

Multiple skeletal and dental pathologies in a late Miocene mesotheriid (Mammalia, Notoungulata) from the Altiplano of Bolivia: Palaeoecological inferences

Marcos Fernandez-Monescillo, Pierre-Olivier Antoine, Bernardino Mamani Quispe, Philippe Munch, Rubén Andradre Flores, Laurent Marivaux, Francois

Pujos

► To cite this version:

Marcos Fernandez-Monescillo, Pierre-Olivier Antoine, Bernardino Mamani Quispe, Philippe Munch, Rubén Andradre Flores, et al.. Multiple skeletal and dental pathologies in a late Miocene mesotheriid (Mammalia, Notoungulata) from the Altiplano of Bolivia: Palaeoecological inferences. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534, pp.109297. 10.1016/j.palaeo.2019.109297 . hal-02263895

HAL Id: hal-02263895 https://hal.umontpellier.fr/hal-02263895v1

Submitted on 1 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Multiple skeletal and dental palaeopathologies in a mesotheriid individual
2	(Mammalia, Notoungulata) and palaeoecological inferences in the upper Miocene
3	of the Bolivian Altiplano.
4	
5	Marcos Fernández-Monescillo ^{a,*} , Pierre-Olivier Antoine ^b , Bernardino Mamani Quispe ^c ,
6	Philippe Münch ^d ,Rubén Andrade Flores ^c ,Laurent Marivaux ^b , François Pujos ^a
7	
8	^a Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA),
9	CCT–CONICET–Mendoza, Avda. Ruíz Leal s/n, Parque Gral. San Martín, 5500
10	Mendoza, Argentina
11	^b Institut des Sciences de l'Evolution, cc64, Université de Montpellier, CNRS, IRD,
12	EPHE, F-34095 Montpellier, France
13	^c Departamento de Paleontología, Museo Nacional de Historia Natural, Calle 26 s/n, Cota
14	Cota, La Paz, Estado Plurinacional de Bolivia
15	^d Géosciences Montpellier, Université de Montpellier, CNRS, F-34095 Montpellier,
16	France
17	
18	* Corresponding author e-mail address : mfernandezmonescillo@gmail.com (M.
19	Fernández-Monescillo)
20	
21	Abstract
22	We report here the first case of bilateral mandibular hypodontia for a notoungulate,
23	further associated with exostosis on various limb bones. We describe a partial skeleton
24	of a palaeopathological individual of the notoungulate mesotheriid Plesiotypotherium
25	achirense, from the Upper Miocene site of Achiri, Bolivian Altiplano. The main

pathology is hypodontia of two first molars on both sides of the jaw. Other 26 craniomandibular affliction, likely related to the latter pathology, are a striking 27 overgrowth of two first upper molars on both sides and the anomalous development of 28 29 masticatory muscle insertions (m. masseter, pterygoideus medialis, temporalis, and temporalis pars profundis). The pathological sequence of the masticatory apparatus was 30 reconstructed in this individual according to distinctive wear of ever-growing crowns of 31 two first upper molars, and the unequal lower alveoli reabsorption. Additional 32 33 pathologies are exostoses observed on several articular surfaces of limb bones, from the scapula to distal phalanges. They likely decreased the range of movements during 34 35 locomotion of this individual. Given its multiple pathologies, we might have expected this abnormal individual to be a potential easy prey. However, the long-time survival of 36 this animal suggests a low predatory pressure in this area at that time, a hypothesis 37 38 which is consistent with the virtual absence of flesh-eating vertebrates in the Achiri fossil record. 39

40 Key words: South America, late Neogene, Typotheria, *Plesiotypotherium*,

41 palaeopathology, hypodontia, exostosis.

42 1. Introduction

Notoungulata are among the most successful and diversified South American 43 44 mammalian clades in the Cenozoic, with a late Palaeocene-Holocene range (e.g., Simpson, 1948; McKenna and Bell 1997; Croft, 1999). Within species-rich rodent-like 45 notoungulates (Typotheria; Reguero and Prevosti, 2010), Mesotheriidae include 46 Trachytheriinae (Oligocene; Billet et al., 2008) and Mesotheriinae (Miocene-47 Pleistocene; Paz et al., 2011). In the Bolivian Altiplano, the Upper Miocene locality of 48 49 Achiri (Pacajes Province, La Paz Department) was first reported by Hoffstetter et al. (1972). The most common taxon in Achiri is the mesotheriine Plesiotypotherium 50

51 achirense, with ca. 64% of the mammalian fossil specimens recovered (45 out of 70) 52 (Fernández García, 2018). The excavations carried out in the Achiri area during the last decade have allowed for recovering cranial, mandibular, and postcranial remains of P. 53 54 achirense, including a partial skeleton of a striking individual displaying multiple dental and skeletal pathologies (MNHN-Bol-V 12617). These palaeopathologies are mainly 55 56 observed in the masticatory apparatus and in the postcranial skeleton. Pathologies were 57 so far virtually undocumented among Notoungulata, with the noticeable exceptions of a few dental defects (enamel hypoplasia; Toxodon sp.; Braun et al., 2014), and postcranial 58 exostoses (Toxodon platensis; Guérin and Faure, 2013) in Pleistocene toxodontids. To 59 60 our knowledge, the individual MNHN-Bol-V 12617 is the first case of multiple osteodental pathologies formally described among Mesotheriidae. Noticeably, an individual 61 of the late Oligocene mesotheriid Trachytherus alloxus with multiple broken limb bones 62 subsequently healed has been recently reported (Croft, 2016), but it has not been 63 64 described yet. In this paper we (1) describe the pathologies of this individual of P. 65 achirense with respect to numerous asymptomatic specimens from the same taxon and 66 locality, and (2) provide hypothetical palaeobiological inferences based on the longlasting survival of this abnormal mesotheriine individual, and the scarce flesh-eating 67 taxa evidence at Achiri at this time. 68

69

70 2. Material and methods

- 71 *2.2. Material*
- 72

2.2.1. Institutional abbreviations

MNHN-Bol, Museo Nacional de Historia Natural, La Paz, Bolivia; MNHN,
Muséum national d'Histoire naturelle, Paris, France.

75 2.2.2. *Plesiotypotherium achirense* specimens

- The pathological specimen MNHN-Bol-V 12617 of *Plesiotypotherium achirense* was unearthed at the top of the Cerro Pisakeri (Fig. 1A–B). All asymptomatic specimens used for comparison come from the same geological unit (Mauri Formation [Fm.], Unit IV), also in the Achiri area (Fig. 1B).
- 80

2.2.3. Systematic palaeontology

81 Order Notoungulata Roth 1903

82 Suborden Typotheria Zittel 1893

- 83 Family Mesotheriidae Alston 1876
- 84 Subfamily Mesotheriinae Alston 1876
- 85 Genus Plesiotypotherium Villarroel 1974
- 86 *Plesiotypotherium achirense* Villarroel 1974

87 (Figs. 2–5)

88 2.2

2.2.4. Measurements

We have used a digital calliper of 150 mm (precision ±0.1 mm). Measurement
abbreviations (craniomandibular, dental, and postcranial) and the summary of the
measurements of the study specimen and other *P. achirense* specimens appears in
Supplementary Material 1.

93

2.2.5. X-ray tomography and 3D surface rendering

The skull and mandible of the pathological individual of *P. achirense* (MNHN-Bol-V 12617) and other asymptomatic cranial specimen (MNHN-Bol-V 8507) and mandible (MNHN-Bol-V 12669) were scanned in the MEDICENTRO clinic of La Paz, Bolivia, using a Phillips MX 8000 clinical CT Scanner (140Kv and 300 mA; 0.26 mm pixel size and 0.75 mm interslice). The digital surfaces (skull and mandible) were extracted using AVIZO 10.0 (FEI Visualization Sciences Group). The skull and mandible were generated by thresholding tool, while the dental reconstruction was made manually slice by slice. Finally, the 3D surfaces were generated using unconstrainedsmoothing option with a value of ca. 3.5–4.

103

2.2.6. Anatomical description

The osteological terms follow the terminology of the Nomina Anatomica Veterinaria (Wible et al., 2005). As for orientation, we used the terms: anterior, posterior (occipital), dorsal, medial, and lateral (skull and mandible); mesial, distal, lingual, and labial (in teeth); medial (sagittal plane), lateral, cranial (dorsal in the manus and pes), caudal (palmar in the manus and plantar in the pes), proximal, and distal (appendicular skeleton). The pelvis and Mt I had not been previously reported for this taxon.

