Pteridaceae Fragrant Resource and Bioactive Potential: A Mini-review of Aroma Compounds
Françoise Fons, Didier Froissard, Sylvie Morel, Jean-Marie Bessiere, Bruno Buatois, Vincent Sol, Alain Fruchier, Sylvie Rapior

To cite this version:

HAL Id: hal-02194151
https://hal.umontpellier.fr/hal-02194151
Submitted on 25 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EDITORS
PROFESSOR MAURIZIO BRUNO
Department STEBCEF,
University of Palermo, Viale delle Scienze,
Parco d’Orléans II - 90128 Palermo, Italy
maurizio Bruno@unipa.it

PROFESSOR CARMEN MARTIN-CORDERO
Department of Pharmacology, Faculty of Pharmacy,
University of Seville, Seville, Spain
carmenmc@us.es

PROFESSOR VLADIMIR I. KALININ
G.B. El'yakov Pacific Institute of Bioorganic Chemistry,
Far Eastern Branch, Russian Academy of Sciences,
Pr. 100-letnya Vladivostoka 159, 690022,
Vladivostok, Russian Federation
kalinin@piboc.dvo.ru

PROFESSOR YOSHIHIO MIMAKI
School of Pharmacy,
Tokyo University of Pharmacy and Life Sciences,
Hortensuicho 1412-1, Hachiouji, Tokyo 192-0392, Japan
mimaki@gs.tuat.ac.jp

PROFESSOR STEPHEN G. PYNE
Department of Chemistry, University of Wollongong,
Wollongong, New South Wales, 2522, Australia
spyne@uow.edu.au

PROFESSOR MANFRED G. REINECZE
Department of Chemistry, Texas Christian University,
Fort Worth, TX 76129, USA
m.reinecke@tcu.edu

PROFESSOR WILLIAM N. SETZER
Department of Chemistry, The University of Alabama in Huntsville,
Huntsville, AL 35809, USA
wsetzer@chemistry.uah.edu

PROFESSOR PING-JYUN SUNG
National Museum of Marine Biology and Aquarium
Chuecheng, Pingtung 944
Taiwan
pjsung@nmmba.gov.tw

PROFESSOR YASUHITO TEZUKA
Faculty of Pharmaceutical Sciences, Hokuriku University,
Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
y-tezuka@hokuriku-u.ac.jp

PROFESSOR DAVID E. THURSTON
Institute of Pharmaceutical Science
Faculty of Life Sciences & Medicine
King’s College London, Britannia House
7 Trinity Street, London SE1 1DB, UK
david.thurston@kcl.ac.uk

PROFESSOR YASUHIRO ASAKAWA
Tokushima, Japan

PROFESSOR GERALD BLUNDEN
The School of Pharmacy & Biomedical Sciences,
University of Portsmouth,
Portsmouth, PO1 2DT U.K.
azaf64@dsl.pipex.com

PROFESSOR NORBERT ARNOLD
Halle, Germany

PROFESSOR CHRISTIAN STEPHAN
Vienna, Austria

PROFESSOR SHOEI-SHENG LEE
Taipei, Taiwan

PROFESSOR KAZUO HAGIWARA
Niigata, Japan

PROFESSOR CHISTOPHER HOBMANN
Szeged, Hungary

PROFESSOR PER HANSON
Oslo, Norway

ADVISORY BOARD
Prof. Giovanni Appendino
Novara, Italy

Prof. Norbert Arnold
Halle, Germany

Prof. Yoshinori Asakawa
Tokushima, Japan

Prof. Vassaya Bankova
Sofia, Bulgaria

Prof. Roberto G. S. Berlinek
São Carlos, Brazil

Prof. Anna R. Bill
Florence, Italy

Prof. Geoffrey Cordell
Chicago, IL, USA

Prof. Fatih Demirci
Eskişehir, Turkey

Prof. Francesco Epifano
Chieti Scalo, Italy

Prof. Ana Cristina Figueiredo
Lisbon, Portugal

Prof. Cristina Gracia-Viguer
er Mucurca, Spain

Dr. Christopher Gray
Saint John, NB, Canada

Prof. Dominique Guillaum
Rennes, France

Prof. Duvvuru Gunasekar
Tirupati, India

Prof. Hisahiro Hagihara
Niigata, Japan

Prof. Judith Habermann

Prof. Tatsuka Iwashina
Tokuha, Japan

Prof. Leopold Jirovetz
Vienna, Austria

Prof. Phan Van Kiem
Hanoi, Vietnam

HONORARY EDITOR
PROFESSOR DAVID E. THURSTON
University of Portsmouth, Portsmouth, PO1 2DT U.K.

