheids are found in some early representatives of the lycopsids and their extinct precursors, the zosterophylls. Tracheids of the P-type, exemplified by Psilophyton (Trimerophyta, Fig. 1), have bordered pits that are scalariform, more rarely almost circular [START_REF] Edwards | Xylem in early tracheophytes[END_REF]. Unlike the bordered pits found in the tracheids of extant plants, their relatively large apertures are covered by a characteristic perforate membrane made of secondary wall material (Fig. 3D). This peculiarity is found in basal members of the euphyllophytes [START_REF] Kenrick | The origin and early diversification of land plants[END_REF][START_REF] Strullu-Derrien | The earliest wood and its hydraulic properties documented in c. 407-million-year-old fossils using synchrotron microtomography[END_REF][START_REF] Bickner | Structurally complex, yet anatomically plesiomorphic: permineralized plants from the Emsian of Gaspé (Quebec, Canada) expand the diversity of Early Devonian euphyllophytes[END_REF] issue, Fig. 1), the clade that comprises all living non-lycopsid tracheophytes and their extinct relatives, also known as Trimerophyta. The tracheids of some fossil and extant lycopsids also possess a perforated membrane or fimbrils ("Williamson's striations") across the scalariform pit aperture [START_REF] Cichan | The application of scanning electron microscopy in the characterization of Carboniferous lycopod wood[END_REF]), but it is unknown whether these structures are homologous to the ones observed in early euphyllophytes [START_REF] Edwards | Xylem in early tracheophytes[END_REF]. Interestingly, some Devonian taxa show a combination of different types of tracheids within a single plant. This is the case for example in an unnamed fossil from the Early Devonian of Norway in which the main axis has G-type tracheids, while the tracheids of lateral branches possess circular to scalariform or reticulate bordered pits [START_REF] Edwards | Tracheids in an early vascular plant: a tale of two branches[END_REF]. Some of the most emblematic representatives of early vascular plants were found silicified in hydrothermal cherts from the Rhynie area in Aberdeenshire, Scotland (mid-Pragian-?earliest Emsian; [START_REF] Edwards | History and contemporary significance of the Rhynie cherts -our earliest preserved terrestrial ecosystem[END_REF]. While these cherts preserve the vegetation of unusual environments (volcanic hot springs) [START_REF] Wellman | Palaeoecology and palaeophytogeography of the Rhynie chert plants: further evidence from integrated analysis of in situ and dispersed spores[END_REF], they have yielded some of the best anatomically preserved fossil plants from the Early Devonian interval. Among them, Aglaophyton (Protracheophyta), Rhynia (Paratracheophyta), Asteroxylon (Drepanophycales), and Horneophyton (Horneophyta) are all small plants (<20 cm tall) that lack leaves and true roots and illustrate different stages in the evolution of vascular systems. In Aglaophyton, the water conducting cells lack wall thickenings of the kind typically seen in tracheids. Because Biomechanical studies by Speck andVogellehner (1988, 1992) showed that the tracheids of the first vascular plants did not contribute much to the flexural stiffness of axes, of which >80-90% could be attributed to either turgor pressure in the parenchymatous cortex, or to a sclerified hypodermal sterome. The observed increase in the complexity and strength of tracheid secondary wall thickenings is, thus, likely linked to maintenance of their water conducting properties, i.e., improved resistance to inward collapse and cavitation [START_REF] Carlquist | Ecological strategies of xylem evolution[END_REF][START_REF] Hacke | Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure[END_REF], in correlation with the trend of increasing tracheid diameters for increased water conductivity that was documented for the Devonian [START_REF] Niklas | Plant allometry: the scaling of form and process[END_REF]. Thus, a first important lesson from the fossil record is that the early evolution of vascular tissues was in all likelihood not under the constraint of a compromise between hydraulic and mechanical functions.

A significant time interval separates the oldest fossil evidence of land plants (Fig. 1), represented by middle Ordovician spores [START_REF] Rubinstein | Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana)[END_REF], and the diversification of vascular plants in the Early Devonian. However, it is important to note that the oldest evidence for plants with vascular tissue consists of late Silurian macrofossils (Kotik et al. 2002;[START_REF] Libertin | Sporophytes of polysporangiate land plants from the early Sil-urian period may have been photosynthetically autonomous[END_REF]) and possibly of hilate/trilete spores of early Silurian age [START_REF] Gray | Early vascular plants: proof and conjecture[END_REF][START_REF] Steemans | Origin and radiation of the earliest vascular land plants[END_REF]. The age disparity between these different types of fossils may be a reflection of different biases in taphonomy, geographic sampling, or the nature of the rock record, with respect to different plant parts and fragments. Vascular tissues are known to be quite resistant to degradation, thus, early vascular plants are expected to be better preserved than other types of plants. [START_REF] Kenrick | A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic[END_REF] argue that the paucity of their remains before the late Silurian-Early Devonian could be due to biases, including (1) the poor prospection of the supercontinent Gondwana, which corresponded to today's southern continents and where land colonization by plants might have started [START_REF] Steemans | Origin and radiation of the earliest vascular land plants[END_REF], and (2) the paucity of terrestrial deposits that pre-date the latest Silurian and that are exposed today, especially those representing fluvial or lacustrine depositional environments in which most early vascular plant remains are typically found. Until these potential biases are better understood and addressed, the tempo of evolution of plant vascular tissues following the initial colonization of land and the possible underlying processes cannot be assessed with confidence. The most recent timescale of plant evolution using fossil calibrations and genetic data [START_REF] Morris | The timescale of early land plant evolution[END_REF] proposes a middle Cambrian to Early Ordovician age for crown embryophytes and a Late Ordovician to Silurian age for crown tracheophytes.

THE INCREASE IN COMPLEXITY OF THE PRIMARY VASCULAR SYSTEM

During the Devonian, major innovations, such as the appearance of leaves [START_REF] Sanders | Key morphological alterations in the evolution of leaves[END_REF][START_REF] Langdale | Developmental transitions during the evolution of plant form[END_REF][START_REF] Tomescu | Megaphylls, microphylls and the evolution of leaf development[END_REF][START_REF] Galtier | The origins and early evolution of the megaphyllous leaf[END_REF], the evolution of root systems [START_REF] Boyce | The evolutionary history of roots and leaves[END_REF][START_REF] Hetherington | Rhynie chert fossils demonstrate the independent origin and gradual evolution of lycophyte roots[END_REF], or the appearance of pseudomonopodial branching -with morphological differentiation of a main axis and subordinate lateral branches [START_REF] Gensel | Morphology of above-and below-ground structures in the Early Devonian (Pragian-Emasian) plants[END_REF], led to an increase in complexity of plant architecture [START_REF] Chomicki | Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies[END_REF]Bonacorsi & Leslie 2019;[START_REF] Crepet | The evolution of early vascular plant complexity[END_REF]. This was paralleled by an increase in complexity of the organization of the primary vascular tissues and the appearance of new types of steles . The stele of an axis includes the tissues derived from the procambium. In terms of mature tissues, this translates into vascular tissues (xylem and phloem) and associated ground tissues (such as the pericycle, leaf gaps, interfascicular areas)these issues are discussed in detail in an upcoming paper by Tomescu (work in progress).

