Volatile organic compounds of six French Dryopteris species: natural odorous and bioactive resources
Didier Froissard, Sylvie Rapior, Jean-Marie Bessière, Alain Fruchier, Bruno Buatois, Françoise Fons

To cite this version:

HAL Id: hal-02194220
https://hal.umontpellier.fr/hal-02194220
Submitted on 25 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

The Editor-in-Chief reserves the right to modify the style, length, and presentation of articles in the interests of clarity and balance. A photocopy of the pages of the article as finally prepared will be sent to the author(s) for approval before publication. Any changes suggested by the author(s) that are rejected by the Editor-in-Chief may result in the delay of publication of the article.

To Subscribe: Natural Product Communications is a journal published monthly. 2014 subscription price: US$2,395 (Print, ISSN# 1934-578X); US$2,395 (Web edition, ISSN# 1555-9475); US$2,795 (Print + single site online); US$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Aerial parts of six Dryopteris species collected in France were investigated for volatile organic compounds (VOC) for the first time. Fifty-three biosynthesized VOC from the shikimic, lipidic and terpenic pathways were identified using gas chromatography/mass spectrometry. Many bioactive polyketide compounds as filicinic derivatives (from 8.5 to 23.5%) and phloroglucinol derivatives (from 8.2 to 53.8%) with various pharmacological activities were detected in high amount from five analysed Dryopteris species, in particular D. oreades and D. borreri, i.e., propionyfilicinic acid (> 10% in D. affinis and D. ardechensis) and 2,6-dihydroxy-4-methoxy-3-methylbutyrophenone (aspidinol) (19.1% and 14.6% in D. oreades and D. borreri, respectively). Several terpenic derivatives with a low odor threshold were identified, i.e., carota-5,8-diene (from 2.5 to 18.4%: floral, woody or fresh bark note), (Z)-nerolidol (> 10% for D. borreri and D. cambrensis; floral or woody odor), α-selinene (> 7% for D. ardechensis; woody-spicy odor), and aristolene (12.8% in D. affinis; flower, sweet odor). The main isoprenoid derivatives were 4-hydroxy-5,6-epoxyionol, 3-oxoα-ionol and 4-oxo-7,8-dihydro-β-ionone (essentially in D. remota), whereas the main aromatic compound was 4-hydroxy-3-methoxyacetophenone (20.6% and 12.6% in D. cambrensis and D. borreri, respectively) and the main lipid derivative was 1-octen-3-ol with a mushroom-like odor (from 0.4 to 8.3%). Dryopteris species resources are of great interest as a reservoir of odorous and bioactive compounds.

Keywords: Fern, Volatile Organic Compounds, Carota-5,8-diene, (E)-Nerolidol, Phloroglucinols, Filicinic derivatives, 1-Octen-3-ol, Biological activities.

Dryopteridaceae is a subcosmopolitan family including approximately one thousand species and with only two native genera in Western Europe: Dryopteris Adans and Polydictium Roth [1a]. Dryopteris affinis group is constituted in Western Europe by D. affinis (R. Lowe) Fras.-Jenk., D. borreri (Newm.) Newm. ex Oberh. & Tavel, D. cambrensis (Fras.-Jenk.) Beitel & W.R. Buck, the uncommon D. pseudosuisuncta (Tavel ex Fras.-Jenk.) Fras.-Jenk. and a very recently reported species, i.e., the rare D. lacunosa S. Jess., Zemner, Ch. Stark & Bujnoch [1b,1c].

Dryopteris species have been mainly investigated for phloroglucinol derivatives due to their various pharmacological activities for humans and many ethnoveterinary uses, i.e., schistosomicidal, antimicrobial, antitumor, anti-inflammatory and antioxidant properties [2a-2m].