PROFESSOR YASUHIRO ASAKAWA
Tokushima, Japan

Prof. Hartmut Laatsch
Gottingen, Germany

Prof. Marie Lacaille-Dubois
Dijon, France

Prof. Soei-Sheng Lee
Taipei, Taiwan

Prof. M. Soledade C. Pedras
Saint John, NB, Canada

Prof. Ping Jyun Sung
Huntsville, AL USA

Prof. Hartmut Laatsch
Gottingen, Germany

Prof. Norbert Arnold
Halle, Germany

Prof. Yoshinori Asakawa
Tokushima, Japan

Prof. Vassaya Bankova
Sofia, Bulgaria

Prof. Roberto G. S. Berlinek
São Carlos, Brazil

Prof. Anna R. Bill
Florence, Italy

Prof. Geoffrey Cordell
Chicago, IL, USA

Prof. Fatih Demirci
Eskişehir, Turkey

Prof. Francesco Epifano
Chieti Scalo, Italy

Prof. Ana Cristina Figueiredo
Lisbon, Portugal

Prof. Cristina Gracia-Viguer
er Mucurca, Spain

Dr. Christopher Gray
Saint John, NB, Canada

Prof. Dominique Guillaum
Rennes, France

Prof. Duvvuru Gunasekar
Tirupati, India

Prof. Hisahiro Hagihara
Niigata, Japan

Prof. Judith Habermann

Prof. Tatsuka Iwashina
Tokuha, Japan

Prof. Leopold Jirovetz
Vienna, Austria

Prof. Phan Van Kiem
Hanoi, Vietnam

INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproductus.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2017 subscription price: US$2,595 (Print, ISSN# 1934-578X); US$2,595 (Web edition, ISSN# 1555-9475); US$2,995 (Print + single site online); US$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Seven ferns of *Pteridaceae*, grown in a botanical garden or wild, harvested in France were investigated for their Volatile Organic Compounds (VOC) profile using GC-MS. *Adiantum pedatum* L., *Adiantum peruvianum* Klotzsch, *Anogramma leptophylla* (L.) Link, *Cheilanthes madereensis* Lowe, *Cryptogramma crispa* (L.) R. Br., *Pteris cretica* L. and *Pteris vittata* L. Fifty-three VOC biosynthesized from lipidic, shikimic, terpenic and carotenoid pathways were identified. The two *Adiantum* species show different VOC composition. The main linalool (10.8%) in *A. pedatum* has several biological activities of great interest. This Maidenhair fern contains the highest proportion (57.9%) of isoprenoid flavor precursors, i.e., ionone derivatives with various scent notes. The two major odorant unsaturated hexenoic acids derivatives of *A. peruvianum* are used as flavouring agents. *Anogramma leptophylla* concentrates 6-methoxymellein (71.5%), a bitter phytoalexin which contributes to stress or pathogen resistance. *Cheilanthes madereensis* produces mainly coumarin (89%) and vanillin (5.5%) with a low odor detection threshold, both used in perfumery and cosmetic industry or as flavouring agent and drug additives. *Cryptogramma crispa* accumulates a broad-spectrum of carotenoid derivatives (52.1%) and three major shikimic derivatives: the spicy 4-vinylguaiacol (flavouring agent), the floral phenylethanal and benzyl alcohol with floral, balsamic scent. *Pteris cretica* accumulates mostly furan derivatives, i.e., 5-hydroxymethylfurfural (33.2%) and 3-hydroxy-2,3-dihydroxymalonal (18.3%) used as food and beverage additives with caramel or roasted flavour and also found in fortified wines, toasty or heat-treated foods. *Pteris vittata* produces predominantly shikimic derivatives applied in perfumery and food industries as benzaldehyde (26%, with almond scent), benzyl alcohol (22%, floral fruity balsamic scent), nonanal (19.8% cucumber note) and phenylethanal (11%; floral note). *Pteridaceae* resources are of great interest as a reservoir of odorous and bioactive compounds.

Keywords: Benzaldehyde, Coumarin derivatives, Furan derivatives, Linalool, 6-Methoxymellein, Nonanal, 4-Vinylguaiacol.

During the last decades several studies have been carried out regarding the biological properties of *Pteridaceae*: an antioxidant activity was detected in *Adiantum trapeziformium* L. and *C. tenuifolia* [2a,b] and antimicrobial compounds were characterized in *Pteris vittata* L. and *Pteris biaurita* L. [2c,d], Biological activities involved in metabolic syndrome and anti-tumor activity were investigated for *P. vittata* [2e,f]. The impact of heavy metals on antioxidant polyphenols of this hyperaccumulator fern was also analysed [2g]. In addition, an anti-tumor activity was detected in *Pteris semipinnata* L. and *Pteris multifida* [2h,i], while an aqueous extract of *Pteris ensiformis* demonstrates an immunomodulatory activity [2j].