In the most simple type of stele, the protostele, there is no pith and vascular tissues form a central strand. This type of stele, present throughout the entire geologic time scale of tracheophytes, occurs today in some taxa such as Lycopodium (Lycopodiales), Psilotum (Psilotidae), or Gleichenia (Glecheniales). A protostele is also the vascular organization found in the vast majority of roots, independently of their systematic affinities [START_REF] Esau | Plant anatomy[END_REF][START_REF] Beck | An introduction to plant structure and development[END_REF]. The oldest type of protostele, the haplostele, has circular to elliptical shape in crosssection, with the xylem located in the center (Fig. 4A-C). This architecture is typical of the earliest vascular plants [START_REF] Kenrick | The origin and early diversification of land plants[END_REF]Fig. 2). Another type of protostele that became common in the Middle Devonian is the actinostele, in which the xylem has a lobed or star-shaped structure in cross-section (Figs. 4D-F). Actinosteles are found in many Middle and Late Devonian taxa, including lycopsids, cladoxylopsids (i.e., Iridopteridales and Pseudosporochnales, Fig. 1), progymnosperms, Stenokoleales, and the first spermatophytes [START_REF] Scheckler | Systematic characters of Devonian ferns[END_REF][START_REF] Scheckler | Ontogeny of progymnosperms. I. Shoots of Upper Devonian Aneurophytales[END_REF][START_REF] Beck | Crossia virginiana gen. et sp. nov., a new member of the Stenokoleales from the Middle Devonian of southwestern Virginia[END_REF][START_REF] Rothwell | Lignophyte phylogeny and the evolution of spermatophytes: a numerical cladistic analysis[END_REF][START_REF] Momont | New information, including anatomy of the secondary xylem, on the genus Brabantophyton (Stenokoleales) from Ronquières (Middle Devonian, Belgium)[END_REF][START_REF] Toledo | Buried deep beyond the veil of extinction: euphyllophyte relationships at the base of the spermatophyte clade[END_REF]Fig.4F).

The development of a central pith led to a new major type of stele, in which the vascular tissues form a hollow cylinder (with pith at the center), the siphonostele [START_REF] Beck | Stelar morphology and the primary vascular system of seed plants[END_REF][START_REF] Stewart | Paleobotany and the evolution of plants[END_REF]. The vascular cylinder can be interrupted by leaf gaps where vascular traces diverge toward the leaves (Fig. 4J-L). Various types of siphonosteles are present from the Late Carboniferous on, especially among the filicopsids (e.g., [START_REF] Phillips | Evolution of vegetative morphology in coenopterid ferns[END_REF][START_REF] Beck | Stelar morphology and the primary vascular system of seed plants[END_REF][START_REF] Rothwell | Fossils and ferns in the resolution of land plant phylogeny[END_REF][START_REF] Schneider | Evolution of vascular plant body plans: a phylogenetic perspective In[END_REF]. Late Devonian and Carboniferous lycopsid trees such as Sublepidodendron and Paralycopodites have vascular tissues arranged in a hollow cylinder in the largest part of their stems [START_REF] Eggert | The ontogeny of Carboniferous arborescent Lycopsida[END_REF]), but they lack leaf gaps and the question of whether these represent true siphonosteles is still debated. A variation of the siphonostele is the dictyostele, in which leaf gaps are long (tall) and overlap vertically, giving the impression of a dissected vascular system (Fig. 5A-C). The oldest dictyosteles date from the Carboniferous, as seen for example in the marattialean tree fern Psaronius [START_REF] Delevoryas | Ontogenetic studies of fossil plants[END_REF]; Fig. 5C). Today they are found in many ferns, such as Osmunda (Osmundales, Fig. 1) or the tree fern Dicksonia (Cyatheales) [START_REF] Bower | The Ferns[END_REF]).

In the eustele, which is typically found in spermatophytes, the vascular tissues are organized as discrete longitudinal sympodia around the pith (Fig. 5D-F). The oldest example of this type of organization is seen in the Middle Devonian progymnosperm Archaeopteris [START_REF] Scheckler | Ontogeny of progymnosperms. II. Shoots of Upper Devonian Archaeopteridales[END_REF][START_REF] Beck | The primary vascular system of Callixylon[END_REF]; Fig. 5F). Eusteles become more common following the diversification of seed plants in the Carboniferous, a period during which they are found in Cordaitales, early conifers (Voltziales), and various families of pteridosperms. Today, eusteles featuring more or less complex connections between the xylem of the stem and that of branches and leaves [START_REF] Namboodiri | A comparative study of the primary vascular system of conifers. III. Stelar evolution in gymnosperms[END_REF][START_REF] Beck | Stelar morphology and the primary vascular system of seed plants[END_REF]) characterize the gymnosperms and angiosperms. Some monocotyledons have a modified eustele in which the sympodia are arranged in multiple concentric cycles [START_REF] Beck | Stelar morphology and the primary vascular system of seed plants[END_REF]. These multiple sympodia, in combination with the multiple leaf traces diverging from them, produce the impression of vascular bundles scattered randomly throughout the ground tissue and preclude recognition of a typical pith or cortex (Fig. 5G-I). This type of eustele, called an atactostele, is first documented in fossil palm trunks (Palmoxylon; Fig. 5I) from the Late Cretaceous (Santonian-Campanian, and possibly as old as the Turonian; Crié 1892; [START_REF] Berry | A petrified palm from the Cretaceous of New Jersey[END_REF].

Several Middle Devonian to Early Carboniferous plants assigned to the extinct group of the cladoxylopsids displayed a vascular system with numerous separate xylem strands of various size and shape in transverse section. The number of strands ranges from a few in some specimens of Xenocladia (Pseudosporochnales) [START_REF] Arnold | Observations on fossil plants from the Devonian of eastern north America. VI. Xenocladia medullosina[END_REF]Fig.4I) or Cladoxylon (Pseudosporochnales) [START_REF] Bertrand | Contribution a l'étude des Cladoxylalées de Saalfeld[END_REF] to over 130 in the Late Devonian tree Xinicaulis (Cladoxylopsid) [START_REF] Xu | Unique growth strategy of the oldest fossil trees[END_REF]. [START_REF] Stewart | Paleobotany and the evolution of plants[END_REF] interpreted this organisation as a transition from an actinostele to a plectostele, a type of protostele in which the xylem and phloem are arranged in alternating plates or U or V-shaped bands (in cross section) (Fig. 4G-I); in the most extreme cases, the central strands are absent and the architecture resembles that of a eustele.

While the diversity of stelar anatomy and the evolutionary pathways that led from one type of stele to another have been the subject of many hypotheses and discussions, very little is certain regarding the processes driving the diversification of stelar organization in the Devonian and thereafter. Different scenarios involving several categories of factors have been considered.

(1) Increasing mechanical demands. Walter Zimmerman was one of the first proponents of this mechanical hypothesis [START_REF] Zimmermann | Die Phylogenie der Pflanzen[END_REF]. Because the most peripheral tissues of the axis are the ones that have the highest impact on resistance to bending forces, the arrangement of the xylem at the periphery of a pith vs. at the center of the axis provides more stiffness [START_REF] Speck | Biophysical examinations of the bending stability of various stele types and the upright axes of early "vascular" land plants[END_REF]. This suggests that the evolution of stelar organizations that include a pith may have been driven, at least in part, by mechanical constraints associated with increase in size.

