Pteridaceae Fragrant Resource and Bioactive Potential: A Mini-review of Aroma Compounds
Françoise Fons, Didier Froissard, Sylvie Morel, Jean-Marie Bessiere, Bruno Buatois, Vincent Sol, Alain Fruchier, Sylvie Rapior

To cite this version:

HAL Id: hal-02194151
https://hal.umontpellier.fr/hal-02194151
Submitted on 25 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NATURAL PRODUCT COMMUNICATIONS

An International Journal for Communications and Reviews Covering all Aspects of Natural Products Research

NPC

SYNTHESIS
ANALYTICAL
BIO-TECHNOLOGY
BIOACTIVITY & SAR
BIODIVERSITY
BIOSYNTHESIS
PHARMACOLOGY
MOLECULAR STRUCTURE
CHEMICAL ECOLOGY

Volume 13. Issue 5. Pages 513-656. 2018
ISSN 1934-578X (printed); ISSN 1555-9475 (online)
www.naturalproduct.us
INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2017 subscription price: US$2,595 (Print, ISSN# 1934-578X); US$2,595 (Web edition, ISSN# 1555-9475); US$2,995 (Print + single site online); US$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Seven ferns of Pteridaceae, grown in a botanical garden or wild, harvested in France were investigated for their Volatile Organic Compounds (VOC) profile using GC-MS: Adiantum pedatum L., Adiantum pervianum Klotschz, Anogramma leptophylla (L.) Link, Cheilanthes madereensis Lowe, Cryptogramma crispa (L.) R. Br., Pteris cretica L. and Pteris vittata L. Fifty-three VOC biosynthesized from lipidic, shikimic, terpenic and carotenoid pathways were identified. The two Adiantum species show different VOC composition. The main linalool (10.8%) in A. pedatum has several biological activities of great interest. This Maidenhair fern contains the highest proportion (57.9%) of isoprenoid flavor precursors, i.e., ionone derivatives with various scent notes. The two major odorant unsaturated hexenoic acids derivatives of A. pervianum are used as flavouring agents. Anogramma leptophylla concentrates 6-methoxyxymellein (71.5%), a bitter phytoallexin which contributes to stress or pathogen resistance. Cheilanthes madereensis produces mainly coumarin (89%) and vanillin (3.5%) with a low odor detection threshold, both used in perfumery and cosmetic industry or as flavouring agent and drug additives. Cryptogramma crispa accumulates a broad-spectrum of carotenoid derivatives (52.1%) and three major shikimic derivatives: the spicy 4-vinylguaicol (flavouring agent), the floral phenylethanal and benzyl alcohol with floral, balsamic scent. Pteris cretica accumulates mostly furan derivatives, i.e., 5-hydroxyethylfurfural (33.2%) and 3-hydroxy-2,3-dihydroxymalol (18.3%) used as food and beverage additives with caramel or roasty flavour and also found in fortified wines, toasty or heat-treated foods. Pteris vittata produces predominantly shikimic derivatives applied in perfumery and food industries as benzaldehyde (26%, with almond scent), benzyl alcohol (22%, floral fruity balsamic scent), nonanal (19.8% cucumber note) and phenylethanal (11%; floral note). Pteridaceae resources are of great interest as a reservoir of odorous and bioactive compounds.

Keywords: Benzaldehyde, Coumarin derivatives, Furan derivatives, Linalool, 6-Methoxyxymellein, Nonanal, 4-Vinylguaicol.

Pteridaceae E. D. M. Kirchner is a heterogeneous family of ferns including approximately nine hundred species worldwide distributed. Only twelve species to seven genera (Adiantum L., Anogramma Link, Cheilanthes Swartz, Cosentinia Tod., Cryptogramma R. Br. ex Richardson, Notholaena R. Br. = Paragynnopteris K.H. Shing and Pteris L.) are reported in France [1a,b].