Very few *Pteridaceae* are known having an odor [3a]: only *Adiantum pantadactylon* Langsd. & Fisch. and *Pteris tremula* R. Br. are reported to smell tom cat urine. *Pteris multifida* has an acid and biting flavour whereas *Adiantum pedatum* has a slightly aromatic odor.
With a view to continue our study of Volatile Organic Compounds (VOC) with bioactive potential, fresh aerial parts of seven ferns of Pteridaceae harvested in France were investigated for their VOC profile using GC-MS: Adiantum pedatum L., Adiantum peruvianum, Klotzsch, Anogramma leptophylla (L.) Link, Cheilanthes maderensis Lowe, Cryptogramma crispa (L.) R. Br., Pteris cretica L. and Pteris vittata L.

In the concentrated diethyl ether extracts of the seven species, fifty-three components biosynthesized from lipidic, shikimic, terpenic and carotenoid pathways were identified (Table 1). The volatile fraction of the ferns represents about 0.01% of the fresh aerial materials.

Twenty volatile compounds were identified in Adiantum pedatum. Lipidic derivatives are mainly represented by 1-octen-3-ol (5%) responsible for the mushroom-like odor and flavor [3b-d] but also found in many plants [3e-g]. This fatty alcohol is valuable to perfume and food industries [3h, 4a,b] and more recently proposed for mosquito control as an insect attractant [4c,d]. Benzyl alcohol gives insect repellent property as well as anxiolytic, anti-depressant, anti-nociceptive, anti-inflammatory, anti-cancer and anti-angiogenic activities [4e].