Few Dryopteris species are known having an odor. D. villarii (Bellardi) Schinz & Thell. and D. mindshelkensis Pavlov have a balsamic odor when crushed [3a]. D. aemula (Aiton) O. Kuntze and D. crispsfolia Rashbach, Reichstein & Vida smell like newly mown hay, whereas D. fragrans (L.) Schott has a spicy odor when dry [3b]. Very few data have been recently reported on the volatile organic compounds (VOC) of Dryopteris species and none from the D. affinis group. D. filix-mas (L.) Schott contains in particular (E)-nerolidol (38.7%) with floral, woody or fresh bark odor [4a], acylfilicinic acids and 1-octen-3-ol [4b]. D. dilatata (Hoffm.) A. Gray odor is characterized by (E)-2-hexenal and (Z)-3-hexenol, responsible for the “green odor” and 1-octen-3-ol [4c], whereas the odor of D. fragrans is based on terpenic derivatives such as 10-hydroxy-15-oxo-a-cadinol, albicyan acetate, a-cadinene and albicinal [4d].

Fresh aerial parts of three main species from the D. affinis group, i.e., D. affinis, D. borreri, and D. cambrensis, and three related species, D. oreades Fomin, D. ardechensis Fraser-Jenkins and D. remota (A. Braun ex Döll) Druce were investigated for their volatile profiles using GC-MS. The VOC were identified as previously reported [4b, 4c,4e,4f,5a].

Fifty-three components biosynthesized from the shikimic, lipidic and terpenic pathways were identified from the concentrated diethyl ether extracts of the six Dryopteris species (Table 1).

D. affinis was dominated by a large number of terpenic derivatives (49.5%), i.e., carota-5,8-diene (14.7%; floral, woody or fresh bark note), aristolene (12.8%; flower, sweet odor) [5b], (E)-nerolidol (5.9%; with floral odor), aristol-a(10),8-diene (3.4%), α-selinene (3%); amber type odor or sweet-woody, slightly peppery odor [5c]), β-selinene (2.5%; mild, woody, warm, herbaceous peppery odor) and eremophilene (2.4%). It also contained polyketide derivatives (36.4%) as filinic compounds (19.7%; [5d]), i.e., propionyfilicinic acid (11%) and acetylfilicinic acid (6.7%), and phloroglucinol compounds (16.7%). The main lipid derivative was 1-octen-3-ol (6.9%; mushroom-like odor), well-known for many mushrooms [5e-5g] and, previously reported for ferns, including D. filix-mas and D. dilatata, horsetails and Angiosperms [4b,4c,5a,5h].
The volatile pattern of *D. borreri* was based on polyketide derivatives (45.5%), mainly phloroglucinols (28.8%), i.e., 2,6-dihydroxy-4-methoxybutyrophenone, also named aspidinol (14.6%), 2,6-dihydroxy-4-methoxyvalerophenone (7.2%) and 2,6-dihydroxy-3-methyl-4-methoxypropionophenone (6.7%), as well as filicinic compounds (16.8%), in particular propionylfilicinic acid (7.7%). The investigation indicated a lower amount of terpenic compounds (22.3%). The volatile pattern of *Dryopteris* indicated a lower amount of terpenic compounds (22.3%).
The broad spectrum of volatile components identified in *D. cambrensis* contributed to its complex smell, including isoprenoid, polyketide, aromatic and terpenic derivatives and also an odorous lipid derivative, 1-octen-3-ol. The terpenic profile (32.8%) was based on carota-5,8-diene (12.7%), (E)-nerolidol (12.2%) and eremophilenne (4.4%). The fern also contained a high level of aromatic components (24.8%), mainly 4-hydroxy-3-methoxyacetophenone (20.6%). Table 1 lists the polyketide derivatives (22.3%) divided into flicinic compounds (13.5%), i.e., acetylflicinic acid (4.9%), propionylflicinic acid (4.4%) and butyrylflicinic acid (3.1%), as well as phloroglucinols (8%), mainly 2,6-di-hydroxy-4-methoxyvalerophenone (7%) and aspidinol (1.8%). The main isoprenoids (15.7%) were β-ionone derivatives, i.e., 4-hydroxy-7,8-dihydro-β-ionone (3.1%) and 4-oxo-7,8-dihydro-β-ionone (2.5%), already found in *Dryopteris dilatata* and *Phegopteris connectilis* (Michx) Watt, and in *Gymnocarpium dryopteris* (L.) Newman, respectively [4c].