110

2.2.7. Dating

The fossil-yielding sedimentary series at Cerro Pisakeri includes five volcanic 111 112 tuffs. We dated two tuffs immediately bracketing the pathological specimen: sample 113 ACH-TUF3 and sample ACH-TUF4, which are located five metres beneath and ten metres above the MNHN-Bol-V 12617 specimen, respectively. We performed step-114 heating ⁴⁰Ar/³⁹Ar experiments on feldspar micro-populations (detailed methodology in 115 116 online Supplementary Material 2). For the sample ACH-TUF3, we obtained a plateau age of 10.35 ± 0.07 Ma, corresponding to 57.4% of ³⁹Ar released (five steps; 117 118 Supplementary Material 3). We also calculated for all steps an inverse isochron age of 10.42 ± 0.09 Ma with a MSWD = 4.55 and an initial 40 Ar/ 36 Ar ratio of 299.9 \pm 2.3 119 (Supplementary Material 4), indicating that the trapped ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ is indistinguishable 120 from the atmospheric 40 Ar/ 36 Ar. We retained the inverse isochron age at 10.42 ± 0.09 121 122 Ma for the tuff below the MNHN-Bol-V 12617 specimen. For the sample ACH-TUF4, we obtained a plateau age of 9.42 ± 0.1 Ma corresponding to 99.39% of ³⁹Ar released 123 (Supplementary Material 5). These 40 Ar/ 39 Ar datings confirm that the fossil assemblage 124 from the Cerro Pisakeri, including the pathological specimen, is Upper Miocene in age 125

126 (late Mayoan–early Chasicoan South American Land Mammal ages [SALMA], based127 on Gradstein et al., 2012).

- 128
- 129 2.3. Description of the pathologies
- 130

2.3.1. Pathological descriptions

We use the term hypodontia considered as the absence of teeth (less than six teeth expect the third molars, primary or definitive dentition; Pemberton et al. 2005), and related absent of teeth development (Al-Ani et al. 2017). The taxon *P. achirense*, as member of the Mesotheriinae subfamily is characterized by hypselodontia (evergrowing teeth; Gomes Rodrigues et al. 2017), therefore the teeth development is increased during the life of the animal.

The term exostosis is used to refer to any outgrowth of a bone (bony spur) from
the cortical surface and is a more general term than the entity of osteochondroma, or
osseocartilaginous exostosis (Khurana 2008).

140

2.3.2. Skull and upper teeth

141 The skull of the pathological individual (MNHN-Bol-V 12617) does not show any particular osteological deformation in its dorsal, anterior and occipital aspects (Fig. 142 1 Supplementary Material 1 A–D, Fig. 2A–D). In lateral views (Fig.1 Supplementary 143 Material 1 C–D), overgrown M1s and M2s stand out on both sides. The M1-M2s are not 144 145 pathological teeth *per se* (no unusual outline or cusp Bauplan), but unworn hypselodont 146 teeth instead, characterised by a striking overgrowth due to the absence of occlusion with their missing lower counterparts (hypodonty of both m1 and m2; Fig.1 147 148 Supplementary Material 1 C-D, Fig. 2A-D). The CT-Scan M1-M2 reconstruction 149 discard any post-dead teeth ejection from the alveolus (Fig. 2 A-D). The M1s further 150 present an anomalous wear, with oblique mesial wear at the mesial border or protoloph (not at the same occlusal plane than the crista 2-crochet or metaloph; Fig. 2A–D). The
M2s show also an oblique wear at the distal border, affecting the metaloph and crista 2crochet (not as the same plane than the protoloph; Fig. 2A–D). The M3s have developed
a generic wear (Fig. 2A–D) with respect to specimens from other individuals (i.e.
MNHN-Bol-V 8507; Fig. 2E–H).

156

2.3.3. Mandible and lower teeth

The mandible is the main pathological element of MNHN-Bol-V 12617 (Fig. 2 157 158 Supplementary Material 1 A–E) with respect to normal individuals (i.e. MNHN-Bol-V 159 12669, Fig. 2 Supplementary Material 1 F-G). The identified pathologies are: (1) a bilateral hypodontia of m1-m2 (Fig. 3A-D); (2) anomalous bone structures in the 160 ventrolateral and ventromedial border of the right mandibular ramus (Fig. 2 161 162 Supplementary Material 1 A, C); (3) a rostrocaudal elongation of the left coronoid process (Fig. 2 Supplementary Material 1 B); and (4) an anomalous and rounded 163 164 overgrowth of the enamel of the right i1 (Fig. 2 Supplementary Material 1 D). The alveoli of left and right m1s are closed, whereas those of m2s are still open but shows 165 166 initial alveolar bone resorption (Fig. 3 C-D). Compared with other referred specimens 167 (Fig. 2 Supplementary Material 1 4F-G), we further noticed a dorsal alveolar bone resorption, which affects the ventrodorsal height of the right mandibular ramus (Fig. 2 168 A-D). The p4 shows an oblique (distoventral orientation) wear, finishing in a 169 170 remarkable mesial tip (Fig. 3A–D), absent in other assigned specimens (Fig. 3E–H). The 171 m3 shows a normal occlusal wear, except for a slight rostroventral orientation (Fig. 3A-172 B), lacking in other individuals (Fig. 3E–F).

173

2.3.4. Postcranial skeleton (Axial and appendicular)

MNHN-Bol-V 12617 is well represented by postcranial remains: axis, C3
vertebra, both scapulae, both radii, left ulna, left Mc IV, right Mc V, left scaphoid (Fig. 3

176 Supplementary Material 1), fused sacrum and pelvis, left Mt I-III, V, left navicular, left cuboids and left ectocuneiform (Fig.4 Supplementary Material 1). On the right scapula, 177 the suprahamatus process (metacromion; see Fernández-Monescillo et al. 2018) shows 178 an ossified callus, which could correspond to a fracture subsequently healed (Fig. 4A). 179 180 Most postcranial remains available show slight exostosis in their articular surfaces: (1) 181 the coronoid process and glenoid cavity of the scapula; (2) the lateral and medial 182 borders of the caput radii (radius head) (Fig. 4B-C); (3) both lateral and medial sides of 183 the proximal articular surface of Mc IV, Mc V, Mt II, Mt III and Mt V (Fig. 4E); (4) the coronoid process and anconeus process edges on the fragmentary left ulna (Fig. 4D); (5) 184 185 the articular borders of carpals (scaphoid) and tarsals (navicular, ectocuneiform, and cuboids); and (6) also the surrounded external articular borders in the proximal 186 187 epiphysis of the first phalanges (not second or third phalanges) of manus and pes (Fig. 188 4F).

189

190 **3.** Discussion

191

3.1. Masticatory apparatus pathology

192 In humans, hypodontia is congenital and it seems to have a genetic component. 193 Although the genetic origin of this anomaly remains unknown, polymorphism in 5' 194 flanking region of the PAX9 gene (Peres et al., 2005) and AXIN2 (Mostowska et al., 195 2006) have been associated with non-syndromic hypodontia in humans (Pemberton et 196 al., 2005, Al Ani et al. 2017). Hypodontia is considered as the most common dental 197 anomaly in any human populations (e.g., Pemberton et al., 2005; Altug-Atac and 198 Erdem, 2007; Al-Abdallah, 2015). Hypodontia affects different teeth or dental regions, 199 and this affliction differs according to the ethnic groups of humans: second mandibular 200 premolars in North American children (Clayton, 1956), lateral maxillary incisors in

201 Saudi Arabian children (Al-Emran, 1990), second maxillary premolar in European children (Grahnén, 1956), or lateral maxillary incisors followed by premolars in Turkish 202 203 population (Altug-Atac and Erdem, 2007). Lavelle and Moore (1973) indicated 204 primarily molar region affliction for humans. In human populations, the hypodontia 205 occurs more often bilaterally than unilaterally (Silverman and Ackerman, 1979; Polder 206 et al., 2004) or with almost similar percentage affliction (Al-Abdallah, 2015), and 207 furthermore it is more common in the mandible (Wisth et al., 1974). Contrastingly, 208 hypodontia affects mostly premolars and molars in other mammals (e.g., Cuesta Ruíz-209 Colmenares et al., 2004; Dacre, 2006). This dental pathology has been documented in domestic mammals like cats (Mestrinho et al., 2018), dogs (Pavlica et al., 2001) and 210 211 equids (Dixon et al., 1999; Ramzan, 2001; Dacre, 2006; Easley, 2006).

212 In wild animals, hypodontia has been deeply documented in: (1) artiodactyls 213 such as bighorn sheep (Lyman, 2010), Spanish wild goats (Vigal and Machordom, 1985; 214 Gómez-Olivencia et al., 2011), mountain goat (Cowan and McCrory, 1970), wild 215 Japanese serow (Natsume et al., 2005); and (2) primates, notably in Cercopithecoidea 216 (Lavelle and Moore, 1973) and especially in colobines (Jablonski, 1992). By contrast, 217 hypodontia has so far remained poorly documented in extinct mammals, with the exception of hypodontia reported on P4 of a lophiodontid perissodactyl from the Eocene 218 219 of Spain (Cuesta Ruíz-Colmenares et al., 2004).