Table 1: Percentage of volatile organic compounds in fresh aerial part of seven species of Pteridaceae.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Adiantum pedatum</th>
<th>Adiantum peruvianum</th>
<th>Anogramma leptophylla</th>
<th>Cheilanthes maderensis</th>
<th>Cryptogramma crispa</th>
<th>Pteris cretica</th>
<th>Pteris vittata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipidic derivatives</td>
<td>RI</td>
<td>50</td>
<td>54.6</td>
<td>76.8</td>
<td>1.0</td>
<td>6.3</td>
<td>49.9</td>
</tr>
<tr>
<td>Furfural</td>
<td>840</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furfuryl alcohol</td>
<td>910</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Methylfurfural</td>
<td>965</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Octen-3-ol</td>
<td>976</td>
<td>5.6</td>
<td>3.9</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3-Octanedione</td>
<td>929</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Octanone</td>
<td>990</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-Dehydro-β-ionol</td>
<td>1043</td>
<td>23.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-Dehydro-7,8-dihydro-β-ionone</td>
<td>1067</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-Dehydro-7,8-dihydro-β-ionone</td>
<td>1043</td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furaneol</td>
<td>1083</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonanol</td>
<td>1107</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>1.0</td>
<td>0.7</td>
<td>1.6</td>
</tr>
<tr>
<td>2-Hydroxy-β-ionone</td>
<td>1277</td>
<td>33.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Hydroxy-β-ionone</td>
<td>1903</td>
<td>71.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Hydroxy-3-methoxyacetophenone</td>
<td>1907</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Methoxy-6-prenylcoumarin (suberosin)</td>
<td>1947</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Methylfurfural</td>
<td>1980</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shikimic derivatives</td>
<td>13.9</td>
<td>12.1</td>
<td>22.1</td>
<td>95.9</td>
<td>40.2</td>
<td>26.1</td>
<td>69.4</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>669</td>
<td>7.7</td>
<td>3.3</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>1034</td>
<td>4.6</td>
<td>6.1</td>
<td>12.2</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylethanal</td>
<td>1045</td>
<td>1.9</td>
<td>1.0</td>
<td>8.8</td>
<td>0.8</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>Acetophenone</td>
<td>1085</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Phenylethanol</td>
<td>1118</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylcarboxaldehyde</td>
<td>1169</td>
<td>18.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Enethyl-2-methoxyphenol</td>
<td>1316</td>
<td>10.0</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aromatic alcohols</td>
<td>1320</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3-Dihydrocarcin</td>
<td>1389</td>
<td>1.1</td>
<td>0.3</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Hydroxy-3-methoxybenzaldehyde (vanillin)</td>
<td>1402</td>
<td>1.6</td>
<td>1.7</td>
<td>3.5</td>
<td>3.5</td>
<td>1.9</td>
<td>6.1</td>
</tr>
<tr>
<td>Coumarin</td>
<td>1441</td>
<td>1.2</td>
<td>7.8</td>
<td>89.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Hydroxybenzoic acid</td>
<td>1575</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hydroxy-3-methoxybenzoic acid (vanillic acid)</td>
<td>1603</td>
<td>2.1</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Hydroxy-3-methoxycoumarin</td>
<td>1743</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,5-Dimethoxycoumarin (scoparone)</td>
<td>1775</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linalool</td>
<td>1970</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terpenic derivatives</td>
<td>21.9</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Linalool</td>
<td>1102</td>
<td>10.8</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z)-2,6-Dihydroxy-3,6-dimethyl-7-octadiene</td>
<td>1194</td>
<td>4.6</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dimethyl-3,5,7-octatriene-2-ol (E,E,E)</td>
<td>1212</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,7-Dimethoxycoumarin (scoparone)</td>
<td>1330</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carotenoid derivatives</td>
<td>57.9</td>
<td>28.3</td>
<td>0.0</td>
<td>1.9</td>
<td>52.1</td>
<td>22.8</td>
<td>0.5</td>
</tr>
<tr>
<td>3,4-Dehydro-7,8-dihydro-β-ionone</td>
<td>1411</td>
<td>2.4</td>
<td>1.6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-ionone</td>
<td>1428</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1</td>
<td>1434</td>
<td>1.2</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>1457</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-Dehydro-β-ionone</td>
<td>1475</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-ionone</td>
<td>1477</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1</td>
<td>1486</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-Methyl-α-ionone</td>
<td>1492</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>1520</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dihydroactinidiol</td>
<td>1527</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-Methyl-α-ionone</td>
<td>1548</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1</td>
<td>1580</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E,E)-Pseudoionone</td>
<td>1584</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>1665</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1</td>
<td>1668</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Hydroxy-β-damascone</td>
<td>1610</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Hydroxy-β-ionol</td>
<td>1630</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Hydroxy-7,8-dihydro-α-ionol</td>
<td>1633</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-Methyl-α-ionol</td>
<td>1637</td>
<td>5.9</td>
<td>0.6</td>
<td>9.2</td>
<td>2.5</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>3-Oxo-α-ionol</td>
<td>1650</td>
<td>4.9</td>
<td>1.2</td>
<td>0.3</td>
<td>5.2</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>4-Hydroxy-7,8-dihydro-β-ionone</td>
<td>1651</td>
<td>3.6</td>
<td>3.1</td>
<td>6.8</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Hydroxy-7,8-dihydro-β-ionone</td>
<td>1654</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Hydroxy-7,8-dihydro-β-ionol</td>
<td>1675</td>
<td>13.4</td>
<td>3.2</td>
<td>1.6</td>
<td>1.1</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>3-Hydroxy-7,8-dihydro-β-ionol</td>
<td>1678</td>
<td>2.9</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Hydroxy-7,8-dihydro-β-ionol</td>
<td>1691</td>
<td>6.5</td>
<td>4.4</td>
<td>12.2</td>
<td>1.6</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>3-Hydroxy-7,8-dihydro-β-ionol</td>
<td>1693</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Oxo-β-6-hydroxy-α-ionol</td>
<td>1796</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Relative percentage of the VOC based on the GC-MS chromatographic area; ^RI = Retention Indices on SLB™-5MS column (Supelco); ^NI = Non Identified
inflammatory, antioxidant, antifungal, antibacterial, antiparasitic, antitumoral activities [4e-i]. This fern contained the highest proportion of isoprenoid flavor precursors (57.9%), i.e., mainly (E,E)-pseudoionone (11%) with odor descriptors as sweet, waxy, citrus, floral balsamic, spicy [4a], 4-hydroxy-5,6-epoxy-ionol (13.4%), 3-hydroxy-5,6-epoxy-β-ionone (6.5%) and 9-methyl-α-ionol (5%).

Adiantum pervianum showed a VOC profile based on twenty-nine compounds, radically different from the previous *Adiantum* species: lipidic derivatives (54.6%) were mainly represented by (E)-3-hexenoic acid (23.3%) with honey odor and waxy, fruity or herbal notes [4a], (E)-2-hexenoic acid (19%) with fruity odor and 1-octen-3-ol (7.1%) with mushroom-like scent. The two major odorant hexenoic acids, used as flavouring agents, were previously found in other ferns such as *Athyrium filix-femina*, *Gymnocarpium dryopteris*, *Polystichum setiferum*, *Pteridium aquilinum* [5a,b] and plant allies (*Equisetum palustre*) [5c] but not in *Adiantum capillus-veneris*. In Venus-hair fern, (E)-2-decenal, lauric amide or (E)-2-heptenal were found in high quantities with a plastic or oxidized mutton fat odor [5a], also responsible for the unpleasant scent of "stink bug". The VOC profiles of the three species of *Adiantum* are therefore different.