The volatile content of *D. oreades* was mainly dominated by polyketide derivatives (62.3%), essentially phloroglucinols (53.8%) as 2,6-di-hydroxy-4-methoxy-3-methylbutyrophenone (aspidinol; 19.1%), 2,6-di-hydroxy-4-methoxyvalerophenone (12.9%), 2,4,6-trimethoxypropiophenone (6%) and 2,5-di-hydroxy-4-methoxybutyrophenone (desaspidinol; 2.7%), as well as flicinic components (8.8%), in particular butyrylflicinic acid (4.3%). It should be noted that aspidinol or desaspidinol are well-known for their anthelmintic, anti-tumor and antibacterial properties at very low concentration [6a,6b,2e]. The main terpenes were carota-5,8-diene (18.4%) and (E)-nerolidol (4.3%), and the major lipid derivative was still 1-octen-3-ol (3%).

The major VOCs from *D. ardechensis* were terpenic derivatives (48.5%), i.e., carota-5,8-diene (9.3%), (E)-nerolidol (7.9%), α-selinene (7.8%), aristola-1(10),8-diene (6.6%) and linalool (2.7%; orange flower odor [6c]). It should be noted that eremophilenne, valencene, α- and β-selinene and 7-epi-α-selinene have the same biosynthetic pathway; several of them have antifungal or insecticidal properties [6d-6g]. The polyketide pathway (31.6%) produced three flicinic compounds (23.5%), namely propionylflicinic acid (10.1%), valeroylflicinic acid (5.2%) and butyrylflicinic acid (4.4%), and only one phloroglucinol compound, i.e., 2,6-di-hydroxy-4-methoxyvalerophenone (8.2%). Several isoprenoid derivatives, such as 4-hydroxy-β-ionone (1.4%), 3-oxo-α-ionone (1.2%) and β-ionone (1.1%) with a violet flower odor [6c] were also identified. Six lipid derivatives (3.2%), such as 3-octanol, decanal and 1-octen-3-ol completed the VOC content of *D. ardechensis*.

D. remota showed the highest amount of isoprenoid derivatives (72%), including eleven identified compounds. The VOC profile was widely dominated by 4-hydroxy-5,6-epoxionol (19.1%), 4-oxo-7,8-dihydro-β-ionone (8.1%) and 3-oxo-α-ionol (5.8%; spicy odor). It also contained several odorous C₈ to C₁₀ derivatives (20.7%), such as 1-octen-3-ol (8.3%), 3-hexenoic acid (3.1%; honey odor somewhat waxy fruity and herbal [6h]), nonanal (2.6%; orange and green scent [5j]), 3-octanol (2.5%; mushroom-like odor and butyryl) used in the food, flavor, cosmetic, pharmaceutical, tobacco and perfume industries [6i], and 2-hexenoic acid (2.1%), with a powerful fruity odor. Benzyl alcohol (2.9%; walnut flavor [6j]) and benzaldehyde (1.8%; bitter almond odor [4f]) emphasized the great interest of *D. remota* for aroma and flavor companies. Regarding the eight *Dryopteris* species investigated for VOC (fresh aerial part) in Table 1 and previously by the authors [4b,4c,5a], *D. remota* and *D. dilatata* do not contain any flicinic derivatives, phloroglucinols or (E)-nerolidol.

This paper emphasizes that ferns are novel resources for natural compounds. Table 1 demonstrates that *Dryopteris* species can generate a broad spectrum of VOC for both odorous and bioactive ingredients. Within the former, terpenic compounds with floral, fruity or spicy notes, i.e., linalool, (E)-nerolidol, and ionone derivatives are the main fragrant components required for aroma applications. Within the last, phloroglucinol and flicinic derivatives are of various biological interests for the pharmaceutical as well as the cosmetic and hygiene products industries. Because only aerial parts have been used, intensive culture of ferns may be developed to extract biomolecules from the natural resources without any plant destruction. Natural compounds can also be used for hemisynthesis of di- to polymeric bioactive derivatives. *Dryopteris* species resources are indeed of great interest as candidates for bioactive aroma ingredients and for the discovery of new drugs with various therapeutic applications due to their potential antioxidant, antibacterial and antitumor promoting properties [7a-7d].