(2) Increasing demand of fluid transport. F.O. Bower proposed in 1908 the hypothesis that the stele increased in complexity in order to optimize water transport in plants that were evolving larger sizes and more complex organization [START_REF] Bower | The origin of a land flora[END_REF]. The development of a central pith and peripheral xylem minimizes the distances between the water conducting cells and other tissues while limiting the amount of energy spent on producing expensive xylem cells [START_REF] Raven | Physiological analyses of aspects of the functioning of vascular tissue in early plants[END_REF][START_REF] Roth | Numerical studies of water conduction in land plants: evolution of early stele types[END_REF]. Thus, such hydraulic demands may have represented a different type of driver in the evolution of the pith.

(3) Changes in hormonal signals linked to the evolution of lateral organs. Building on earlier ideas formulated by [START_REF] Wight | Non-adaptive change in early land plant evolution[END_REF], [START_REF] Stein | Modeling the evolution of stelar architecture in vascular plants[END_REF] modelled how the evolution of stelar architecture can be linked to the gradients of auxin produced by more complex lateral appendages (branches, leaves). Stein's models support an origin of pith at the center of the stele related to changes in shoot apex geometry under different hormonal gradient regimes, and the dissection of the stele into discrete vascular bundles as a result of changing receptivity to hormonal signaling.

In all likelihood, combinations of these different factors, which are not mutually exclusive, were responsible for stelar evolution in different groups, especially since the increase in complexity of lateral organs has a direct impact on the biomechanical and hydraulic demands of the plant, in addition to driving shifts in hormonal signaling patterns and homeostasis. It is also possible that these factors had different relative importance in shaping the vascular systems of different plant lineages. Leaves evolved independently in the two major tracheophyte groups -the lycopsids and euphyllophytes -and then, again, independently in several euphyllophyte groups [START_REF] Tomescu | Megaphylls, microphylls and the evolution of leaf development[END_REF][START_REF] Sanders | Key morphological alterations in the evolution of leaves[END_REF][START_REF] Galtier | The origins and early evolution of the megaphyllous leaf[END_REF]). Given their independent origins, as well as differences in their developmental, anatomical, and physiological relationships with subtending stems, specific to each lineage, the advent of leaves must have had different impacts on the architecture of the vascular system in each of these lineages. Nevertheless, the evolution of leaves, along with that of roots (also thought to have evolved independently, at least between the lycopsids and euphyllophytes; Boyce 2005; Hetherington & Dolan 2018), and with the general increase in plant size, led to increasingly more complex plant architectures. These are all factors that can be linked to the increase in complexity of the architecture of the primary vascular system.

VASCULAR CAMBIA AND SECONDARY GROWTH

Another major event in plant evolution that occurred during the Devonian is the advent of the vascular cambium, a lateral meristem producing secondary vascular tissues. Two types can be distinguished: unifacial cambium, producing only secondary xylem (wood), and bifacial cambium that produces secondary xylem on one side and secondary phloem on the other side. Like other meristems, the vascular cambium can have permanent activity, leading to indeterminate growth, or can cease functioning at a genetically determined point, leading to determinate growth. Today, all plants with secondary vascular tissue -with the possible exception of the lycopsid Isoetes (Isoetales; Fig. 6A-B)-are seed plants and have a bifacial cambium with indeterminate growth. In Isoetes, a cambial layer (the lateral meristem) produces a "prismatic layer" (consisting of tracheids and sieve cells) toward the inside and a thin layer of parenchymatous tissue toward the outside [START_REF] Paolillo | The developmental anatomy of Isoetes[END_REF][START_REF] Gifford | Morphology and evolution of vascular plants[END_REF]. Although functionally bifacial, this cambial layer produces vascular tissues only on one of its sides, like the unifacial cambia. Compared to the dearth of lineages exhibiting vascular cambial growth in the modern flora, the fossil record reveals a much broader diversity of modes of secondary growth [START_REF] Tomescu | Mosaic modularity: an updated perspective and research agenda for the evolution of vascular cambial growth[END_REF]Fig.6).

To date, the oldest known occurrences of secondary xylem are known from the Early Devonian euphyllophytes Armoricaphyton [START_REF] Strullu-Derrien | The earliest wood and its hydraulic properties documented in c. 407-million-year-old fossils using synchrotron microtomography[END_REF][START_REF] Gerrienne | New data about anatomy, branching, and inferred growth patterns in the Early Devonian plant Armoricaphyton chateaupannense, Montjean-sur-Loire, France[END_REF] from France and Franhueberia gerriennei [START_REF] Hoffman | An early origin of secondary growth: Franhueberia gerriennei gen. et sp. nov. from the Lower Devonian of Gaspé (Quebec, Canada)[END_REF]) (Fig. 2) from Gaspé (Canada), and from a few additional, as yet unnamed, plant types from New Brunswick and Quebec (Canada) [START_REF] Gerrienne | A simple type of wood in two Early Devonian plants[END_REF][START_REF] Gensel | Early Devonian woody plants and implications for the early evolution of vascular cambia[END_REF]. Subsequent to these early examples, the fossil record has revealed a remarkable diversity of geologically younger (Middle Devonian and early Carboniferous) plants that produced secondary xylem. This structural feature has been reported in lycopsids, basal euphyllophytes, cladoxylopsids, sphenopsids, basal filicopsids such as the zygopterids, stenokoleales, and lignophytes (Figs. 1,2,6). Thus, two key lessons are that (1) secondary growth evolved early (possibly earlier than 410 Ma ago) and that (2) the occurrence of secondary xylem in vascular plants is quite common, even in groups that do not produce wood today, like the lycopsids and sphenopsids.

Lycopsids, basal euphyllophytes, cladoxylopsids, basal filicopsids, and sphenopsids are all interpreted as having a unifacial cambium [START_REF] Cichan | Evolution of cambium in geologic time -a reappraisal[END_REF]; Fig. 6A-E ). This type of cambium usually produced a small amount of wood (a few millimeters to a few centimeters) and no secondary phloem, but there are examples of Permian sphenopsids in which the wood cylinder exceeded 30 cm in radial thickness [START_REF] Rößler | Sphenopsids of the Permian (I): The largest known anatomically preserved calamite, an exceptional find from the petrified forest of Chemnitz, Germany[END_REF]. The bifacial cambium, producing both secondary xylem and secondary phloem, is considered the synapomorphy of the lignophyte clade, which includes the spermatophyte plants and their extinct progymnosperm sister group [START_REF] Crane | Phylogenetic analysis of seed plants and the origin of angiosperms[END_REF][START_REF] Doyle | Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach[END_REF][START_REF] Rothwell | Lignophyte phylogeny and the evolution of spermatophytes: a numerical cladistic analysis[END_REF]; Fig. 6G-H). The oldest evidence for this type of cambium dates to the Middle Devonian, in the aneurophytalean progymnosperms Tetraxylopteris, Triloboxylon, and Proteokalon, all of which possess a well preserved complement of secondary phloem in addition to secondary xylem [START_REF] Beck | Tetraxylopteris schmidtii gen. et. sp. nov., a probable pteridosperm precursor from the Devonian of New York[END_REF][START_REF] Scheckler | Proteokalon, a new genus of progymnosperm from the Devonian of New York State and its bearing on phylogenetic trends in the group[END_REF][START_REF] Stein | Triloboxylon arnoldii from the Middle Devonian of western New York[END_REF]; Fig. 2; Fig. 6G). The Stenokoleales, a Late Devonian-Early Carboniferous group of plants sometimes associated with the lignophytes [START_REF] Matten | Studies on Devonian plants from New York State: Stenokoleos holmesii n. sp. from the Cairo Flora (Givetian) with an alternative model for lyginopterid seed fern evolution[END_REF][START_REF] Toledo | Buried deep beyond the veil of extinction: euphyllophyte relationships at the base of the spermatophyte clade[END_REF], have some secondary xylem [START_REF] Beck | Crossia virginiana gen. et sp. nov., a new member of the Stenokoleales from the Middle Devonian of southwestern Virginia[END_REF][START_REF] Momont | New information, including anatomy of the secondary xylem, on the genus Brabantophyton (Stenokoleales) from Ronquières (Middle Devonian, Belgium)[END_REF] but there is no evidence to date for secondary phloem, which would indicate the presence of a bifacial cambium in that group.