Hypodontia or dental affliction negatively impacts the masticatory function and global masticatory apparatus, as it can disrupt dental occlusion and constrain chewing movements as a result (Dixon and Dacre, 2005; Brown et al., 2008; Ardila and Montoya, 2009; Ali et al. 2014). It is documented in MNHN-Bol-V 12617 through the osteological anomaly noticed on the mandibular ramus, affecting the concerned muscular insertion. Indeed, the anomalous bone structure located on the ventrolateral

226 and ventromedial borders of the mandible likely impacted the insertion of the m. masseter and pterygoideus medialis, respectively (Fernández García, 2018). The 227 228 rostrocaudal elongation of the coronoid process would also have affected the insertion of the m. temporalis laterally, and of the m. temporalis pars profundis medially 229 230 (Fernández García, 2018). Accordingly, an anomalous chewing cycle can be inferred for this mesotheriid specimen. Given these observations, it may be expected that 231 hypodontia pathology would have affected more severely the masticatory apparatus of 232 233 taxa with hypselodont (i.e., mesotheriines) than hypsodont or brachydont dentition, due 234 to extreme overgrowth of non-opposed counterparts.

235 The dental formula of adult mesotheriines is 1023/2013 (Francis, 1965; Thenius, 1989). The M3s erupt faster than permanent upper premolars (Gomes Rodrigues et al., 236 237 2017). The presence of DP2, DP3 and DP4 is confirmed by several authors (e.g., 238 Kraglievich, 1934; Francis, 1965; Gomes Rodrigues et al., 2017). In mesotheriids, 239 distinct patterns of dental development are documented in hypsodont trachytheriines 240 and hypselodont mesotheriines (Gomes Rodrigues et al., 2017). Several studies have 241 been focussed to identified the specific genes involved into the tooth development (Al-242 Ani et al. 2017). Over 300 genes are expressed and involved in tooth morphogenesis (Kapadia et al. 2007; Küchler et al. 2013; Alves-Ferreira et al. 2014). In the case of 243 244 hypselodont (ever-growing) teeth observed in mousses the continuous tooth renewal capacity relies on epithelial and mesenchymal stem cells (Renvois and Michon 2014). 245 246 The term "crown-to-root transition" designated for hypselodont teeth, is fundamental to 247 keep the balance between the suppling cells of the crown and that of the root to holding 248 the tooth in place (Renvois and Michon 2014). In murine molars (hypselodont) is 249 evidence loss of epithelial Notch and mesenchymal FGF (fibroblast growth factor) 250 signal, helping in the continuous growth of the molar crown (Harada et al. 2002,

251 Yokohama-Tamaki et al. 2008).

252 MNHN-Bol-V 12617 exhibits a complete adult upper and lower dental formula (without deciduous teeth), except for the absence of m1-m2. This dental anomaly is 253 254 identified as a bilateral hypodontia that occurred with already definitive molars erupted. 255 The absence of osseous displacement or bridging callous presence of the mandibular 256 ramus would discard an osseous fracture event. Also, agenesis (no teeth formation) of 257 m1-m2 is discarded by effectively wear trilobed pattern of upper molars counterparts. In 258 addition, the alveolus of m2 still open, the smooth aspects of the surface of the 259 surrounded areas of m1 and m2 alveoli, and the absence of any osseous tissue swelling, 260 and its bilateral and symmetrical aspects most likely discard infection as a potential 261 cause for this pathology. Thus, would tentatively relate it with genetical factors provably 262 affecting the hypselodont epithelial stem cells or the molecular regulation.

According to the distinctive wear pattern of the crowns of hypselodont M1-M2, his distinct occlusal level reached, and the unequal alveolar reabsorption of m1-m2, the pathology of the masticatory apparatus can be sequentially reconstructed as follows:

(1) Initially, the upper and lower teeth occlusion would be non-pathological,
this is inferred according to the trilobed occlusal pattern of the upper molars (M1-M3),
with no closed crown (Fig. 5A);

(2) Posteriorly, mandibular hypodontia likely appeared first for m1. This is
suggested taking into account the major M1 overgrowth (crista 2-crochet and metaloph)
in comparison to M2, and a closed alveolus of the m1 (right and left; Fig. 5B);

(3) Finally, hypodontia would have occurred for m2, a last step inferred from
the major crown wear of the protoloph and medial crista 2-crochet on M2 (compared to
M1), and the maintain of an open alveolus of the m2 (in early stages of alveolar
reabsorption) (Fig. 5C).

276 According to the pathological stages of the occlusal dental surfaces, it can be inferred that P3, P4, and the protoloph of M1 were partially worn by p4, and that the 277 278 crista 2-crochet and entoloph of M2-M3 were eroded by m3. This growing sequence is 279 likely to offer key information for morphofunctional studies of the masticatory 280 apparatus in mesotheriids. On MNHN-Bol-V 12617, there is no evidence of enamel hypoplasia that is usually recognised as a sign of starvation or feeding stresses in 281 mammals (Mead, 1999). Therefore, a long-time starvation for this individual is not 282 283 suggested, although the craniomandibular pathologies may have limited the food intake. 284 Indeed, m1-m2 hypodontia (during life time) associated with the extreme M1-M2 285 overgrowth have involved constrained/abnormal chewing movements, as highlighted by 286 the anomalous muscular insertions of some maxillomandibular muscles, which have 287 probably affected a normal feeding supply.

288

3.2. Postcranial pathologies

289 In mammals, postcranial pathologies identified as exostoses are identified in:

(1) modern wild animals such as bovids (e.g., *Tragelaphus* sp., *Addax nasomaculatus*, *Bison bison*, *Oryx gazella*; Greer et al., 1977), cervids (e.g., *Odocoileus virginianus*, *Cervus* sp.; Greer et al., 1977) felids (e.g., *Panthera leo*; Greer et al., 1977),
canids (*Canis lupus*; Greer et al., 1977), mustelids (e.g., *Gulo gulo*; Greer et al., 1977,
or *Lutra lutra*; Prummel, 1987), ailurids (*Ailurus fulgens*; Lynch et al., 2002), and also
ursids (*Ursus arctos*; Bartosiewicz, 2002);

(2) modern domesticated animals such as cats (Pool and Carrig, 1972), dogs
(Dingwall et al., 1970; Silver et al., 2001), and horses (Bertoni et al., 2012);

(3) and extinct animals such as cave bears (Torres et al., 2005), machairodontine
felid carnivorans (Salesa et al., 2014), and South-American endemic mammals like

ground sloths (McDonald, 1989; Pujos et al., 2016), glyptodonts (*Glyptodon* sp.;
Gillette and Ray, 1981), and notoungulates (*Toxodon platensis*; Guérin and Faure,
2013).

303 When severe, an exostosis on a bone articulation decreases the range of 304 movements and causes pain (Bertoni et al., 2012; Gavanier and Blum, 2017). The 305 pathological condition of exostosis observed on MNHN-Bol-V 12617 is categorised as level 2 (i.e., "showing a minor irregular bulging of bone") according to the classification 306 307 of Stilton et al. (2016). Although slight, the numerous exostoses observed on the 308 articular surfaces of the available postcranial elements of MNHN-Bol-V 12617 indicate 309 that this pathological individual of *Plesiotypotherium achirense* may have presented 310 such symptoms.

311

3.3. Palaeoecological inferences

The vertebrate fauna from the Mauri 6 Fm. is dominated by *Plesiotypotherium*, considered as a "guide fossil" for upper Miocene deposits of the Bolivian Altiplano (Marshall et al., 1983). In Achiri, *P. achirense* is the dominant species with a prevalence of ca. 64%, among other notoungulates (Toxodontidae and Hegetotheriidae), xenarthrans (sloths and cingulates), and rodents.

Palaeo-floras from Cerro Jakko Kota are closely located (ca. 18 km) and almost 317 318 coeval to the Cerro Pisakeri assemblage (ca. 10.66 ± 0.06 Ma; Gregory-Wodzicki, 319 2002). They indicate mean annual temperatures (MAT) of 21.5°C, mean annual 320 precipitations of 550 ± 180 mm, and mean growing season precipitations of 580 ± 160 321 mm (Gregory-Wodzicki, 2002). Moreover, these palaeo-floras allow estimating a 322 palaeo-elevation of $1,160 \pm 600$ m, which is almost 2,800 m lower than the current elevation (Gregory-Wodzicki, 2002), and consistent with estimates of $1,200 \pm 1,000$ m 323 324 (Garzione et al., 2008) and $1,400 \pm 400$ m (Lamb, 2016) determined from isotopic 325 palaeo-elevation proxies. The upper Miocene palaeo-floras of the northern Altiplano and from other locations in the Central Andes suggest that a large portion of this region 326 327 was covered by subtropical-dry forests under a subtropical-dry climate at moderate 328 elevations (Gregory-Wodzicki, 2002 and references therein). Such palaeo-ecological 329 conditions may have favoured the large development of mesotheriine notoungulates in the northern Altiplano during Upper Miocene times, more specifically at ca. 10 Ma. 330 These conditions drastically changed during the Pliocene, with a noticeable cooling 331 332 (MAT 8-9°C; Gregory-Wodzicki et al., 1998) associated with a substantial rise of that region, up to modern height at ca. 4,000 m above sea level (Garzione et al., 2008; Lamb, 333 334 2016). These drastic abiotic changes affected mammalian communities of the northern Altiplano as demonstrated by the major faunal turnover recorded around the Miocene-335 336 Pliocene transition: mesotheriines (primarily Plesiotypotherium) were dominant during 337 the upper Miocene whereas ground sloths became dominant during the Pliocene (Marshall et al., 1983; Pujos et al., 2016). 338