Plant material: Fresh aerial parts of ferns were collected as follows: *Dryopteris affinis*: 14/07/2009, Gimel les Cascades (Corrèze), *D. borreri* and *D. cambrensis* 30/05/2010, Saint Etienne Vallée Française, (Ardèche), *D. oreades* 13/07/2011, Murat-le-Quaire, (Puy de Dôme), *D. ardechensis* and *D. remota*: 31/08/2010, Botanical Garden of Strasbourg. Voucher specimens are deposited at the Laboratory of Botany (Faculty of Pharmacy, Limoges, France).

Plant part and GC-MS analyses: Fresh aerial parts of 6 *Dryopteris* species were treated and investigated for volatile organic compounds as previously reported [4b,4c,5a].

Acknowledgments - The authors greatly thank the Botanical Garden of Strasbourg for providing *D. remota* and *D. ardechensis*. The GC-MS analyses were carried out at the Plate-forme d’analyses chimiques en écologie (PACE) / Labex CeMEB (Montpellier, France).

References

Natural Product Communications Vol. 9 (1) 2014 Froissard et al.

Antiplatelet Aggregation Effects of Phenanthrenes from *Calanthe arisanensis*
Chia-Lin Lee, Ming-Hon Yen, Fang-Rong Chang, Chin-Chung Wu and Yang-Chang Wu

83

In Vivo Anti-inflammatory Activity of Some Naturally Occurring O- and N-Prenyl Secondary Metabolites
Francesco Epifano, Salvatore Genovese, Serena Fiorito, Roberto della Loggia, Aurelia Taburo and Silvio Sosa

85

Phomopsolides and Related Compounds from the Alga-associated Fungus, *Penicillium clavigerum*
Andrea A. Stierle, Donald B. Stierle, Grant G. Mitman, Shea Snyder, Christophe Antczak and Hakim Djaballah

87

Qualitative Identification of Dibenzoylmethane in Licorice Root (*Glycyrrhiza glabra*) using Gas Chromatography-Triple Quadrupole Mass Spectrometry
Marisela D. Mancia, Michelle E. Reid, Evan S. DuBose, James A. Campbell and Kimberly M. Jackson

91

Anti-*L. donovani* Activity in Macrophage/Amastigote Model of Palmarumycin CP18 and its Large Scale Production
Humberto E. Ortega, Eliane de Morais Teixeira, Ana Rabello, Sarah Higginbotham and Luis Cubilla-Rios

95

Medelamine C, A New o-Hydroxy Alkylamine Derivative from Endophytic *Streptomyces* sp. YIM 66142
Ju-Cheng Zhang, Ya-Bin Yang, Hao Zhou, Tian-Feng Peng, Fang-Fang Yang, Li-Hua Xu and Zhong-Tao Ding

99

Enzyme-treated *Asparagus officinalis* Extract Shows Neuroprotective Effects and Attenuates Cognitive Impairment in Senescence-accelerated Mice
Takuya Sakurai, Tomohiro Ito, Koji Wakame, Kentaro Kitadate, Takashi Arai, Junetsu Ogasawara, Takako Kizaki, Shogo Sato, Yoshinaga Ishibashi, Tomonori Fujiwara, Kimio Akagawa, Hitoshi Ishida and Hideki Ohno

101

Anticanec Activity of Binary Toxins from *Lysinibacillus sphaericus* IAB872 against Human Lung Cancer Cell Line A549
Wenjuan Luo, Cuicui Liu, Ruijuan Zhang, Jianwei He and Bei Han

107

The Use of Cycleave PCR for the Differentiation of the Rejuvenating Herb Species *Pueraria candollei* (White Kwao Khruea), *Butea superba* (Red Kwao Khruea), and *Mucuna macrocarpa* (Black Kwao Khruea), and the Simultaneous Detection of Multiple DNA Targets in a DNA Admixture
Suchaya Wiriyakarun, Shu Zhu, Katsuko Komatsu and Suchada Sukrong