Interestingly, a bifacial cambium is also documented in the Sphenophyllales, an extinct group of sphenopsids from the Late Devonian-Triassic [START_REF] Taylor | Ultrastructure of enigmatic phytoclasts (banded tubes) from the Silurian-Lower Devonian: evidence for affinities and role in early terrestrial ecosystems[END_REF]; Fig. 2). However, unlike that of the lignophytes, their cambium is usually interpreted as having determinate growth and the largest axes of the best known genus, Sphenophyllum, are only up to about 1 cm in diameter. Late Carboniferous and Permian representatives of Sphenophyllum had wood with a peculiar system of vertical parenchyma cells located at the corners of tracheids and connected to the rays that has no equivalent in other fossil or extant taxa [START_REF] Cichan | Vascular cambium development in Sphenophyllum: a Carboniferous arthrophyte[END_REF][START_REF] Cichan | Vascular cambium and wood development in Carboniferous plants. II. Spenophyllum plurifoliatum Williamson and Scott (Sphenophyllales)[END_REF]; Fig. 6F). However, older representatives of the Sphenophyllales seem to have possessed a more typical wood anatomy (Terreaux de Felice et al. in press).

Among extant plants, the bifacial vascular cambium can show important variations in functioning, which lead to the development of secondary tissue configurations designated as cambial variants (e.g., [START_REF] Angyalossy | An overview of the anatomy, development and evolution of the vascular system of lianas[END_REF]Pace et al. 2018a, b). Evidence for these different types of "anomalous secondary growth" has also been documented in the fossil record (reviewed by [START_REF] Bodnar | El origen y diversificación del crecimiento cambial atípico en plantas fósiles: procesos del desarrollo involucrado[END_REF]. For example, some members of the Corystospermales, an extinct group of spermatophytes from the Triassic (250-200 Ma), exhibit both centripetal and centrifugal wood development, as well as possible included phloem [START_REF] Artabe | A new approach to Corystospermales based on Triassic permineralized stems from Argentina[END_REF][START_REF] Decombeix | New insights into the anatomy, development, and affinities of corystosperm trees from the Triassic of Antarctica[END_REF].

As in the case of the first tracheids, the initial role of wood seems to have been hydraulic rather than structural [START_REF] Gerrienne | A simple type of wood in two Early Devonian plants[END_REF], and the wood of Devonian-Carboniferous plants already exhibited hydraulic properties comparable to those of some modern taxa [START_REF] Cichan | Conductance in the wood of selected Carboniferous plants[END_REF][START_REF] Wilson | Modeling fluid flow in Medullosa, an anatomically unusual Carboniferous seed plant[END_REF]Cascales-Miñana et al. 2019, this issue;Tanrattana et al. 2019, this issue). A role in mechanical support was acquired later and only in certain groups (e.g., [START_REF] Rowe | Hydraulics and mechanics of plants: novelty, innovation and evolution[END_REF]). Today, most trees are gymnosperms or eudicotyledons in which the wood has a dual function: water conduction and mechanical support. However, several plant types, such as palms (monocotyledons) and tree ferns, demonstrate that secondary xylem is not needed to reach arborescence (i.e., the tree habit).

Similarly, there are fossil examples of arborescent plants with no secondary xylem or in which the secondary xylem did not contribute much to the stiffness of the stem [START_REF] Mosbrugger | The tree habit in land plants[END_REF]Meyer-Berthaud & Decombeix 2009). Such is the case of the arborescent lycopsids, like the famous Lepidodendron (and related species of Lepidodendrales) of the Carboniferous, in which most of the mechanical support function was filled by a well-developed bark of secondary origin. The small central ring of wood, while very efficient for water conduction [START_REF] Cichan | Conductance in the wood of selected Carboniferous plants[END_REF], played no role in the stem's stiffness [START_REF] Mosbrugger | The tree habit in land plants[END_REF]).

One of the major questions that remains regarding the evolution of secondary xylem is whether vascular cambial growth evolved independently in several tracheophyte lineages or only once, at the base of the clade [START_REF] Tomescu | Mosaic modularity: an updated perspective and research agenda for the evolution of vascular cambial growth[END_REF]. The traditional view, based on records of representatives with secondary growth in multiple lineages that could be traced back to the Middle Devonian (Fig. 2), was that there had been multiple independent evolutionary origins of this important developmental and structural feature. This perspective found support in the more-or-less major perceived differences in the anatomy of secondary tissues between the different lineages.

These traditional views are being reshaped by evidence coming from two directions.

One of these is the realization that some mechanisms regulating vascular cambial growth are shared among major tracheophyte lineages spanning both the lycopsids and the euphyllophytes: lepidodendrales, sphenopsids, progymnosperms, and spermatophytes [START_REF] Rothwell | A fossil record for growth regulation: the role of auxin in wood evolution[END_REF][START_REF] Sanders | Parallel evolution of auxin regulation in rooting systems[END_REF]). The other line of evidence is provided by the discovery of multiple euphyllophyte types that demonstrate secondary xylem production in the Early Devonian [START_REF] Gerrienne | A simple type of wood in two Early Devonian plants[END_REF][START_REF] Hoffman | An early origin of secondary growth: Franhueberia gerriennei gen. et sp. nov. from the Lower Devonian of Gaspé (Quebec, Canada)[END_REF][START_REF] Strullu-Derrien | The earliest wood and its hydraulic properties documented in c. 407-million-year-old fossils using synchrotron microtomography[END_REF][START_REF] Gensel | Early Devonian woody plants and implications for the early evolution of vascular cambia[END_REF]). These fossils are pushing the documented occurrence of this feature to within a few million-years from the oldest representatives (and, potentially, the origin) of the clade. These data prompted [START_REF] Hoffman | An early origin of secondary growth: Franhueberia gerriennei gen. et sp. nov. from the Lower Devonian of Gaspé (Quebec, Canada)[END_REF] to propose that underlying mechanisms for secondary growth had become part of the euphyllophyte developmental toolkit very early in the evolution of the clade, and to raise the question of whether some of these mechanisms may have originated even earlier, in a common ancestor of euphyllophytes and lycopsids.