339 The only flesh-eating taxon attested in the Achiri assemblage is the 340 sparassodontan metatherian Borhyaenidium altiplanicus, documented by a single specimen (MNHN-Bol-V 011889=ACH-0243, holotype; Villarroel and Marshall, 1983). 341 342 In addition, there is no record either for prey birds, snakes, or crocodylians at Achiri (Villarroel and Marshall, 1983). Moreover, no predation mark has been identified on the 343 344 available bone sample (old and new collects). Predators are known to mainly hunt 345 substandard individuals (Temple, 1987; Genovart et al., 2010), as would be the case for 346 the Plesiotypotherium achirense individual (MNHN-Bol-V 12617). According to that, due to its numerous pathologies of the chewing-cycle abnormalities, mostly evidenced 347 348 in mandibular muscles insertion and extreme M1-M2 overgrowth, the normal feeding 349 intake would be affected. Also, the postcranial pathologies (exostoses) would suggest a 350 restricted appendicular movement, that would identify as preferential prey for predators. 351 The inferred long-termed multiple pathologies would have increased the probability for 352 this mesotheriine of being hunted. Strikingly, no predation evidence is visible in this 353 individual, and no other precise cause can be evoked for its death. This, together with 354 the almost inexistent presence of flesh-eating taxa at Achiri at this time would suggest a 355 very low predation pressure, thus confirming other observations in pre-GABI Cenozoic 356 stages of South America with respect to other continental regions (e.g., Holarctic or 357 Australian regions; Croft, 2006; Croft et al., 2018; Prevosti and Forasiepi, 2018).

358

359 4. Conclusions

The palaeo-ecological conditions inferred at the late Mayoan-early Chasicoan SALMAs (10 Ma) at the Bolivian Altiplane clearly favoured the dominant faunas (*Plesiotypotherium*, Mesotheriinae), while dramatical climatic change at the Mio-Pliocene transition identified the major faunal turnover with the major prevalence of ground sloths during the Pliocene.

The surprising encounter of the study sample MNHN-Bol-V 12617 of *P. achirense*, characterized by numerous and long-termed multiple paleopathologies (craniomandibular, dental, and postcranial) would identify as potential prey with increased chances to be hunted. This, together with the almost inexistent presence of flesh-eating taxa at Achiri at this time would suggest and confirming other observations in other Cenozoic stages of South America compared with other Australian or Holarctic regions.

372

Acknowledgments: We thank all the team members (M. A. Abello, S. Adnet, G. Billet,
and M. B. Prámparo) who participated to the 2010-2015 field campaigns in Achiri. We

375 thank the staff of the MEDICENTRO clinic in La Paz (Bolivia) for providing access to 376 CT Scan facilities. We warmly thank to Juan Esteban Rodriguez (http://juanestebanartwork.com/) 377 because his exceptional reconstruction of Plesiotypotherium achirense. We are indebted to the people and local authorities from 378 Achiri for facilitating our fieldwork during the 2010–2018 campaigns. We thank A. 379 Iemmolo for his technical support during ⁴⁰Ar/³⁹Ar analyses. This project was made 380 possible according to the cooperation agreement (N° 864/2014) between the MNHN-381 Bol (Bolivia), the ISE-M (France), and the CONICET (Argentina). This work was 382 financially supported by the ECOS-FonCyT program (A14U01), the National 383 384 Geographic Society (NGS 9971-16), and by the "Investissements d'Avenir" grant 385 managed by the "Agence Nationale de la Recherche" (CEBA, ANR-10-LABX-0025-01). 386

387

388 References

Al-Abdallah, M., 2015. Prevalence and Gender Distribution of Permanent Tooth

- Agenesis among Jordanian Dental Patients: A Cross-Sectional Survey. Jordan
 Medical Journal 49:241–251.
- Al-Ani, A.H., Antoun, J.S., Thomson, W,T., Merriman, T,R; Farella, M., 2017.

393Hypodontia: An Update on Its Etiology, Classification, and Clinical

394 Management. BioMed Research International. 9378325, 1-9.

- Al-Emran, S., 1990. Prevalence of hypodontia and developmental malformation of
- 396permanent teeth in Saudi Arabian schoolchildren. British Journal of
- **397** Orthodontics 17:115–118.
- Ali, S.A., Hussain M., Naqvi, K., Khan, M.M., 2014. Myofacial Pain Dysfunction
 Syndrome (MPDS). Journal of the Pakistan Dental Association 23: 15-18.

400 Alston, E.R., 1876. On the classification of the Order Glires. Proceedings of The 401 Zoological Society 44:61–98. 402 Altug-Atac, A.T., D. Erdem., 2007. Prevalence and distribution of dental anomalies in 403 orthodontic patients. American Journal of Orthodontics and Dentofacial 404 Orthopedics 131:510–514. 405 Alves-Ferreira, M; Pinho, T., Sousa, A; Sequeiros, J; Lemos, C., Alonso, I., 2014. 406 Indentification of genetic risk factors formaxillary lateral incisor agenesis. 407 Journal of Dental Research 93: 452-458. 408 Ardila, C.M., L. Montoya., 2009. Desórdenes bucales equinos. Revista de Salud Animal 409 31:143-151. 410 Bartosiewicz, L. 2002., Pathological Lesions on Prehistoric Animal Remains from 411 Soutwest Asia; pp. 320–360 in H. Buitenhuis, M. Mashkour, A. M. Choyke, and 412 A H. Al-shyyab (eds.), Archaeozoology of the Near East V. ARC Publicatioes, 413 Groningen. 414 Bertoni, L., Forresu, D., Coudry, V., F. Audigie, F., Denoix, J-M., 2012. Exostoses on 415 the palmar or plantar aspects of the diaphysis of the third metacarpal or metatarsal bone in horses: 16 cases (2001-2010). Journal of the American 416 Veterinary Medical Association 240:740–747. 417 418 Billet, G., C. De Muizon., Mamani Quispe, B., 2008. Late Oligocene mesotheriids 419 (Mammalia, Notoungulata) from Salla and Lacayani (Bolivia): implications for 420 basal mesotheriid phylogeny and distribution. Zoological Journal of the Linnean 421 Society 152:153-200. 422 Braun, P.R., Ribeiro, A.M., Ferigolo, J., 2014. Microstructural defects and enamel 423 hypoplasia in teeth of *Toxodon* Owen 1837 from the Pleistocene of Southern 424 Brazil, Lethaia 47:418-431.

425	Brown, S.L., Arkins, S., D. J. Shaw., Dixon, P.M., 2008. Occlusal angles of cheek teeth
426	in normal horses with dental disease. The Veterinary Record 162:807-808.
427	Clayton, J.M., 1956. Congenital dental anomalies occurring in 3557 children", ASDC
428	Journal of Dentristy for Children 23:206–208.
429	Cowan, I.M., McCrory, W., 1970. Variation in the Mountain Goat, Oreannos
430	americanus (Blainville). Journal of Mammalogy 51:60-73.
431	pp.
432	Croft, D. A., 1999. Placentals: endemic American ungulates; pp. 890–906 in R. Singer
433	(ed), Encyclopedia of Paleontology. Fitzroy Dearborn Publishers. Chicago.
434	Croft, D. A., 2006. Do marsupials make good predators? Insight from predato-prey
435	diversity ratios. Evolutionary Research 8: 1193–1214.
436	Croft, D. A., 2016. Horned Armadillos and Rafting Monkeys. The Fascinating Fossil
437	Mammals of South America (Life of The Past). Indiana University Press. 320.
438	Croft, D. A., Engelman, R.K., Dolgushina, T., Wesney, G., 2018. Diversity and disparity
439	of sparassodonts (Metatheria) reveal non-analogue nature of ancient South
440	American mammalian carnivore guilds. Proceedins B of the Linnean Society.
441	285:20172012.
442	Cuesta Ruíz-Colmenares, M.A., Jiménez Fuentes, E., Pérez Pérez, P. J., 2004. Un caso
443	de Hipodoncia en un lofiodóntido (Perissodactyla, Mammalia) del Eoceno
444	Medio de la Cuenca del Duero (Castilla y León, España). Interpretación a luz de
445	la agenesia dentaria humana. Revista Española de Paleontología 19:145–150.
446	Dacre, K., 2006. Applied Equine Dental Development. American Association of Equine
447	Practitioners, Indianapolis.
448	Dingwall, J.S., Pass, D.A., Pennock, P.W., Cawley, A.J., 1970. Case report. Multiple
449	cartilaginous exostoses in a dog. The Canadian Veterinary Journal 11:114–119.