Carotenoid derivatives of *A. pervianum* (28.3%) were composed by small amounts of α-ionone, β-ionone and ionone derivatives, i.e., 3-hydroxy-5,6-epoxy-β-ionone. The VOCs from the shikimic pathway (12.1%) were represented by few compounds including benzyl alcohol (4.6%) also described in *A. pedatum* (Table 1) as well as 2-phenylethanol, vanillin or coumarin previously found in *A. pedatum*, *A. pervianum* and *A. trapeziforme* [5d]. Three minor terpenic compounds including limonol were also identified in *A. pervianum* (3.4%). This second *Adiantum* species, as well as the previously analysed Venus-hair fern, produced small amounts of terpenic derivatives. The five other ferns analysed in this work and belonging to four other genera of *Pteridaceae* did not produce any terpenic derivatives.

Ten VOCs were detected from *Anogramma leptophylla*. The volatile pattern was mainly based on lipidic derivatives (76%), i.e., the major 6-methoxyxemelien (71.5%) and the minor 6-hydroxymelien (1.8%) which are 3,4-dihydroisocoumarins. The former is a polyketide-derived phytalexin well-known in the carrot and would contribute to pathogen or stress resistance. It is the first compound related to the bitterness of the carrot and its content varies in the commercial products with storage and processing conditions [6a-c]. Dihydroisocoumarins have been isolated from other plants species and also from macrofungi [6d,e]. The others VOC isolated from *A. leptophylla* were shikimic derivatives (22.1%), i.e., benzaldehyde (7.7%) widespread in plants and mushrooms with bitter almond odor and coumarin (7.8%) with pleasant scent. These VOCs are two aroma agents commonly used in perfume, cosmetic and food industries.

The volatile content of *Cheilanthus maderensis* was mainly dominated by shikimic derivatives (95.9%) essentially coumarin (89%. hay and dried herb odor), 3,4-dihydrocoumarin (3.4%; bay-like, herbal, coconut note) and vanillin (3.5%; vanilla, sweetish smell) usually used in perfume and food industries [3h, 4a,b]. Such high content of coumarin and coexistence of its dihydro derivative as natural products are very rare. Recently, a Japanese group reported the similar data from the bryophyte, *Takakia leptiodzioides* [3i], as those reported in the present paper. At the same time, chemophylogenetic relationship between both phyla (Pteridophytes and Bryophytes) has been fully discussed [3j].

The broad spectrum of volatile components identified in *Cryptogramma crispa* showed a VOC profile including nineteen identified compounds. Table 1 lists major carotenoid derivatives (52.1%), i.e., 3-hydroxy-5,6-epoxy-ionone, 9-methyl-α-ionol, 8-methyl-α-ionone, 4-hydroxy-7,8-dihydro-β-ionone and 3-oxo-α-ionol. Shikimic derivatives (40.2%) are mainly represented by three VOCs. 4-Ethenyl-2-methoxyphenol also called 2-methoxy-4-vinylphenol or 4-vinylguaic (10%) with powerful, clove-like, spicy, smoky odor is also a flavouring agent and a pheromone for insects [4b, 7a]. It was previously found in a horsetail, *Equisetum telmateia* [5c]. Phenylethanol (8.8%) with floral odor (lilac, hyacinth, geranium; [3b, 4b]) was also identified in other ferns and plant allies (*Athyrium filix-femina*, *Blechnum spicant*, *Phegopteris connectilis*, *Equisetum scirpioides*) [5a-c]. The third shikimic derivative was benzyl alcohol (6.1%) with floral or balsamic odor. Only 1-octen-3-ol from lipidic pathway was identified in a significant amount (Table 1).

Table 1 lists a broad spectrum of VOCs for *Pteris cretica* based on twenty-seven identified components mainly lipidic derivatives (49.9%), shikimic derivatives (26.1%) and carotenoid derivatives (22.8%) in low amounts. Only two VOCs were abundant as 5-hydroxyxymethylfurfural (33.2%) and 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (18.3%). The major 5-hydroxyxymethylfurfural is described with odor of camomile flowers (or butter, caramel, musty) while the four others furan derivatives (10%) have various descriptors [8a-d] as furfural (almond, woody, sweet, toasty), furfuryl alcohol (faint burning odor), furaneol (sweet, caramel, pineapple, strawberry) and 5-methylfurfural (caramel, almond, spicy, sweet, roasty). These compounds usually found in fortified wines, in roasted, toasted or heat-treated foods and drinks, are produced, in particular, by sugar alteration (Maillard reaction). Suspected but not proved to be carcinogenetic, they contribute to caramel aroma and colour in food additives [8e-h]. 3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (or 3-hydroxy-2,3-dihydromaltol 18.3%, Table 1), the second major VOC exhales an odor with tasty character and fruity-caramel overtones [7a].