To provide an empirical framework for addressing such questions, [START_REF] Tomescu | Mosaic modularity: an updated perspective and research agenda for the evolution of vascular cambial growth[END_REF] proposed an updated perspective that approaches vascular cambial growth as a complex developmental process of modular nature. Their view explains the diverse anatomies of secondary growth seen in different lineages (referred to as modes of secondary growth) as a mosaic pattern of expression of distinct developmental-regulatory modules (responsible for different component processes of secondary growth) among different lineages, living and extinct. This view emphasizes patterns of shared processes and developmental regulation, and accommodates a hypothesis-testing approach to address questions about the evolutionary origins of secondary growth.

FURTHER EVOLUTION OF HOMOXYLOUS WOODS IN SEED PLANTS (SPERMATOPHYTES)

From its first appearance in the basal euphyllophytes, through the lignophytes and all the way to the extant conifers, wood has fulfilled both its functions -conduction and mechanical support -with only one type of cell, the tracheid. The structure of wood that has only tracheids as conducting cells is referred to as homoxylous (Fig. 7). For example, in most conifers the tracheids have a small diameter (<50 μm) and the rays are small -short and uniseriate. Wood of this type is known as picnoxylic (Fig. 7A). In contrast, extant cycads, as well as many Paleozoic pteridosperms have manoxylic wood, characterized by large tracheids with diameters up to 150 μm and large rays (more than 5 cells wide and up to 200 cells tall) [START_REF] Galtier | On the earliest arborescent gymnosperms[END_REF]; (Fig. 7B-C).

The first spermatophytes that appeared in the Late Devonian are represented by small axes with only a small amount of wood [START_REF] Serbet | Characterizing the most primitive seed ferns. I. A Reconstruction of Elkinsia polymorpha[END_REF]), but significant patterns of anatomical disparity can be observed in the wood of homoxylous spermatophytes as soon as the early Carboniferous. For example, ray size in early Carboniferous spermatophytes ranged from uniseriate rays only one or two cells high in some taxa (such as like Bilignea) to multiseriate rays up to a hundred cells high in Calamopitys or Pitus [START_REF] Galtier | On the earliest arborescent gymnosperms[END_REF][START_REF] Galtier | The diversification of early arborescent seed ferns[END_REF][START_REF] Dunn | A review of permineralized seed fern stems of the Upper Paleozoic[END_REF]; Fig. 7B-C). A combination of very large rays and small tracheids (<50 µm in diameter) occurs in several early Carboniferous taxa, but is extremely rare in the rest of the fossil record prior to the appearance of vesselless angiosperms, toward the end of the Mesozoic [START_REF] Philippe | Ecpagloxylon mathiesenii gen. nov. et sp. nov., a Jurassic wood from Greenland with several primitive angiosperm features[END_REF]Boura et al. 2019, this issue). Ray tracheids and axial parenchyma are present since at least the Late Devonian-early Carboniferous [START_REF] Beck | Progymnosperms[END_REF][START_REF] Galtier | The diversification of early arborescent seed ferns[END_REF]) (Fig. 7A).

Secondary xylem tracheids range widely between 15 and 97 µm in diameter in

Elkinsia, one of the best known Late Devonian spermatophytes [START_REF] Serbet | Characterizing the most primitive seed ferns. I. A Reconstruction of Elkinsia polymorpha[END_REF]). In the Carboniferous and Permian, taxa with tangential tracheid diameters exceeding 100 µm are found among several groups of pteridosperms, including the Calamopityales, Lyginopteridales, and Medullosales, while the Cordaitales, the first conifers, and other spermatophytes such as the Glossopteridales, had smaller tracheids [START_REF] Cichan | Conductance in the wood of selected Carboniferous plants[END_REF][START_REF] Pigg | Anatomically preserved Glossopteris stems with attached leaves from the Central Transantarctic Mountains, Antarctica[END_REF]Vozenin-Serra et al. 1991). Tracheid length is less well documented, in part because the longest tracheids exceed the size of thin-section slides that have been prepared from fossil material. Tracheid length reaches at least 1 cm in Callistophyton (Callistophytales), and several centimeters in Medullosa, both of which are late Carboniferous spermatophytes.

Reconstructions of the hydraulic properties of selected fossil plants by [START_REF] Cichan | Conductance in the wood of selected Carboniferous plants[END_REF] and [START_REF] Wilson | A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants[END_REF] suggest that the wide, long, and densely pitted tracheids of the Carboniferous pteridosperms Medullosa, Callistophyton, and Lyginopteris occupied an area of tracheid morphospace that is not populated by any younger or extant seed plant taxa. Those authors hypothesized that the unusually high conductivity of these tracheids was related to the combination of a non-selfsupporting growth habit, in which tracheids do not play a role in mechanical support, and growth in a warm wetland environment in which there is little risk of embolism (air bubbles in the vascular system) caused by drought or frost. It is interesting to note that such high-conductivity tracheids are to date unknown in the Mesozoic pteridosperms, despite the existence at that time of broadly similar conditions.

The pitting of secondary xylem tracheids in the earliest spermatophytes typically consists of crowded multiseriate oval to oblique pits with oval aperture [START_REF] Serbet | Characterizing the most primitive seed ferns. I. A Reconstruction of Elkinsia polymorpha[END_REF], similar to most representatives of their sister group, the progymnosperms [START_REF] Beck | Progymnosperms[END_REF]; Fig. 7D). A different type of pitting, with uniseriate circular pits possessing circular apertures, is documented in three Late Devonian-early Carboniferous woods belonging to progymnosperms or spermatophytes [START_REF] Beck | Progymnosperms[END_REF][START_REF] Prestianni | Famennian charcoal of Belgium[END_REF][START_REF] Decombeix | Diversity of arborescent lignophytes in the Tournaisian vegetation of Queensland (Australia): paleoecological and paleogeographical significance[END_REF]. Scalariform pits in secondary xylem tracheids are first documented in progymnosperms, such as Rellimia and Protopitys [START_REF] Beck | Progymnosperms[END_REF]; Fig. 7E), and occur afterwards throughout the history of spermatophytes, for example, in the putative Permian conifer Xuanweioxylon scalariforme [START_REF] He | Xuanweioxylon scalariforme gen. et sp. nov.: Novel Permian coniferophyte stems with scalariform bordered pitting on secondary xylem tracheids[END_REF], and some cycads, bennettitales, and angiosperms, as well as in some Mesozoic taxa of uncertain affinities, such as Sahnioxylon or Ecpagloxylon [START_REF] Philippe | Ecpagloxylon mathiesenii gen. nov. et sp. nov., a Jurassic wood from Greenland with several primitive angiosperm features[END_REF]. [START_REF] Wilson | A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants[END_REF] hypothesized that the tracheids with scalariform pitting of the Cretaceous bennettitale Cycadeoidea had pit area resistances similar to those of extant vesselless angiosperms, such as Trochodendron, but the evolutionary history and hydraulic properties of homoxylous woods with scalariform pitting have yet to be properly understood.