- 450 Dixon, P.M., Dacre, I., 2005. A review of equine dental disorders. Veterinary Journal
 451 169:165–187.
- Dixon, P.M., Tremaine, W.H., Pickles, K., Kuhns, L., Hawe, C., Maccan, J., McGorum, 452 B.C., Railton, D.R., Brammer, S., 1999. Equine dental disease part 2: a long-453 term study of 400 cases: disorders of development and eruption and variations in 454 position of the cheek teeth. Equine Veterinary Journal 31:519–528. 455 456 Easley, J. 2006. Equine Dental Developmental Abnormalities. American Association of 457 Equine Practitioners. Indianapolis. 458 Fernández García, M. 2018. Descripción dentaria y osteológica, anatomía funcional, paleoneurología, sistemática y filogenia de la familia Mesotheriidae (Mammalia, 459 Notoungulata). PhD dissertation, Universidad Nacional de Cuyo, Mendoza, 460 461 Argentina, 385 pp. 462 Fernández-Monescillo, M., Mamani Quispe, B., François, P., Antoine, P-O., 2018. 463 Functional Anatomy of the Forelimb of *Plesiotypotherium achirense* 464 (Mammalia, Notoungulata, Mesotheriidae) and Evolutionary Insights at the 465 Family level. Journal of Mammalian Evolution. 25: 197-211. 466 Francis, J. C. 1965. Los géneros de la subfamilia mesotheriinae (Typotheria, Notoungulata) de la República Argentina. Boletín del Laboratorio de 467 Paleontología de Vertebrados 1:7-31. 468 469 Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., Macfadden, B., Eiler, J., Ghosh, 470 J.P, Mulch, A., 2008. Rise of the Andes. Science 320:1304–1307. 471 Gavanier, M., A. Blum, A., 2017. Imaging of benign complications of exostoses of the shoulder, pelvic girdles and appendicular skeleton. Diagnostic and Interventional 472
 - 473 Imaging 98:21–28.

474	Genovart, M., Negre, N., Tavecchia, G., Bistuer, A., Parpal, L., Oro, D. 2010., The
475	Young, the Weak and the Sick: Evidence of Natural Selection by Predation.
476	PLoS One 5:e9774.
477	Gillette, D.D., Ray, C.E., 1981. Glyptodonts of North America. Smithsonian
478	Contitributions Paleobiology 255.
479	Gomes Rodrigues, H., Herrel, A., G. Billet, G., 2017. Ontogenetic and life history trait
480	changes associated with convergent ecological specializations in extinct
481	ungulate mammals. Proceedings of the National Academy of Sciences of the
482	United States of America 114:1069–1074.
483	Gómez-Olivencia, A., Arcederedillo, D., Rios-Garaizar, J., Garate, D., Iriarte, E.,
484	Ziortza San Pedro., 2011. Dental Anomalies in the Mandible of Capra
485	pirenaica: Presence of Two Permanent fourth Premolars in a Pleistocene Wild
486	Goat from Arlanpe Cave (Bizkaia, Northern Spain). International Journal of
487	Osteoarchaeology 23:737–745.
488	Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., 2012. The Geological Time
489	Scale 2012. Volume 2. Amsterdam, Elsevier.
490	Grahnén, H., 1956. Hypodontia in the permanent dentition. A clinical and genetical
491	investigation. Odontologisk Revy 7:5-100.
492	Greer, M., Greer, J.K., Gilligham, J., 1977. Osteoarthritis in Selected Wild Mammals.
493	Proceedings of the Oklahoma Academy of Science 57:39-43.
494	Gregory-Wodzicki, K.M., Mcintosh, W.C., Velasquez, K., 1998. Climatic and tectonic
495	implications of the late Miocene Jakokkota flora, Bolivian Altiplano. Journal of
496	South American Earth Sciences 11:533–560.
497	Gregory-Wodzicki, K. M., 2002. A late Miocene subtropical-dry flora from the northern
498	Altiplano, Bolivia. Palaeogeography, Palaeoclimatology, Palaeoecology

499 180:331–348.

500 Guérin, C., Faure, M., 2013. Un Nouveau Toxodontidae (Mammalia, Notoungulata) du 501 Pléistocène supérieur du Nordeste du Brésil. Geodiversitas 36:155-205. 502 Hoffstetter, R; C. Martinez; M., and P. Tomasi. 1972. Nouveaux gisement de 503 Mammifères néogènes dans les couches rouges de l'Altiplano bolivien. Comptes Rendus de l'Académie des Sciences Paris 275:739-742. 504 505 Jablonski, N.G., 1992. Dental agenesis as evidence of possible genetic isolation on the 506 colobine monkey, Rhinopithecus roxellana. Primates 33:371-376. 507 Kapadia, H., Mues, G., D'Souza, R., 2007. Genes affection tooth morphogenesis. 508 Orthodontics and Craniofacial Research 93: 237-244. 509 Khurana, J.S. Bone Pathology. Humana Press. 416 pp. 510 Kraglievich, L., 1934. La antigüedad pliocena de las faunas de Monte Hermoso y 511 Chapadmalalal deducidas de su comparación con las que le precedieron y 512 sucedieron. Imprenta El Siglo ilustrado. Montevideo 939:1-136. 513 Küchler, E.C., A. Lips, A., Tannure, P.N., Ho, B.; Costa, M.C., Granjeiro, J.M., Vieira, 514 A.R. Tooth agenesis association with self-reported family history of cancer. Journal of Dental Research 92: 149-155. 515 Lamb, S. 2016., Cenozoic uplift of the Central Andes in northern Chile and Bolivia-516 517 reconciling paleoaltimetry with the geological evolution. Canadian Journal of 518 Earth Sciences 53:1227–1245. 519 Lavelle, C.L., Moore, W.J., 1973. The Incidence of Agenesis and Polygenesis in the 520 Primate Dentition. American Journal of Physical Anthropology 38:671-679. Lyman, R.L., 2010. Mandibular Hypodontia and Osteoarthritis in Prehistoric Bighorn 521 522 Sheep (Ovis canadensis) in Eastern Washington State. USA. International 523 Journal of Osteoarchaeology 20:396–404.

524	Lynch M., McCraken, H., Scolocombe, R., 2002. Hyperostotic bone disease in red
525	pandas (Ailurus fulgens). Journal of Zoo and Wildlife Medicine 33:263–271.
526	Marshall, L. G., Hoffstetter, R., Pascual, R., 1983. Mammals and Stratigraphy:
527	Geochronology of the Continental Mammal-Bearing Tertiary of South America.
528	Palaeovertebrata 1-93.
529	McDonald, H. G. 1989., Not all ground sloth bones are pathological: but some are.
530	Journal of Vertebrate Paleontology 9:32A.
531	McKenna, M., Bell, S.K., 1997. Classification of Mammals: Above the Species Level.
532	Columbia University Press, New York, 640 pp.
533	Mead, A.J., 1999. Enamel hypoplasia in Miocene rhinoceroses (Teleoceras) from
534	Nebraska: evidence of severe physiological stress. Journal of Vertebrate
535	Paleontology 19:391–397.
536	Mestrinho, L.A., Louro, J.M., Gordo, I.S., Niza, M.M.R.E., Requicha, J. F., Force, J.G.,
537	Gawor, P., 2018. Oral and dental anomalies in purebred, brachycephalic Persian
538	and Exotic cats. Journal of the American Veterinary Medical Association
539	253:66–72.
540	Mostowska, A., Briedzia, B., Jagodziniski, P.P., 2006. Axis inhibition protein (AXIN2)
541	polymorphisms may be a risk factor for selective tooth agenesis. Journal of
542	Human Genetic 51:262-266.
543	Natsume, A., Koyasu, K., Hanamura, H., Nakagaski, H., Oda, S., 2005. Variation in the
544	number of teeth in wild Japanese serow (Naemorhedus crispus). Archives of
545	Oral Biology 50:849–860.
546	Pavlica, Z., Erjavec, V., Petelin, M., 2001. Teeth abnormalities in the dog. Acta
547	Veterinaria Brno 70:65–72.

548 Paz, R., Kramarz, A., Bond, M., 2011. Mesotheriid (Mammalia, Notoungulata) remains

- from the Colhuehuapian Beds (Early Miocene) of Chichinales Formation, Río
 Negro Province, Argentina. Ameghiniana 48:264–269.
- 551 Pemberton, T.J., Das, P., Patel, P.I., 2005. Hypodontia: genetics and future perspectives.
 552 Brazilian Journal of Oral Sciences 4:695–706.
- Peres, R.C.R., Scarel-Caminaga, R.M., Santo, A.R.R., Line S.R.P., 2005. Association
 between PAX-9 promoter polymorphisms and hypodontia in humans. Archives
 of Oral Biology 50:861–871.
- 556 Polder M.A., Van't Hof, M.A., Van Der Linden, F.P., Kuijpers-Jagtman, A.M., 2004. A

557 meta-analysis of the prevalence of dental agenesis of permanent teeth.