Pteris cretica was the single species of the seven analysed ferns with a high level of furanoc and furfural derivatives (43.2%, Table 1) whereas the others (in particular *P. vitatta*) contain none at all. Furan derivatives were not found in *A. capillus-veneris*, another species from *Pteridaceae* previously studied [5a]. However, ferns species from other families may also produce furan derivatives in small amounts, i.e., *Pteridium aquilinum*, *Asplenium trichomanes*, and the twelve species of the *Asplenioideae* family [5b,9a]. Other authors found furan derivatives in coalified *Trigonocarpus grandis* [9b] or in aerial parts and rhizomes of current species of ferns: *Angiopteris esculenta*, *Cibotium barometz*, *Coniogramme japanica*, *P. aquilinum*, and five species of *Polypodiaceae* [9c-g].

Pteris vitatta revealed a VOC fraction very different from that of *P. cretica* with a low diversity (ten volatile compounds), barely any carotenoid derivatives and a majority of shikimic derivatives (69.4%) with the three major odorant benzaldehyde (26%; bitter almond scent), benzyl alcohol (22%; floral notes) and phenylethanol (11%; sweet odor of hyacinth-type). These three VOCs were also detected in five others ferns of the same family analysed in this work but in lower amounts. Lipidic derivatives were represented by nonanal (19.8%; floral-waxy note, [7a]) and 1-octen-3-ol (9.5%; fungal aroma, [3b-d]) recently reported as antifungal agent [10a] and attractant for *Anopheles* and *Aedes* mosquitoes, repellent to *Culex quinquefasciatus* [10b], respectively.
This paper demonstrates that *Peridiecaceae* can generate a broad spectrum of VOCs for both odorous and bioactive ingredients. Within the former, lipidic derivatives, terpenic compounds and ionone derivatives with fruity odor, herbal scent or floral notes, are the main fragrant components required for cosmetic and hygiene products industries as well as aroma applications: it should be noted that surprising high amount of furan derivatives with caramel or roasty flavor was detected to be used as food additives. Within the last, coumarin derivatives are of various biological interests for pharmaceutical industry in plant protection products. *Peridiecaceae* species resources are potential candidates for bioactive aroma ingredients and for the discovery of new drugs with various therapeutic applications due to their potential anti-inflammatory [10c] and antitumor [10d] promoting properties.

Experimental

Plant material: Fresh aerial parts of ferns were collected in France, as follows: *Pteris cretica, P. vittata and Adiantum peruvianum:* 31/08/2010, Botanical Garden of Strasbourg; *Cryptogramma crispa:* 01/09/2010, Botanical Garden of Nancy; *Adiantum pedatum:* 01/09/2010, Botanical Garden of Col de Saverne; *Anogramma leptophylla:* 14/04/2010, Le Lavandou (Var);

Chelanthes madereins: 13/04/2010, Rayol-Canadel-sur-Mer (Var); Voucher specimens are deposited at the Laboratory of Botany (Faculty of Pharmacy, Limoges, France).

Plant part and GC-MS analyses: Fresh aerial parts of ferns were cubed and extracted with diethyl ether (Carlo Erba, 6 ppm BHT). After one week of maceration at room temperature, the concentrated organic extracts were used for Gas Chromatography Mass Spectrometry (GC-MS) analyses as reported in the literature [5a-c]. The main volatile components of *Peridiecaceae* were identified by comparison with National Institute of Standards and Technology Mass Spectral Library [11a-b]. Internal standards (α-alkanes) were used as reference points in the calculation of relative retention indices. GC-MS analyses were performed at the « Plateforme d’Analyses Chimiques en Ecologie », technical facilities of the LabEx CeMEB (Centre Méditerranéen pour l’Environnement et la Biodiversité).

Acknowledgments – The authors greatly thank the Botanical Garden of Col de Saverne for providing *Adiantum pedatum*, the Botanical Garden of Strasbourg for providing *Adiantum peruvianum*, *Pteris cretica* and *Pteris vittata*, and the Botanical Garden of Nancy for providing *Cryptogramma crispa*.