One of the major events in the evolution of homoxylous woods was the advent of torus-margo pit membranes with a highly permeable water-porous marginal region, the margo, and a thickened central zone impermeable to water, the torus. Under normal and favorable conditions, water moves from one tracheid to the adjacent one through the margo while the torus is centrally located in the pit chamber allowing water flow. In the case of an embolism, the pit membrane is aspirated against the pit border, such that the torus blocks the pit aperture, preventing the spread of air through the xylem [START_REF] Bailey | The structure of the bordered pits of conifers and its bearing upon the tension hypothesis of the ascent of sap[END_REF]. Torus-margo pit membranes ensure, thus, both a high efficiency of water conduction when environmental conditions are hydraulically safe, and a high degree of hydraulic safety when conditions are degraded [START_REF] Pittermann | Torus-margo pits help conifers compete with angiosperms[END_REF](Pittermann et al. , 2006b;;[START_REF] Sperry | Size and function in conifer tracheids and angiosperm vessels[END_REF].

Today, torus-margo pit membranes are found in all extant conifer families [START_REF] Bauch | The morphological variability of the bordered pit membranes in gymnosperms[END_REF][START_REF] Dute | Development, structure, and function of torus-margo pits in conifers, ginkgo and dicots[END_REF], as well as in other gymnosperm taxa, such as extant Ginkgo [START_REF] Wilson | A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants[END_REF] or the gnetales (Ephedra, Gnetum and Welwitschia) [START_REF] Carlquist | Wood anatomy of Gnetales in a functional, ecological, and evolutionary context[END_REF]), but are absent in the cycads [START_REF] Bauch | The morphological variability of the bordered pit membranes in gymnosperms[END_REF]. Torus-margo pit membranes have also been reported in the fern genus Botrychium (Ophioglossidae) [START_REF] Morrow | Development and structure of pit membranes in the rhizome of the woody fern Botrychium dissectum[END_REF]. Most angiosperms lack a torus and have homogeneous membranes with smaller size pores randomly distributed.

However, in a few angiosperm families (Ericaceae, Oleaceae, Thymeleaceae, Rosaceae, Ulmaceae, Cannabaceae, Schisandraceae), the fine mesh of the typical intervascular pit membrane is associated with a centrally thickened area that resembles a torus [START_REF] Ohtani | Pit membrane with torus in dicotyledonous woods [angiosperm tree][END_REF][START_REF] Ohtani | SEM investigation on the micromorphology of vessel wall sculptures[END_REF][START_REF] Wheeler | Intervascular pit membranes in Ulmus and Celtis native to the United States[END_REF][START_REF] Jansen | Intervascular pit membranes with a torus in the wood of Ulmus (Ulmaceae) and related genera[END_REF][START_REF] Dute | Development, structure, and function of torus-margo pits in conifers, ginkgo and dicots[END_REF][START_REF] Nguyen | Pit membranes and their evolution in the Oleinae of the Oleaceae[END_REF].

In 1967, Schmid pointed out that because of the small number of records of torusmargo pit membranes in the fossil record, the evolution of this character has been inferred largely based on data from living plants. Fifty years later this is still the case [START_REF] Pittermann | The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function[END_REF][START_REF] Wilson | A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants[END_REF][START_REF] Wilson | Hydraulics of Psilophyton and evolutionary trends in plant water transport after terrestrialization[END_REF]) and the timing of the evolution of torus-margo pit membranes remains an enigma. It is possible that this character evolved independently in different lineages, in response to environmental pressures, contributing to the optimization of the balance between safety and efficiency of the secondary xylem [START_REF] Wilson | Modeling 400 million years of plant hydraulics[END_REF][START_REF] Pittermann | The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function[END_REF]. All Paleozoic conifers have bordered pits with simple pit membranes, i.e., devoid of a torus [START_REF] Wilson | A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants[END_REF]. Pre-Cretaceous occurrences of fossil wood with a welldefined torus-margo are very rare and sometimes questionable [START_REF] Holden | A Jurassic wood from Scotland[END_REF]), but the presence of torus-margo pit membranes is documented in many coniferous fossil woods from the Cretaceous on [START_REF] Schmid | Electron microscopy of wood of Callixylon and Cordaites[END_REF]. Nevertheless, there are recent reports of torus-margo pit membranes from the middle Triassic of Argentina [START_REF] Bodnar | Voltziales y Pinales (= Coniferales) de la Formación Cortaderita (Triásico Medio), Argentina, y su implicancia en la reconstrucción de las coníferas triásicas[END_REF] and the basal Jurassic of France [START_REF] Moreau | Flore du Jurassique basal de la ville de Mende (Lozère): synthèse des gisements historiques, nouvelles données sédimentologiques, paléontologiques et paléoenvironnementales[END_REF]) (Fig. 2).

In sum, the combination of fossil data and modelling thus shows that homoxylous woods in fossil seed plants displayed a wide range of hydraulic properties resulting from (1) a rapid increase in anatomical diversity in the Carboniferous, and (2) the advent of torus-margo pit membranes possibly as early as the Triassic.

VESSELS AND EARLY ANGIOSPERM EVOLUTION

Vessels are water-conducting units consisting of several non-living cells (vessel elements) that are connected vertically by perforated end walls (perforation plates). Unlike the pits found on the lateral walls of tracheids, perforation plates lack a pit membrane and are complete holes through both primary and secondary walls. The end wall can have one (simple perforation plate) or several perforations (multiple perforation plate). In the latter case, the perforations can be scalariform, reticulate, or foraminate (grouped circular) [START_REF] Esau | Plant anatomy[END_REF]IAWA Committee 1989). Vessel elements are thought to have evolved by dissolution of the primary wall in certain areas of the end wall of tracheids. Vessels range from a few millimeters to several meters in length and can exceed 500 µm in diameter, in some angiosperm lianas (e.g., [START_REF] Angyalossy | Liana anatomy: a broad perspective on structural evolution of the vascular system[END_REF][START_REF] Apgaua | Plant functional groups within a tropical forest exhibit different wood functional anatomy[END_REF].

The presence of vessels is generally associated with the wood of angiosperms and the evolution of vessels has often been cited as one of the main reasons for the evolutionary success of angiosperms, due to the putative increase in hydraulic conductivity that it entailed (e.g., [START_REF] Bailey | The development of vessels in angiosperms and its significance in morphological research[END_REF][START_REF] Carlquist | Ecological strategies of xylem evolution[END_REF][START_REF] Bond | The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence[END_REF]). However, not all angiosperm have vessels and vessels have also been reported in other living and extinct plant groups. Among freesporing vascular plants, vessels have been reported in the primary xylem of lycopsids, such as Selaginella, of the sphenopsid Equisteum, and of several filicopsids, such as Pteridium [START_REF] Duerden | On the occurrence of vessels in Selaginella[END_REF][START_REF] Bailey | The development of vessels in angiosperms and its significance in morphological research[END_REF][START_REF] Bierhorst | Vessels in Equisetum[END_REF][START_REF] Carlquist | SEM studies on vessels in ferns. 2. Pteridium[END_REF][START_REF] Schneider | SEM Studies on the vessels of heterophyllous species of Selaginella[END_REF]; Fig. 8A-C). It is generally agreed that the vessels of these plants have evolved independently from those found in spermatophytes.