111

Chemical Compositions and Antimicrobial Activity of the Essential Oils of *Hornstedtia havilandii* (Zingiberaceae)
Siti Ernieyanti Hashim, Hasnah Mohd Sirat and Khong Heng Yen

119

Chemical Composition, Antioxidant and Antimicrobial Activity of Essential Oil and Extracts of *Tragopogon graminifolius*, a Medicinal Herb from Iran
Mohammad Hosein Farzaei, Roja Rahimi, Farideh Attar, Farideh Siavoshi, Parastoo Saniee, Mannan Hajmahmoodi, Tahmineh Mirnezami and Mahnaz Khanavi

121

Antinociceptive and Anti-edematous Activities of the Essential Oils of Two Balkan Endemic *Laserpitium* Species
Višnja Popović, Silvana Petrović, Maja Tomić, Radica Stepanović-Petrović, Ana Micov, Milica Pavlović-Drobac, Maria Couladis and Marjan Niketić

125

Chemical Composition of the Essential Oil from *Croton kimosorum*, an Endemic Species to Madagascar
Delphin J. R. Rabehaja, Harilala Ihandriharison, Panja A. R. Ramanoeina, Rakotonirina Benja, Suzanne Ratsimamanga-Urverg, Ange Bighelli, Joseph Casanova and Félix Tomi

129

Intraspecific Variability of the Essential Oil of *Cladanthus mixtus* from Morocco
Anas Elouaddari, Abdelaziz El Amrani, Jamal JamaelEddine, José G. Barroso, Luis G. Pedro and Ana Cristina Figueiredo

133

Volatile Organic Compounds of six French *Dryopteris* Species: Natural Odorous and Bioactive Resources
Didier Froissard, Sylvie Rapior, Jean-Marie Bessière, Alain Fruchier, Bruno Buitlouis and Françoise Fons

137

Essential Oil Compositions of Two Populations of *Salvia samuelssonii* Growing in Different Biogeographical Regions of Jordan
Ammar Bader, Pier Luigi Cioni, Nunziatina De Tommasi and Guido Flamini

141
Contents

Original Paper

New Guianian-type Sesquiterpene from *Wikstroemia indica*
Mamoru Kato, Yu-Min He, Dya Fita Dibwe, Feng Li, Suresh Awale, Shigetoshi Kadota and Yasuhiro Tezuka

Differences in the Chemical Composition of *Arrica montana* Flowers from Wild Populations of North India
Maria Clauer, Nicola Aiello, Fabrizio Sartezzini, Gabrieilla Innocenti and Stefano Dall’Acqua

A New Duplicaflavone and a Sesquiquinan from *Aglao odorata var. microphylla*
Shuai Liu, Wei Yang, Shou-Bai Liu, Hui Wang, Zhi-Kai Guo, Yan-Bo Zeng, Wen-Hua Dong, Wen-Li Mei and Hao-Fu Dai

New Diterpenes from *Azorella spinosa*
Luís Mastilho, Margarita Gutierrez, Luisa Quesada, Aurelio San-Martin, Luis Espinoza and Patricio Pehailillo

A New Diterpenoid from the Aerial Parts of *Andrographis paniculata*
Chun-Hua Wen, We Li, Rui-Miao Jiang and Guo-Qiang Li

Isolation of a New Anti-inflammatory 20, 21, 22, 23, 24, 25, 26, 27-Octanorecubbitin-type Triterpene from *Ibervillea sonorae*
Angel Jardon-Delgado, Gil Alfonso Magos-Guerrero and Mariano Martinez-Vázquez

Determination of Triterpenic Acids and Screening for Valuable Secondary Metabolites in *Salvia sp.* Suspension Cultures
Sibylle Kümmritz, Christiane Haas, Atanas I. Pavlov, Doris Geib, Roland Ulber, Thomas Bley and Juliane Steingroever

Inhibitory Effect of the Plant *Clusia fluminensis* against Biological Activities of *Bothrops jararaca* Snake Venom
Eduardo Coriolano de Oliveira, Maria Carolina Anholeti, Thaisa Francielle Domingos, Camila Nunes Faioli, Eladio Flores Sanchez, Selma Ribeiro de Paiva and André Lopes Fuly