References

Bioactive aroma compounds of Pteridaceae

Natural Product Communications Vol. 13 (5) 2018 655

Element Content is a Highly Reliable Marker for Niche Vegetable Oils
Faez Mohammed, Dom Guillaume, Nada Abdulwali, Rahma Bchitou, Souad El Hajjaji and Ahmed Bouhaouss 609

Bentonite as a Refining Agent in Waste Cooking Oils Recycling: Flash Point, Density and Color Evaluation
Alberto Mannu, Gina Vlahopoulou, Veronica Sireus, Giacomo Luigi Petretto, Gabriele Mulas and Sebastiano Garroni 613

Chemical Composition of the Essential Oils of *Pogostemon auricularius*, a Vietnamese Medicinal Plant
Prabodh Satyal, Nguyen Thi Hong Chuong, Van The Pham, Nguyen Huy Hung, Vu Thi Hien and William N. Setzer 617

Comparative Chemical Profiles of Essential Oil Constituents of Eight Wild *Cinnamomum* Species from the Western Ghats of India
Ramamoorthy Ananthakrishnan, Ettickal. S. SanthoshKumar and Koranappallil B. Rameshkumar 621

Constituents of Essential Oils from *Dasymaschalon bachmaensis* and *Phaeanthus vietnamensis*
Le T. Huong, Dao T.M. Chau, Ly N. Sam, Tran D. Thang, Do N. Dai and Isiaka A. Ogunwande 627

Antileishmanial Potentialities of *Croton lineatris* Leaf Essential Oil
Jesús García Díaz, Julio César Escalona Arranz, Denise da Gama Jaén Batista, Lianet Monzote Fidalgo, Jorge de la Vega Acosta, Maira Bidar de Macedo and Paul Cos 629

Circadian Rhythm, and Antimicrobial and Anticholinesterase Activities of Essential Oils from *Vitex gardneriana*
Evaristo Jose Pires Pereira, Jean Parcelli Costa do Vale, Priscila Teixeira da Silva, Joyce dos Reis Lima, Daniela Ribeiro Alves, Patricia Silva Costa, Tigressa Helena Soares Rodrigues, Jane Eire Silva Alencar de Menezes, Selene Maia de Morais, Paulo Nogueira Bandeira, Raquel O.S. Fontenelle and Hélcio Silva Santos 635

Antiacne-causing Bacteria, Antioxidant, Anti-Tyrosinase, Anti-Elastase and Anti-Collagenase Activities of Blend Essential Oil comprising Rose, Bergamot and Patchouli Oils
Nuntapol Wongsukkasem, Orawan Soynark, Montira Suthakitmanus, Emprang Chongdiloet, Chidchanok Chairattanapituk, Peamjit Vattanakitiri, Tapanee Hongratananaworakit and Sarin Tadtong 639

Accounts/Reviews

Tubeimoside-1, Triterpenoid Saponin, as a Potential Natural Cancer Killer
Muhammad Zafar, Iqra Sarfraz, Azhar Rasul, Faiza Jabeen, Khizar Samiullah, Ghulam Hussain, Ammara Riaz and Muhammad Ali 643

Pteridaceae Fragrant Resource and Bioactive Potential: a Mini-review of Aroma Compounds
Françoise Fons, Didier Froissard, Sylvie Morel, Jean-Marie Bessière, Bruno Buatois, Vincent Sol, Alain Fruchier and Sylvie Rapior 651
Contents

Gerald Blunden Award (2017)
Molecular Insights of Hyaluronic Acid as Potential Source of Polymer-Drug Conjugate in the Target-Mediated Treatment of Cancer
Gnanendra Shanmugam, Rajesh Salem Varadharajan, Desika Prabakar, Syed Mohammed, Sathiyapriya Renganathan, Murano Erminio and Vincent Aroulmoji
513

Original Paper

Sesquiterpene Lactones and Phenols from Polyfollicles of Magnolia vovidessi and their Antimicrobial Activity
Thalía Ramírez-Reyes, Juan L. Monribot-Villanueva, Oscar D. Jiménez-Martínez, Ángel S. Aguilar-Colorado, Israel Bonilla-Landa, Norma Flores-Estévez, Mauricio Luna-Rodríguez and José A. Guerrero-Anacle
521

Chemical Composition and Antiinflammatory Potential of Plinia edulis Fruits Peels
Luciane Angela Nottar Nescello, Adriana Campos, Karla Capistrano, Fátima de Campos Buzzi and Valdir Cechinel Filho
527

Two New Antidepressant Steroidal Aglycones from Stephanotis mucronata
Shu-juan Hao, Li-juan Gao, Shi-fang Xu, Yi-ping Ye and Xiao-ya Li
531

Strechnusinal, A New Alkaloid from Strechnos nux-blanda Fruits
Jirapast Sichaem, Santi Tip-pyang, Kiattisak Lugsanangarm and Lien Do Thi My
533