In the spermatophytes, vessels are present in the angiosperms, the gnetales ( Fig. 8E-G) and the extinct Gigantopteridales [START_REF] Li | Permian vessel elements[END_REF][START_REF] Li | Vessel-bearing stems of Asovinea tianii gen. et sp. nov. (Gigantopteridales) from the Upper Permian of Guizhou Province, China[END_REF]Figs. 2, 8D). The oldest occurrence of vessels in spermatophytes was reported in small stems of late Permian age (ca. 270 Ma) assigned to the Gigantopteridales, a group of unclear affinities from the Permian-Triassic [START_REF] Li | Permian vessel elements[END_REF][START_REF] Li | Vessel-bearing stems of Asovinea tianii gen. et sp. nov. (Gigantopteridales) from the Upper Permian of Guizhou Province, China[END_REF]Fig. 1;Fig. 8D). Vessels in the wood of Vasovinea tiannii are 150-250 µm in diameter, more rarely up to 500 µm, and each vessel element is 4.5-5 mm long. The perforation plates superficially resemble those commonly found in gnetales (foraminate perforation plates, Fig. 8G) but can be distinguished from the latter by a few characters, including the high number of pores (about 14 rows) and the presence of pores that bear remnants of primary wall. One putative vessel observed in the primary xylem shows a scalariform perforation plate more similar to those found in angiosperms. [START_REF] Tian | A new special petrified stem, Guizhouoxylon dahebianense gen. et sp. nov., from Upper Permian in Suicheng district, Guizhou, China[END_REF] also reported the presence of "scalariform-reticulate perforation plates" in some primary xylem tracheary elements of Guizhouoxylon, another possible gigantopterid from the Late Permian of China. Currently, no other evidence is available for vessels in the secondary xylem of spermatophytes prior to the Cretaceous, almost 150 million years after the Gigantopteridales (Fig. 2).

Permian and Triassic polyplicate pollen grains reminiscent of gnetalean pollen are the oldest putative evidence for the Gnetales. By the Cretaceous they are well represented in the fossil record by pollen, charcoalified seeds, and impressions/compressions of reproductive and vegetative structures [START_REF] Friis | Early Flowers and Angiosperm Evolution[END_REF]. There is, however, no convincing record of fossil gnetalean wood and hypotheses about wood evolution in this group (e.g., Carlquist 2012) are based exclusively on extant taxa. Vessel diameters are broadly variable within the group, from around 15 µm in the desert plant Welwitschia to >400 µm in some lianescent Gnetum species (Fischer & Ewers 1995).

Despite recent claims of Jurassic angiosperms and even older pollen exhibiting angiospermous features (reviewed by Herendeen et al. 2016), the oldest widely accepted fossil evidence for angiosperms consists of pollen from the Early Cretaceous (Hauterivian, ca 130 Ma; [START_REF] Brenner | Palynology and age of the Lower Cretaceous basal Kurnub Group from the coastal plain to the northern Negev of Israel[END_REF]. Macrofossil evidence in the form of flowers and leaves documents significant diversification of the group throughout the Cretaceous (see [START_REF] Friis | Early Flowers and Angiosperm Evolution[END_REF] for a review of the angiosperm fossil record). The oldest unequivocal angiosperm woods with vessels date to the Albian, 110-100 million years ago [START_REF] Herendeen | Angiosperm wood evolution and the potential contribution of paleontological data[END_REF]. The vessels in these woods have either simple (e.g., Paraphyllanthoxylon) or scalariform (e.g., Icacinoxylon) perforation plates, with some taxa having both types of perforations [START_REF] Baas | Parallelism and reversibility in xylem evolutiona review[END_REF]Wheeler & Baas 2019, this issue). Whereas wide vessels (>200 µm) occur in some of the earliest angiosperm woods (Albian-Cenomanian), mean tangential vessel diameter is <100 µm in most Cretaceous angiosperm woods (Wheeler & Baas 2019, this issue). In one Late Cretaceous (Maastrichtian) assemblage with ten wood types, maximum vessel diameters ranged from 80-250 µm (Olmos Formation, Mexico; Martinez-Cabrera & Estrada-Ruiz 2014.. One long-standing matter of debate has been the single vs. multiple origin of vessels in the seed plants. Classical studies from the 1900's and the first cladistic analyses based on morphological characters (e.g., [START_REF] Doyle | Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach[END_REF] have interpreted the occurrence of vessels in both gnetales and angiosperms as a synapomorphy supporting a close relationship between the two groups. On the other hand, detailed anatomical studies have suggested independent origins of the vessels in the two groups: the foraminate perforations typical of gnetaleans (Fig. 8G) thought to have evolved from tracheids with circular bordered pits on the end walls, and the angiosperm perforation plate from tracheids that had scalariform pits on the end walls (see [START_REF] Thompson | Independent evolution of vessels in Gnetales and Angiosperms[END_REF][START_REF] Bailey | The development of vessels in angiosperms and its significance in morphological research[END_REF][START_REF] Bailey | Evolution of the tracheary tissue of land plants[END_REF]. Other authors (Muhamad & Sattler 1982) have suggested that both types of perforation plates occur in the gnetales and, thus, that the two types of vessels are homologous. More recently, Fischer and Ewers (1995) and [START_REF] Carlquist | Wood, bark, and stem anatomy of gnetales: a summary[END_REF] have taken the view that the apparent similarities between gnetales and angiosperm vessels are the result of convergence. If convergent evolution is, indeed, the explanation for the vessels of angiosperms and gnetales, then the secondary xylem vessels of the Permian Gigantopteridales, with their distinctive perforation plates, could represent another instance of convergence.

Another key question is that of the putative advantage provided by vessels over tracheids and their roles in angiosperm evolution. Vessels have often been considered a key element in the success of the angiosperms (e.g., [START_REF] Bailey | The development of vessels in angiosperms and its significance in morphological research[END_REF][START_REF] Carlquist | Ecological strategies of xylem evolution[END_REF][START_REF] Bond | The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence[END_REF]).

However data from both extant and fossil angiosperms suggests a more nuanced situation.

First, ecophysiological studies comparing the hydraulic capacity in extant angiosperms and gymnosperms show that at small lumen diameters, below 60-70 µm, tracheids can be as efficient hydraulically as vessels (e.g., [START_REF] Hacke | Efficiency versus safety tradeoffs for water conduction in angiosperm vessels versus gymnosperm tracheids[END_REF][START_REF] Sperry | Size and function in conifer tracheids and angiosperm vessels[END_REF][START_REF] Brodribb | Elegance versus speed: Examining the competition between conifer and angiosperm trees[END_REF]. Pitterman et al. (2005) showed that the hydraulic efficiency of conifer wood for a given sapwood-area exceeds that of angiosperm wood for the same average conduit diameter, in part thanks to the presence of torus-margo pits (see above). As a result, if vessel diameter is limited (as the result of selection pressures, because narrower vessels are less sensitive to embolism caused by freeze-thaw events or by drought), conifer wood can be more efficient.

However, vessels have the advantage of reaching a given conductivity with lower investment in wood conduit area [START_REF] Tyree | Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction?[END_REF][START_REF] Feild | The ecophysiology of early angiosperms[END_REF]. It is possible that the earliest angiosperm vessels did not provide a significant hydraulic advantage. If they did, it might have also caused a decreased embolism tolerance compared to contemporaneous vesselless seed plants, according to [START_REF] Feild | Evolutionary voyage of angiosperm vessel structure-function and its significance for early angiosperm success[END_REF]. A recent study of rainforest angiosperms from New Caledonia shows that taxa bearing vessels with scalariform plates and vesselless taxa have comparable (low) hydraulic efficiency and safety (Trueba et al. in press).