Pteridaceae includes several species well-known in traditional medicines and non-pharmacological interventions, i.e., Native American people medicine (Navajo Indian Tribe), Ayurvedic medicine, homeopathy linked with various diseases or disorders as follows. Leaves of Adiantum pedatum L. are employed for pectoral affections, Adiantum poiretti Wickstr. against fever and diabetes, Notholaena eckloniana Kunze (L.) as ointment on the scalp and Pteris wallichiiana J. Agardh applied to stop bleeding. Fronds of Pellaea calomelanos (Sw.) Link are used against asthma; those of Pteris multifida Poir. and Pteris cretica L. are applied against dysentery and wounds, respectively [1c-f]. Leaves of Adiantum capillus-veneris L. (also known as Venus-hair fern) are used against throat affections and, as purgative and demulcent. This fern is also the main ingredient of the renowned “Sirop de Capillaire” supposed to cure a large number of diseases [1f]. On the other hand, Venus-hair fern produces a pleasant tonic flavor and syrups which are used as a flavor modifier [1f]. Rhizomes of Cheilanthes tenuifolia (Burm. f.) Sw., are administered as general tonic while those of Pteris ensiformis Burn. f. and Pteris quadiurita Retz. are applied on swollen glands in the neck or healing of boils, respectively. It should be mentioned Adiantum lunatum Burn. to be used against fever due to elephantiasis. Finally root of Cheilanthes farinosa (Forsk.) Kaulf. treats eczema and stomachache [1c-f].

During the last decades several studies have been carried out regarding the biological properties of Pteridaceae: an antioxidant activity was detected in Adiantum trapezifolium L. and C. tenuifolia [2a,b] and antimicrobial compounds were characterized in Pteris vittata L. and Pteris biautaria L. [2c,d]. Biological activities involved in metabolic syndrome and anti-tumor activity were investigated for P. vittata [2e,f]. The impact of heavy metals on antioxidant polyphenols of this hyperaccumulator fern was also analysed [2g]. In addition, an anti-tumor activity was detected in Pteris semipinnata L. and Pteris multifida [2h,i] while an aqueous extract of Pteris ensiformis demonstrates an immunomodulatory activity [2j].

Very few Pteridaceae are known having an odor [3a]: only Adiantum pantadalactyon Langsd. & Fisch. and Pteris tremula R. Br. are reported to smell tom cat urine. Pteris multifida has an acrid and biting flavor whereas Adiantum pedatum has a slightly aromatic odor.
With a view to continue our study of Volatile Organic Compounds (VOC) with bioactive potential, fresh aerial parts of seven fern species of Pteridaceae harvested in France were investigated for their VOC profile using GC-MS: Adiantum pedatum L., Adiantum peruvianum Klotzsch, Anogramma leptophylla (L.) Link, Cheilanthes maderensis Lowe, Cryptogramma crispa (L.) R. Br., Pteris cretica L., and Pteris vittata L.

In the concentrated diethyl ether extracts of the seven species, fifty-three components biosynthesized from lipidic, shikimic, terpenic and carotenoid pathways were identified (Table 1). The volatile fraction of the ferns represents about 0.01% of the fresh aerial materials.