Chemical Constituents of the Different Parts of Colchicum micranthum and C. chalcedonicum and their Cytotoxic Activities
Gizem Gulsoy-Toplan, Fatih Goger, Ayca Yildiz-Pekoz, Simon Gibbons, Gunay Sariyar and Affife Mat
535

Hairy Root Cultures of Euclea longifolia and Production of Anti-inflammatory 9-Methoxyanthacin-6-one
Trang Thu Tran, Nam Trung Nguyen, Ngoc Bich Pham, Huy Nhat Chu, Trong Dinh Nguyen, Tadamitsu Kishimoto, Minh Van Chau and Ha Hoang Chu
539

Eliciting Effect of Catharanthine on the Biosynthesis of Vallesiachotamine and Isovallesiachotamine in Catharanthus roseus Cambial Meristematic Cells
Jianhua Zhu, Shuijie He, Pengfei Zhou, Jiachen Zi, Jincai Liang, Liyan Song and Rongmin Yu
543

Anti-inflammatory Effect of Pratol in LPS-stimulated RAW 264.7 Cells via NF-κB Signaling Pathways
You Chul Chung, Sung-Min Park, Jin Hwa Kim, Geun Soo Lee, Jung No Lee and Chang-Gu Hyun
547

Flavonoid Aglycones and Glycosides from the Leaves of some Japanese Artemisia Species
Ayumi Uehara, Kazuhide Shimoda, Yoshinori Murai and Tsukasa Iwashina
551

LC-MS Identification of Proanthocyanidins in Bark and Fruit of six Terminalia species
Awanitka Singh, Sunil Kumar and Brijesh Kumar
555

Protective Effects of Compounds in Bombax ceiba flower on Benzo[a]pyrene-Induced Cytotoxicity
Souichi Nakashima, Yoshimi Oda, Yuki Ogawa, Kei Nakamura, Miyako Uno, Mariko Kishimoto, Masayuki Yoshikawa and Hisashi Matsuda
561

Antioxidant and Cosmeceutical Activities of Agarum cribrosum Phlorotannin Extracted by Ultrasound Treatment
Kasira Phasanasophon and Sang Moo Kim
565

Bioactive Metabolites from a Hydrothermal Vent Fungus Aspergillus sp. YQ-13
Qiannan Tao, Chihong Ding, Bibi Nazia Aucklko and Bin Wu
571

Osmanthus fragrans Flower Aqueous Extract and its Enriched Acetoside inhibit Melanogenesis and Ultraviolet-induced Pigmentation
Shuo Liu, Zhen Zhao, Zhijun Hu, Zhihui Pan, Junzhong Wang, Xiaolong Wang, Yiting Yang and Zhiying Wang
575

Synthesis of new A-conjugated Quinolone and Spiroindole Dammaranes by the Ozonolysis of 2,3-Indolodipterocarpol
Irina E.Smirnova, Elmira E. Khusnutdinova, Alexander N. Lobov and Oxana B. Kazakova
581

A New Cytotoxic Tetrahydroxanthene-1,3(2H)-dione Derivative from Uvaria cordata and Structure Revision of Valderramenol A
Duc Viet Ho, Hung Quoc Vo, Tho HU Nguyen, Thao Thi Do and Hoai Thi Nguyen
585

Synthesis of Novel 2-Thioxothiazolidin-4-one and Thiazolidine-2,4-dione Derivatives as Potential Anticancer Agents
Alleni Suman Kumar, Rathod Aravind Kumar, Elala Pravardhan Reddy, Vavilapalli Satyanarayana, Jujula Kashanna, Boggu Jagan Mohan Reddy, Basireddy Venkata Subba Reddy and Jhillu Singh Yadav
589

A Short Step Conversion of Alkynyl Propargyl Sulfones into Six-Membered Cyclic β-Ketosulfones via an Amine-Induced Novel Ring Closure
Md. Shafail Alam, Kazuaki Shimada, Hironobu Kamoto, Kasumi Shingo, Toshinobu Korenaga and Chizuko Kabuto
593

Synthesis of Sex Pheromones of the Citrus Leafminer (CLM) (Phyllocoptis citrella)
Alleni Suman Kumar, Vavilapalli Satyanarayana, Ahmad Alkhazim Alghamdi and Jhillu Singh Yadav
599

Composition, Anti-inflammatory Activity, and Bioaccessibility of Green Seaweeds from Fish Pond Aquaculture
Andrea Ripol, Carlos Cardoso, Cláudia Afonso, João Varela, Hugo Quental-Ferreira, Pedro Pousão-Ferreira and Narcisa M. Bandarra
603

Continued inside backcover