The importance of vessels in angiosperm diversification, at least in its early stages, is also challenged by several lines of evidence suggesting that the earliest angiosperms were vesselless [START_REF] Baas | Parallelism and reversibility in xylem evolutiona review[END_REF][START_REF] Herendeen | Angiosperm wood evolution and the potential contribution of paleontological data[END_REF]. Recent phylogenetic analyses of extant angiosperms place the vesselless genus Amborella (ANA grade, Fig. 1) as sister-group to all other angiosperms. Several other vesselless taxa occur in relatively basal angiosperm groups (e.g., Winteraceae; Fig. 7H), although loss of vessels in some of the latter cannot be excluded [START_REF] Baas | Parallelism and reversibility in xylem evolutiona review[END_REF][START_REF] Herendeen | Angiosperm wood evolution and the potential contribution of paleontological data[END_REF][START_REF] Feild | Hardly a relict: freezing and the evolution of vesselless wood in Winteraceae[END_REF]; see also Boura et al. 2019, this issue). On the other hand, the fossil record provides a counterpoint to the hypothesis of initially vesselless early angiosperms, as the oldest known angiosperm woods have vessels. Nevertheless, the oldest evidence for angiosperms, represented by pollen, predates the oldest angiosperm wood [START_REF] Hickey | Early Cretaceous fossil evidence for angiosperm evolution[END_REF][START_REF] Friis | Early Flowers and Angiosperm Evolution[END_REF], indicating that the oldest angiosperm wood has yet to be found. Furthermore, the distinction between vesselless early angiosperm woods and non-angiosperm homoxylous woods in the fossil record can be problematic, especially since potentially useful characters appear to be plesiomorphic or convergent within seed plants (see discussion in [START_REF] Philippe | Ecpagloxylon mathiesenii gen. nov. et sp. nov., a Jurassic wood from Greenland with several primitive angiosperm features[END_REF].

Several Mesozoic fossil woods with homoxylous structure, like Lhassoxylon aptianum (Vozenin-Serra & Pons 1990; Fig. 7F), Ecpagloxylon mathiesenii [START_REF] Philippe | Ecpagloxylon mathiesenii gen. nov. et sp. nov., a Jurassic wood from Greenland with several primitive angiosperm features[END_REF] or one of the specimens described in Neraudeau et al. (2017;Fig. 7G), also show unusual features (respectively tangential lines of axial parenchyma, scalariform intertracheary radial pits, or very abundant axial parenchyma) compared to extant conifer taxa, so that they are sometimes described and considered as an early stage of the evolution that led to angiosperm wood types.

The high hydraulic efficiency of vessels led to a significant increase in wood anatomical diversity among angiosperms by allowing the diversification of other cell types devoted to distinct functions [START_REF] Hudson | Early vessel evolution and the diverisification ofwood function: Insights from Malagasy Canellales[END_REF]. This diversity likely contributed to the diversification of angiosperm growth forms. The diversification of angiosperm lianas, for example, has been associated to heteroxyly (e.g., [START_REF] Isnard | The evolution of angiosperm lianescence : a perspective from xylem structure-function[END_REF], although there are also many examples of lianas in homoxylous fossil seed plants [START_REF] Burnham | Climbing plants in the fossil record: Paleozoic to Present[END_REF]. The fossil record suggests that Early Cretaceous (120-110 Ma) angiosperms were small-sized (see [START_REF] Philippe | Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood record of Europe[END_REF][START_REF] Coiffard | Rise to dominance of angiosperm pioneers in European Cretaceous environments[END_REF], with the first large angiosperm trees found in the Cenomanian and Turonian (about 100-90 Ma) [START_REF] Coiffard | Rise to dominance of angiosperm pioneers in European Cretaceous environments[END_REF][START_REF] Jud | A new fossil assemblage shows that large angiosperm trees grew in North America by the Turonian (Late Cretaceous)[END_REF][START_REF] Saulnier | Diversity in Cenomanian forests: an example from the Envigne Valley[END_REF]. However, this is based mostly on high-latitude localities and more investigations of lower latitude floras are needed. Evidence of angiosperm-dominated forests with a significant diversity can be found in latest Cretaceous-Paleocene wood assemblages from India [START_REF] Wheeler | Surprisingly modern Latest Cretaceous-earliest Paleocene woods of India[END_REF]; such assemblages become more common and similar in composition to extant communities during the Eocene [START_REF] Licht | Fossil woods from the late middle Eocene Pondaung Formation, Myanmar[END_REF]2015;Woodcock et al., 2019, this issue).

While vessels certainly played a role in the increasing diversity of angiosperms throughout the Cretaceous, many questions remain on the evolution of their wood anatomy, especially in the context of whole-plant physiology and environmental factors.

CONCLUSIONS

Since the first observations of anatomically preserved plants in the XIX th century, paleobotany has contributed significant -and sometimes unexpected -data to our understanding of the evolution of plant vascular systems. Important among these is the realization that many key features of the vascular systems that we observe today appeared very early in plant evolution (i.e., in the Paleozoic, >250 million years ago, Fig. 2). This is true at various levels, from the organisation of vascular tissues within plant axes (stelar architecture, secondary tissues), to the types of conducting cells (tracheids, vessel elements), and even the fine elements of cell structure (pitting type, variation in conduit diameter).

Furthermore, current advances in the methods used to model water flow in the xylem of fossil plants suggest that, as a result of these early evolutionary developments, significant differences in hydraulic properties existed as early as the Carboniferous. Another important lesson from the fossil record is that features related to xylem hydraulic properties might have ranked among the main drivers of the diversification of vascular plants in the late Silurian-Early Devonian and the evolution of secondary xylem (wood) in the Early Devonian. Finally, consideration of the rich data provided by the fossil record in a phylogenetic context raises numerous questions about the perceived homoplastic nature vs. potential single origin of major features of the vascular system, such as the presence and functional details of a vascular cambium or of vessels. Understanding the developmental mechanisms and the evolutionary and environmental constraints that led to the anatomies observed today will undoubtedly require continued study of the anatomy and physiology of extinct and extant plants. The fossil record will play an important role in these studies, as an irreplaceable source of (1) chronostratigraphic data as calibration points for the timing of main evolutionary events, and

(2) examples of character combinations that do not exist today and can be used to test hypotheses formulated based on extant taxa or can be incorporated in such hypotheses. 

FIGURE LEGENDS

  these cells have a structure intermediate between true tracheids and the hydroids found in bryophytes, Aglaophyton is considered a protracheophyte, not a true vascular plant. Rhynia, on the other hand, possesses true tracheids with annular to helical thickenings (S-type). The tracheids of Asteroxylon are of the G-type. Analyses of fossil cell wall chemistry by Boyce et al. (2003) have shown that the tracheids of Rhynia were likely unlignified, whereas those of Asteroxylon were heavily lignified. A fourth plant found in the Rhynie chert, Horneophyton, was regarded as another protracheophyte, but recently Cascales-Miñana et al. (2019) documented cells with irregular, annular to helical wall thickenings of putative secondary origin. They interpreted these cells as representing a new intermediate, this time between the simple cells without secondary thickenings found in protracheophytes, such as Aglaophyton, and the true tracheids found in Rhynia or Asteroxylon.
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