558 Community Dentistry and Oral Epidemiology 32:217–226.

- Pool, R.R., Carrig, C.B., 1972. Multiple Cartilaginous Exostoses in a Cat. Vertebrate
 Pathology 9:350–359.
- 561 Prevosti, F.J., Forasiepi, A.M., 2018. Evolution of South American Mammalian
- 562 Predators During the Cenozoic: Paleobiogeographic and Paleoenvironmental563 Contingencies. Springer Geology. 196 pp.
- 564 Prummel, W., 1987. The faunal remains from the Neolithic site of Hekelingen III.
 565 Helinium 27:190–258.
- 566 Pujos, F., De Iuliis, G., Mamani Quispe, B., Adnet, S., Andrade Flores, R., Billet, G.,

567 Fernández-Monescillo, M., Marivaux, L., Münch, P., Prámparo, M.B., and

- 568 Antoine, P-O., 2016. A new nothrotheriid xenarthran from the early Pliocene of
- 569 Pomata-Ayte (Bolivia): new insights into the caniniform-molariform transition in
- sloths. Zoologial Journal of the Linnean Society 178:679-712.
- 571 Ramzan, P.H., Dixont, P. M., Kempson, S.A., Rossdale, P.D., 2001. Dental dysplasia
- and oligodontia in a throughbred colt. Equine Veterinary Journal 33:99–104.
- 573 Reguero. M.A., Prevosti, F.J., 2010. Rodent-like notoungulates (Typotheria) from Gran

574	Barranca, Chubut Province, Argentina: phylogeny and systematics; pp. 148-165
575	in Madden, R. H. Carlini, H. H., Vucetich, M. G, and Kay, R. F (eds). The
576	Paleontology of Gran Barranca: Evolution and Environmental Change through
577	the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge.
578	Roth, S., 1903. Los ungulados sudamericanos. Anales del Museo de La Plata. Sección
579	Paleontologia, 5:1–36.
580	Salesa M.J., Anton, M., Siliceo, G., Pesquero, M.D., Alcala, L., 2014. First evidence of
581	pathology in the forelimb of the late Miocene saber-toothed felid
582	Promegantereon ogygia (Machairodontinae, Smilodontini). Anatomical Record
583	297:1090–1095.
584	Silver, G.M., Bargley, R.S., Gavin, P.R., Kippenes, H., 2001. Radiographic diagnosis:
585	cartilaginous exostoses in a dog. Veterinary Radiology and Ultrasound 42:231-
586	234.
587	Silverman N.E., Ackerman, J.L., 1979. Oligodontia: a study of its prevalence and
588	variation in 4032 children. Journal of Dentistry for Children 46:470–477.
589	Simpson G.G., 1948. The beginning of the age of mammals in South America Part 1.
590	Systematics: Marsupialia, Edentata, Condylarthra, Litopterna and
591	Notioprogonia, Bulletin American Museum of Natural History 91:1–232.
592	Stilton K.T., Hopkins, S.S.B., Davis, E.B., 2016. Osteopathology in Rhinocerotidae
593	from 50 Million Years to the Present. PLoS One 11:e0146221.
594	Temple S.A., 1987. Do Predators Always Capture Substandard Individuals
595	Disproportionately From Prey Populations?. Ecology 68:669–674.
596	Thenius, E., 1989. Mammalia: Zähne ung Gebiss der Säugetiere in J. Niethammer, H.
597	Schliemann, and D. Starck (eds.) Handbuch der Zooologie, Volume 8. Verlag
598	Walter de Gruyter and Co. Berlin. 513 pp. [German 1-164].

599	Torres, T de., Ortiz, J.E., Cobo, R, Julià, R., Camacho, A., Puch, C., Llamas, J.F., 2005.
600	Presence of two cave bear species in La Lucia cave (Lamasón, Cantabria, N
601	Spain): Ursus deningeri von Reichenau and Ursus spelaeus Rosenmüller-
602	Heinroth. MUNIBE Antropologia-Arkeologia 57;103-122.
603	Vigal, C. R., Machordom, A., 1985. Tooth Eruption and Replacement in the Spanish
604	Wild Goat. Acta Theriologica 30:305–320.
605	Villarroel, C., 1974. Les mésothérinés (Notoungulata, Mammalia) du Pliocène de
606	Bolivie et leurs rapport avec ceux d'Argentine. Annales de Paléontologie
607	60:245–281. [French 245–281]
608	Villarroel, C., Marshall, L. G., 1983. Two New Late tertiary Marsupials
609	(Hathlyacyninae and Sparassocyninae) from the Bolivian Atiplano. Journal of
610	Paleontology 57:1061–1066.
611	Waibl, H., Gasse, H., Hashimoto, Y., 2005. Nomina Anatomica Veterinaria. Hannover:
612	International Committee on Veterinary Gross Anatomical Nomenclature, World
613	Association of Veterinary Anatomis, Hannover.
614	Wisth, P.J., Thunold, K., Böe, O.E., 1974. Frequency of hypodontia in relation to tooth
615	size and dental arch width. Acta Odontologica Scandinavica 32: 201-206.
616	Zittel, K.A., 1893. Handbuch der Palaeontologie, Volume IV. Vertebrata (Mammalia).
617	Druck und Verlag von R. Oldenbourg, Munchen und Leipzig, 590 pp.
618	

620 Figure Captions

621 Figure 1. Location map of Achiri, Pacajes Province, La Paz Department, Bolivia.

622 General map of Bolivia (a), detailed map showing the location of the Mauri and Ulloma

623 formations, and hills ('cerros') surrounding the Achiri Village (b). [prepared for page

624 width]

625

626 Figure 2. Skulls of *Plesiotypotherium achirense* with digital reconstruction of the teeth.

627 Pathological skull (MNHN-Bol-V12617) (a-d), non-pathological skull (MNHN-Bol-V

628 8507) in mirror view (e-h). Lateral right views (a-b, e-f); ventral views (c-d, g-h). In

629 pink color and "" the upper premolars (P3-P4), in red the upper molars (M1-M2), and

630 "*" appear the deformed overgrown M1-M2. In grey appears the usual aspect of upper

teeth of *Plesiotypotherium achirense*. Scale bar represents 5 cm. [prepared for pagewidth]

633

634 Figure 3. Mandible of *Plesiotypotherium achirense* with digital reconstruction of the

teeth. Pathological mandible (MNHN -Bol-V 12617) (a-d); mandible of

636 *Plesiotypotherium achirense* (MNHN-Bol-V 12669) (e-f). Right lateral views (a-b, e-f);

637 occlusal views (c-d, g-h). In red color and "*" are figured the pathological p4. In grey

appears the usual aspects of lower teeth. Scale bar represents 5 cm. [prepared for full

page width]

640

639

641 Figure 4. Skeletal reconstruction of the pathological individual of *Plesiotypotherium*

642 *achirense* from Achiri, with distinct osteological pathologies of postcranial elements

643 (MNHN-Bol-V 12617); blue denotes osteological remains that were unearthed. Lateral

644 view of the right scapula showing the osteological callus in the hamatus process

- 645 (acromion) (a); Head of the radius in cranial and proximal views respectively (b-c);
- 646 Proximal epiphysis of the ulna in medial view (d); Mt III in proximal view (e); Second
- 647 phalanx of the pes in dorsal view (f). Exostosis as visible in the articular edges (b-d); in
- 648 addition, show a weak cortical bone structure in their broken areas (c-d). Reconstruction
- 649 of *Plesiotypotherium achirense* made by Juan Esteban Rodriguez
- 650 (http://juanestebanartwork.com/). [prepared for page width]
- 651
- 652 Figure 5. Pathological occlusal sequence reconstruction (upper left molar premolar
- 653 series and lower left molar-premolar series) during the life time of *Plesiotypotherium*
- 654 *achirense* (MNHN-Bol-V 12617). Early stages of occlusion (typical stage) (a);
- 655 hypodontia of m1 and overgrowth of the crista 2-crochet and metaloph of the M1 (b);
- hypodontia of m2 and overgrowth of the mesial part (protoloph and parastyle) area of
- 657 the M2 (c). Black dotted lines and "*" show the M1-M2 overgrown. [prepared for
- 658 column width]
- 659
- 660

661

Figure 1 Supplementary material 1. Pathological skull of the mesotheriid notoungulate *Plesiotypotherium achirense* (MNHN-Bol-V 12617), from the late Miocene of Achiri, Bolivia. Dorsal (a); ventral (b); lateral right (c); lateral left (d) views. Scale bar represents 5 cm.

Figure 2 Supplementary material 1. Mandibles of *Plesiotypotherium achirense*. Pathological mandible (MNHN-Bol-V12617) (a-e) in lateral right (a); lateral left (b); detail of caudomedial border of the mandibular ramus (c); ventrorostral border (d); dorsal view (e). Non-pathological mandible (MNHN-Bol-V 12669) (f-g) in lateral right (f), medial views (g). Scale bar represents 5 cm (C and D are not to scale).

Figure 3 Supplementary material 1. Scapula, forelimb elements, axis and third cervical vertebra (C3) of *Plesiotypotherium achirense* (MNHN-Bol-V 12617). Left scapula in lateral and cranial views respectively (a,b); right radius in cranial view (c); left radius in cranial view (d); proximal epiphysis of left ulna (e); left Mc IV in medial and dorsal views respectively (f-g); right Mc V in dorsal and medial views respectively (h-i); left scaphoid in dorsal and distal views respectively (j-k); axis and third cervical vertebra (C3) in dorsal view (l). Scale bar represents 5 cm.