Chiral Resolution and Absolute Configuration of 3α,6β-Dicinnamoyloxytropane and 3α,6β-Di(1-ethyl-1H-pyrrol-2-ylcarbonyloxy)tropane, Constituents of *Erythroxylum* Species
Marcelo A. Muñoz, Solange Arriagada and Pedro Joseph-Nathan

Apomorphine Alkaloids of *Cinnamomum mollissimum* and their Bioactivities
Fatim Fasihah Masnon, Najmah PS Hassan and Farediah Ahmad

Antifungal Activity of Metabolites from the Marine Sponges *Amphimedon* sp. and *Monanchora arbuscula* against *Aspergillus flavus* Strains Isolated from Peanuts (*Arachis hypogaea*)
Cynthia Arevabini, Yasmin D. Crivelenti, Mariana H. de Abreu, Atanas I. Pavlov, Doris Geib, Roland Ulber, Thomas Bley and Juliane Steingroever

Synthesis of *Sepiapterin-C* via Hydrolysis of 6-Ethynylpteridine
Winston Nkumalo and Andrew Dinsmore

Flavonoids Produced by Tissue Culture of *Dracaena cambodiana*
Hui Wang, Guanyong Luo, Jiayuan Wang, Haian Shen, Ying Luo, Hao-Fu Dai and Wen-Li Mei

Determination of Catechins from *Elephantorrhiza elephantina* using Voltammetry and UV spectroscopy
Smart J. Mpofo, Otumayo A. Arotiba, Lemato Hlekelele, Derek T. Ndimet and Rui W.M. Krause

In *vitro* Antioxidant Activity, Phenolic Compounds and Protective Effect against DNA Damage Provided by Leaves, Stems and Flowers from *Portulaca oleracea* (Purslane)
Rubén Silva and Isabel S. Carvalho

In *Vitro* Antiviral Activity of a Series of Wild Berry Fruit Extracts against Representatives of *Picorna*, *Orthomyxo* and *Paramyxoviridae*
Lubomira Nikolaeva-Glomb, Luchia Mukova, Nadya Nikolova, Ilian Badjakov, Ivanlaya Dincheva, Violeta Kondakova, Lyuba Doumanova and Angel S. Galabov

Induction of Apoptosis and Cell Cycle Arrest in Human Colon Carcinoma Cells by *Corema album* Leaves
Antonio J. León-González, Margaret M. Manson, Miguel López-Lázaro, Inmaculada Navarro and Carmen Martín-Cordero

How to Deal with Nomenclatural Ambiguities of Trivial Names for Natural Products? – A Clarifying Case Study Exemplified for "Corymbosin"
Vatsavaya Ramabharathi and Wolfgang Schuehly

Chromatographic Analysis and Antioxidant Capacity of *Tabernaemontana catharinensis*
Aline A. Boligon, Mariana Piana, Thiago G. Schawnz, Romaiana P. Pereira, João B. T. Rocha and Margaret L. Athayde

Simultaneous Determination of 13 Chemical Marker Compounds in Gwakhyangjeonggi-san, a Herbal Formula, with Validated Analytical Methods
Jung-Hoon Kim, Hyeon-Kyu Shin and Chang-Seob Seo

Single Crystal X-ray Diffraction, Spectroscopic and Mass Spectrometric Studies of *Furanocoumarin* Peucedanin
Magdalena Bartnik, Marta Arczewska, Anna A. Hoser, Tomasz Mroczek, Daniel M. Kamiński, Kazimierz Owinski, Krzysztof Woniewski

8-Hydroxycurdaxanthone G Suppresses IL-8 Production in SP-C1 Tongue Cancer Cells
Arlette S. Setiawan, Roosje R. Oewen, Supriatno, Willyanti Soewondo, Sidik and Unang Supratman

Antiausterity Activity of Arctigenin Enantiomers: Importance of (2R,3R)-Absolute Configuration
Suresh Awale, Mamoru Kato, Dya Fita Dibwe, Feng Li, Chika Miyoshi, Hiroyasu Esumi, Shigetoshi Kadota, and Yasuhiro Tezuka