Twelve volatile compounds were identified in *Adiantum pedatum*. Lipidic derivatives are mainly represented by 1-octen-3-ol (5%) responsible for the mushroom-like odor and flavor [3b-d] but also found in many plants [3e-g]. This fatty alcohol is valuable to perfume and food industries [3h, 4a,b] and more recently proposed for mosquito control as an insect attractant [4c,d]. Benzyl alcohol (5.6%), the major compound of the shikimic pathway with floral odor also described as phenolic or balsamic [4a] and the main terpenic derivative linalool (10.8%) with floral, fruity scent [4e] or woody note (depending on the enantiomer) were also reported in Table 1. Linalool is a well-known terpenic alcohol of essential oil from various plant families (Lauraceae, Rutaceae, Lamiaceae…); it gives insect repellent property as well as anxiolytic, anti-
Adiantum peruvianum showed a VOC profile based on twenty-nine compounds, radically different from the previous Adiantum species: lipidic derivatives (54.6%) were mainly represented by (E)-3-hexenoic acid (23.3%) with honey odor and waxy, fruity or herbal notes [4a], (E)-2-hexenoic acid (19%) with fruity odor and 1-octene-3-ol (7.1%) with mushroom-like scent. The two major odorant hexenoic acids, used as flavouring agents, were previously found in other ferns such as Athyrium filix-femina, Gymnocarpium dryopteris, Polystichum setiferum, Pteridium aquilinum [5a,b] and plant allies (Equisetum palustre) [5c] but not in Adiantum capillus-veneris. In Venus-hair fern, (E)-2-decenal, lauric amide or (E)-2-heptenal were found in high quantities with a plastic or oxidized mutton fat odor [5a], also responsible for the unpleasant scent of “stink bug”. The VOC profiles of the three species of Adiantum are therefore different.

Carotenoid derivatives of A. peruvianum (28.3%) were composed by small amounts of α-ionone, β-ionone and ionone derivatives, i.e., 3-hydroxy-5,6-epoxy-β-ionone. The VOCs from the shikimic pathway (12.1%) were represented by few compounds including benzyl alcohol (4.6%) also described in A. pedatum (Table 1) as well as 2-phenylethanol, vanillin or coumarin previously found in A. pedatum, A. peruvianum and A. trapeziforme [5d]. Three minor terpenic compounds including linalool were also identified in A. peruvianum (3.4%). This second Adiantum species, as well as the previously analysed Venus-hair fern, produced small amounts of terpenic derivatives. The five other ferns analysed in this work and belonging to four other genera of Pteridaceae did not produce any terpenic derivatives.

Ten VOCs were detected from Anogramma leptophylla. The volatile pattern was mainly based on lipidic derivatives (76%), i.e., the major 6-methoxymellein (71.5%) and the minor 6-hydroxymellein (1.8%) which are 3,4-dihydroisocoumarins. The former is a polyketide-derived phytoalexin well-known in the carrot and would contribute to pathogen or stress resistance. It is the first compound related to the bitterness of the carrot and its content varies in the commercial products with storage and processing conditions [6a-c]. Dihydroisocoumarins have been isolated from other plants species and also from macrofungi [6d,e]. The others VOC isolated from A. leptophylla were shikimic derivatives (22.1%), i.e., benzaldehyde (7.7%) widespread in plants and mushrooms with bitter almond odor and coumarin (7.8%) with pleasant scent. These VOCs are two aroma agents commonly used in perfume, cosmetic and food industries.

The volatile content of Cheilanthes maderensis was mainly dominated by shikimic derivatives (95.9%) essentially coumarin (89%. hay and dried herb odor), 3,4-dihydrocoumarin (3.4%; bay-like, herbal, coconut note) and vanillin (3.5%; vanilla, sweetish smell) usually used in perfume and food industries [3h; 4a,b]. Such high content of coumarin and coexistence of its dihydro derivative as natural products are very rare. Recently, a Japanese group reported the similar data from the bryophyte, Takakia leptiodioide; [3i], as those reported in the present paper. At the same time, chemophylogenetic relationship between both phyla (Pteridophytes and Bryophytes) has been fully discussed [3j].

The broad spectrum of volatile components identified in Cryptogramma crispa showed a VOC profile including nineteen identified compounds. Table 1 lists major carotenoid derivatives (52.1%), i.e., 3-hydroxy-5,6-epoxy-ionone, 9-methyl-α-ionol, 8-methyl-α-ionone, 4-hydroxy-7,8-dihydro-β-ionone and 3-oxo-α-ionol. Shikimic derivatives (40.2%) are mainly represented by three VOCs. 4-Ethenyl-2-methoxyphenol also called 2-methoxy-4-vinylphenol or 4-vinylguaiacol (10%) with powerful, clove-like, spicy, smoky odor is also a flavouring agent and a pheromone for insects [4b; 7a,b]. It was previously found in a horsetail, Equisetum telmateia [5c]. Phenylethanal (8.8%) with floral odor (lilac, hyacinth, geranium: [3b, 4b]) was also identified in other ferns and plant allies (Athryum filis-femina, Blechumum spicant, Phegopteris connectitis, Equisetum scirpioides) [5a-c]. The third shikimic derivative was benzyl alcohol (6.1%) with floral or balsamic odor. Only 1-octen-3-ol from lipidic pathway was identified in a significant amount (Table 1).