Figure 4 Supplementary material 1. Pelvis, sacrum, and hind limb of *Plesiotypotherium achirense* (MNHN-Bol-V 12617). Fused pelvis and sacrum in cranial and right lateral views respectively (a-b); left Mt I in medial and plantar views respectively (c-d); right Mt II in dorsal and medial views respectively (e-f); left Mt III in dorsal and medial views respectively(g-h); left navicular in dorsal and proximal views respectively (i-j); left ectocuneiform in dorsal and distal views respectively (k-l); left cuboid in dorsal and proximal views respectively (m-n); right Mt V in dorsal and lateral views respectively (o-p); second right phalanx of the digit V in lateral and dorsal views respectively (q-r); third right phalanx of the digit V in lateral and dorsal views respectively (s-t). Scale bar represents 5 cm. [prepared for page width]

Figure 5 Supplementary material 1. Measurements for the cranial, mandibular and dental elements of *Plesiotypotherium achirense*. Skull in dorsal, ventral and lateral views, respectively (c-d); Mandible in lateral view (d); upper teeth in occlusal view (e); lower teeth in occlusal view (f).

Abbreviation	Description
NL	Nasal length
N W	Nasal width
F W	Maximal frontal width
C W	Maximal skull caudal width
BL	Basal skull length
Mo L	Upper molar series length
SC	Length of the posterior portion of the skull, measured from the occipital condyle to the distal m3 border
SB	Occipital height, measured from the base of the foramen magnum to the top of the occipital region
SD	Depth of the face under the orbit measured from the limit between molar and premolar tooth sequence to the nearest point of the orbit.
ZL	Maximal length of the zygomatic arch
L I1-I1	I1-I1 incisor length, measured from the rostral contact of both I1 to the caudal border between both I1
W I1-I1	I1-I1 incisor width
DL	Upper diastema length
W M3-M3	Width between the both M3 parastyles
AMAZ	Maximal width of the zygomatic arch
OC W	Occipital condyle width
Pal-I1 L	Maximal length of the palate to the labial border of the I1.
d L	Lower diastema length
mo L	Lower molar sequence length
den L	Lower dental length
m2 H	Mandibular body height at m2 level
Co H	Height of the mandibular condyle to the base of the mandibular ramus
Mand L	Mandibular length, measured from the caudal most border to the rostral most of the i1.

Table 1 Supplementary material 1. Description and summary of cranial and mandibular measurements (in mm) of *Plesiotypotherium achirense*.

												W I1-		W M3-		OC
Inventory number / Measurements	ΒL	ZL	D L	SC	Mo L	SB	AMAZ	N L	N W	FW	D L	I1	L I1-I1	M3	AMAZ	W
MNHN-Bol-V 12617		76.17			52.6	56	128.82	98.52	50	99.4	32.13	29	18	62.78	128.82	39.1
MNHN.F.ACH 26 (Holotype)	192	94.58	34	88	53.2	61	120.09	95.07	53	99.4	29.25	30	17	70.07	120.09	44.2
MNHN-Bol-V 8507	189	94.34	35	83	51.2	52	128.75	96.71	57	92.32	31.04	30	15	68.73	128.75	45.4
MNHN.F.ACH 23		90.88	38		53.1		125.5	98.18	50	92.46	25.69	32	17	74.48	125.5	
MNHN.F.ACH 63		85.26					121.66	85.76	47			26		73.97	121.66	
MNHN-Bol-V 12665		88.7	27	94	46.7	63		106.3	56	92.25	28.4	23	13			
MNHN-Bol-V 12664		80.16	31	76	39.3		106.36	76.54	47	79.85	25.96		11	56.64	106.36	

Table 2 Supplementary material 1. Skull measurements (in mm) of *Plesiotypotheirum achirense*. For abbreviations see Figure 5 Supplementary material 1.

Number	I1 MLD	I1BL W	P3 MDL	P3 BLW	P4 MDL	P4 BLW	M1 MDL	M1BL W	M2 MDL	M2 BLW	M3 MDL	M3 BLW	A	В	A/B
MNHN-Bol-V 12617	11.21	10.36	10.35	8.35	10.64	8.59	15.70	11.37	18.57	11.70	19.70	10.58			
MNHN.F.ACH 26 (Holotype)			10.04	8.53	11.51	10.35	16.08	11.55	18.16	11.62	19.67	10.91	11.9	9.66	1.23
MNHN-Bol-V 8507	18.08	10.25 5	10.3	6.87	8.01	10.23	15.88	11.43	17.02	11.28	18.81	10.08	12.5 5		
MNHN.F.ACH 33							14.88	12.08	16.63	11.8	19.55	11.14	11.6 4		
MNHN.F.ACH 28	18.845	10.17	9.15	8.47	10.18	10.34	17.52	10.15	18.89	11.29	20.21	10.79	12.4 9	9.65	1.29
MNHN.F.ACH 19	19.63	10.81	10.52	8.47	10.69	11.16	17.02	12.25	19.84	12.96	20.74	11.52	13.9	9.85	1.42
MNHN.F.ACH 39			10.52	8.37	10.35	11.97	17.95	11.325	17.685	11.145	19.365	10.445	11.1 5 11.6	9.41	1.18
MNHN.F.ACH 20	15.97	8.68	8.52	6.61	11.64	9.27	15.15	10.175	15.24	10.475	17.285	9.23	35 12.1	9.53	1.22
MNHN-Bol-V 12545	17 83	11 45	9 86	91	11 28	117	18 61	12 35	19 54	12 72	20 31	11 54	15.1 5		
MNHN-Bol-V 11999 (= ACH 355)	1,100		,	,	11.58	11.36	18.87	13.17	18.3	11.4	19.41	10.89		7.68	
MNHN-Bol-V 12665	14.08	8 685	7 72	8 10	8 68	0.42	15 56	10.10	17.64	10.16	16.38	0.56	10.5		
MNHN Bol V12664 MNHN-Bol-V 11875	11.59	7.28	4.61	5.89	7.36	9.43 7.63	12.81	9.09	13.89	9.21	10.58	9.50	0	8.79	
(=GB 228)			6.815	7.72	8.385	9.12	15.33	10.12	16.015	10.41	16.51	9.31	11	9.07	1.21
MNHN-Bol-V 11676	17.81	11.6	6.85	9.41	8.8	9.54	18.32	10.54	17.31	11.08	18.545	10.405	12.2 4		

 Table 3 Supplementary material 1. Upper teeth measurements of *Plesiotypotherium achirense* (in mm). For abbreviations see Figure 5 Supplementary material 1.

Number	L Mand	mo L	den L	d L	СоН	m2 H
MNHN-Bol-V 12617	181.88	48.32	105.28	29.04	102.3	
MNHN-Bol-V 12663	164.35	43.46	90.82	20.79		36.095
MNHN-Bol-V 12670	176.54	53.58	105.96	21.18		42.38
MNHN-Bol-V 3330	174.57	52.45	101.34	18.92	106.46	33.405
MNHN-Bol-V 12669	171.27	49.885	99.58	20.56	95.72	39.085
MNHN-Bol-V 12670	174.4	56.76	104.99	20.505		42.055
MNHN-Bol-V 9880	210.65	59.74		24.79		42.615
MNHN.F.ACH 20	174.78	46.525	96.205	22.71		37.83
MNHN.F.ACH 26 (Holotype)	188.985	51.805	106.9	24.475	98.16	40.8
MNHN.F.ACH 17	180.78	54.99		21.1	107.88	41.96
MNHN.F.ACH 30		50.38				40.9
MNHN.F.ACH 29		47.02				36.36
MNHN.F.ACH 34		49.665				36.34
MNHN.F.ACH 32		54.98				41.89

Table 4 Supplementary material 1. Mandible measurements (in mm) of *Plesiotypotherium achirense*. For abbreviations see Figure 5 Supplementary material 1.

Number	i1 mdl	i1blw	i2 mdl	i2 blw	P4mld	p4blw	m1mld	m1blw	m2mld	m2blw	m3 MLD	m3 BLW
MNHN-Bol-V 12617	10.41	7.155	7.835	5.4	7.285	7.735					21.39	7.525
MNHN-Bol-V 12662	10.35	6.27			10.63	7.42	13.355	8.595	15.705	7.94	21.135	7.025
MNHN-Bol-V 12664					6.5	4.78	10.89	7.5	18.49	7.245		
MNHN-Bol-V 12663	8.855	5.315	5.765	4.3	8.74	6.055	11.965	7.715	13.275	7.375	18.775	6.58
MNHN-Bol-V 12641					7.64	5.71		5.35				
MNHN-Bol-V 12670	10.76	6.61	7.52	4.7	11.9	7.77	13.97	9.57	15.69	9.67		
MNHN-Bol-V 3330	10.99	6.655	5.15	4	10.38	6.75	13.955	8.33	16.045	7.22	19.28	7.1
MNHN-Bol-V 3334					11.66	6.92	13.55	8.45	14.81	7.63		
MNHN-Bol-V 3755					9.79	7.12	11.7	8.23				
MNHN-Bol-V 11677									13.24	8.04		
MNHN-Bol-V 12669	10.03	6.555	7.085	5	9.925	7.975	13.685	9.785	15.52	9.63	22.11	8.16
MNHN-Bol-V 12670	10.76	6.61	7.52	4.7	11.9	7.77	13.97	9.57	15.69	9.67		
MNHN-Bol-V 9880	12.11	7.47	8.44	4.9	11.935	8.385	16.23	10.09	17.23	9.53	23.64	9.37
MNHN-Bol-V 12642							13.08	7.85	12.22	7.24		
MNHN.F.ACH 20	9.1	5.775	6.41	4.3	9.93	6.815	12.76	8.445	15	8.155	19.76	7.02
MNHN.F.ACH 26	10.655	6.45	7.215	5.1	11.315	7.89	13.78	9.55	15.485	9.03	22.265	8.19
MNHN.F.ACH 17					11.215	7.665	14.73	9.43	15.94	8.98	23.165	7.49
MNHN.F.ACH 30												
MNHN.F.ACH 29	9.4	5.84	6.61	4.5	9.94	6.65	13.365	8.46	13.99	7.685	18.455	6.9
MNHN.F.ACH 36					12.26	8.69	15.59	9.97				

Table 5 Supplementary material 1. Lower teeth measurements (in mm) of *Plesiotypotherium achirense*. For abbreviations see Figure 5 Supplementary material 1.

Table 6 Supplementary material 1. Measurements for postcranial elements (forelimb and hind limb). A-C. Radius measurements (a-c); Metacarpal or metatarsal measurements (d-e); Right scaphoid measurements in dorsal (f), and distal view (g); Left cuboid measurements in dorsal (H) and in distal view (i); Left navicular measurements in dorsal (h), and in proximal view (i); Left ectocuneiform measurements in dorsal (l), and in distal view (m).

Abbreviated measurement	Description for the measurement
LR	Radious length
CC-Diast R	Craniocaudal width of radius diaphysis
LM-Diast R	Lateromedial width of the radius diaphysis
CC-Prox R	Craniocaudal width of the radius head
LM-Prox R	Lateromedial width of the radius head
CC-Fac Dist R	Craniocaudal width of the fossa carpi radialis of radius
LM-Fac Dist R	Lateromedial width of the fossa carpi radialis of radius
LMc/Mt	Length of the Mc or Mt
LM-Prox W	Lateromedial width of the proximal epiphysis of the Mc or Mt
PD-Prox H	Plantodorsal width of the proximal epiphysis of the Mc or Mt
LM Diast Mc/Mt	Lateromedial width of the diastema of the Mc or Mt
PD-Diast Mc/Mt	Plantodorsal width of the diastema of the Mc or Mt
PrDist L	Proximodistal lenght (carpal or tarsal)
Med Lat W	Mediolateral width (carpal or tarsal)
P Dor H	Palmodorsal or plantodorsal height (carpal or tarsal)

Table 7 Supplementary material 1. Abbreviation, description and summary of postcranial measurements (in mm) of *Plesiotypotherium* achirense.

	Floment	ID	CC-	LM-	CC-Prox	LM-	CC-Fac	LM-Fac
Number	Liement	LK	Diast R	Diast R	R	Prox R	Dist R	Dist R
MNHN-Bol-V 12617	Radius (R)	141.38	10.4	27.20	15.59	27.24	15.85	22.38
MNHN-Bol-V 12617	Radius (L)	142.08	10.6	27.34	15.11	27.34	14.5	21.08
MNHN-Bol-V 12760	Radius (R)	148.5	10.98		15.72	15.6	21.35	26.02
MNHN.F.ACH 18 (Paratype)	Radius	170.64	13.4		21.76	28.08	15.3	16.72

Table 8 Supplementary material 1. Radius measurements (in mm). For abbreviations see Table 7 Supplementary material 1.

	Flomont	I Ma/Mt	LM-Prox	PD-Prox Mc/Mt	LM Diast	PD-Diast
Number	Element		Mc/Mt W	Н	Mc/Mt	Mc/Mt
MNHN-Bol-V 12617	Mc V (R)	49.74	8.82	13.58	5.53	7.9
MNHN.F.ACH 34	Mc V (L)	54.89	9.19	13.78	7.76	5.73
MNHN-Bol-V 12617	Mc IV (L)	60.92	17.62	14.62	8.6	9
MNHN-Bol-V 3440	Mc IV (R)		18.4	16.1	10.4	8.9
MNHN-Bol-V 12617	Mt III (L)		13.82	20.99	9.17	7.73
MNHN.F.ACH 26 (Holotype)	Mt III (R)	57.39	12.77	20.21	9.99	7.8
MNHN-Bol-V 3336	Mt III (R)	59.58	13.09	19.94	9.83	8.3
MNHN-Bol-V 3738	Mt III (R)	57.2	15.3			
MNHN-Bol-V 3438	Mt III (L)		16	21.7	12.9	9
MNHN-Bol-V 12617	Mt V (L)	46.51	9.44	14.45	6.15	6.09
MNHN-Bol-V 12650	Mt V (R)	50.9	11.2	17.2	7.4	6.14
MNHN-Bol-V 3740	Mc V (R)	59.9	11.1	17.3	9.82	7.36

Table 8 Supplementary material 1. Measurements of the Mc or Mt. For abbreviations see Table 7 Supplementary material 1.

40Ar/39Ar dating

Samples were crushed and sieved and a 100–200 µm grain size was retained for feldspar separation. After magnetic separation, feldspar grains were selected under a stereomicroscope. The grains were leached with HNO3 (1N) for a few minutes and then repeatedly cleaned ultrasonically in distilled water and alcohol. Samples were packed in aluminium foil for irradiation in the core of the Triga Mark II nuclear reactor of Pavia (Italy) with several aliquots of the Taylor Creek sanidine standard (28.619 ± 0.034 Ma in Renne et al., 2011) as flux monitor. Argon isotopic interferences on K and Ca were determined by irradiation of KF and CaF₂ pure salts from which the following correction factors were obtained: $({}^{40}\text{Ar}/{}^{39}\text{Ar})$ K = 0.00969 ± 0.00038, $({}^{38}\text{Ar}/{}^{39}\text{Ar})$ K = 0.01297 ± 0.00045, $({}^{39}\text{Ar}/{}^{37}\text{Ar})\text{Ca} = 0.0007474 \pm 0.000021$ and $({}^{36}\text{Ar}/{}^{37}\text{Ar})\text{Ca} = 0.000288 \pm 0.000016$. ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ step-heating analyses were performed at Géosciences Montpellier (France). The gas extraction and purification line consist of (a) an IR-CO₂ laser of 100 kHz used at 3-20% power to heat samples during 60 seconds, (b) a lenses system for beam focusing, (c) a steel chamber maintained at 10^{-8} - 10^{-9} bar, with a copper holder in which 2 mm-diameter blind holes were milled, and (d) two Zr-Al getters for purification of gases. Argon isotopes are analysed with an Argus VI multi-collection mass spectrometre (with 4 faradays for masses ⁴⁰Ar-³⁷Ar and ion counting on ³⁶Ar). One minute was allowed for equilibration before analysis. Mass discrimination of machines is followed daily. Mass discrimination was monitored daily using an automated air pipette and provided a mean value of $0.99985 \pm$ 0.00274 per dalton. Micropopulations of feldspar crystals were distributed in holes of the copper holder and were step heated. Blank analyses were performed every three sample analyses. Raw data of each step and blank were processed and ages were calculated using the ArArCALC-software (Koppers, 2002). Isotopic ratios were corrected for irradiation interferences and air contamination using a mean air value $({}^{40}\text{Ar}/{}^{36}\text{Ar})_{atm}$ of 298.56 ± 0.31

(Lee et al., 2006; Renne et al., 2009). Ages are statistically analysed in two ways: ³⁹Ar released spectra and inverse isochrones. Plateau ages are calculated from at least three consecutive ³⁹Ar release steps comprising up to 50% of total ³⁹Ar_K released and overlapping at the 2σ confidence level (Fleck et al., 1977). Isochrone ages are accepted when mean square weighted deviation (MSWD) is close to 1 and the ⁴⁰Ar/³⁶Ar intercept within 2σ from the (⁴⁰Ar/³⁶Ar)_{atm} value. The analytical data are reported in the tables ACH TUF 4A A9.detailed.xls, ACH TUF 3A A10 plateau.detailed.xls and ACH TUF 3A A10 isochrone.detailed.xls. All errors are quoted at the 2σ level uncertainty including the error on the irradiation factor J.

- Fleck, R.J., J. F. Sutter, and D. H. Elliot. 1977. Interpretation of discordant 40Ar/39Ar agespectra of mesozoic tholeiites from Antarctica: Geochimica et Cosmochimica Acta 41: 15–32.
- Lee J-Y, K. Marti, J. P. Severinghaus, K. Kawamura, H. S. Yoo, J. B. Lee, and J. S. Kim. 2006. A redetermination of the isotopic abundances of atmospheric Ar: Geochimica et Cosmochimica Acta 70:4507–4512.
- Renne, P.R., G. Balco, K. R. Ludwig, R. Mundil, and K. Min. 2011. Response to the comment by W.H. Schwarz et al. on "Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology" by P.R. Renne et al. (2010): Geochimica et Cosmochimica Acta 75:5097–5100.
- Renne, P.R., W. S. Cassata, and L. E. Morgan. 2009. The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology: time for a change: Quaternary Geochronology 4:288-298.