Table 1 lists a broad spectrum of VOCs for Pteris cretica based on twenty-seven identified components mainly lipidic derivatives (49.9%), shikimic derivatives (26.1%) and carotenoid derivatives (22.8%) in low amounts. Only two VOCs were abundant as 5-hydroxymethylfurural (33.2%) and 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (18.3%). The major 5-hydroxymethylfurural is described with odor of chamomile flowers (or butter, caramel, musty) while the four others furan derivatives (10%) have various descriptors [8a-d] as furfural (almond, woody, sweet, toasty), furfuryl alcohol (faint burning odor), furaneol (sweet, caramel, pineapple, strawberry) and 5-methylfurural (caramel, almond, spicy, sweet, roasty). These compounds usually found in fortified wines, in roasted, toasted or heat-treated foods and drinks, are produced, in particular, by sugar alteration (Maillard reaction). Suspected but not proved to be carcinogenic, they contribute to caramel aroma and colour in food additives [8e-h]. 3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (or 3-hydroxy-2,3-dihydromaltol 18.3%, Table 1), the second major VOC exhalae an odor with toasty character and fruity-caramel overtones [7a].

Pteris cretica was the single species of the seven analysed ferns with a high level of furanoc and furfural derivatives (43.2%, Table 1) whereas the others (in particular P. vitata) contain none at all. Furan derivatives were not found in A. capillus-veneris, another species from Pteridaceae previously studied [5a]. However, ferns species from other families may also produce furan derivatives in small amounts, i.e., Pteridium aquilinum, Asplenium trichomanes, and the twelve species of the Asplenioidae family [5b,9a]. Other authors found furan derivatives in coalified Trigonocarpus grandis [9b] or in aerial parts and rhizomes of current species of ferns: Angiopteris esculenta, Cibotium barometz, Conigaramme japonica, P. aquilinum, and five species of Polypodiaceae [9c-g].

Pteris vitata revealed a VOC fraction very different from that of P. cretica with a low diversity (ten volatile compounds), barely any carotenoid derivatives and a majority of shikimic derivatives (69.4%) with the three major odorant benzaldehyde (26%; bitter almond scent), benzyl alcohol (22%; floral notes) and phenylethanal (11%; sweet odor of hyacinth-type). These three VOCs were also detected in five others ferns of the same family analysed in this work but in lower amounts. Lipidic derivatives were represented by nonanal (19.8%; floral-waxy note, [7a]) and 1-octen-3-ol (9.5%; fungal aroma, [3b-d]) recently reported as antifungal agent [10a] and attractant for Anopheles and Aedes mosquitoes, repellent to Culex quinquefasciatus [10b], respectively.
This paper demonstrates that Peridaceae can generate a broad spectrum of VOCs for both odorous and bioactive ingredients. Within the former, the lipidic derivatives, terpenic compounds and ionone derivatives with fruity odor, herbal scent or floral notes, are the main fragrant components required for cosmetic and hygiene products industries as well as aroma applications: it should be noted that surprising high amount of furan derivatives with caramel or roasty flavor was detected to be used as food additives. Within the last, coumarin derivatives are of various biological interests for pharmaceutical industries as well as aroma applications: it should be noted last, coumarin derivatives are of various biological interests for therapeutic applications due to their potential anti-inflammatory [10c] and antitumor [10d] promoting properties.

Experimental

Plant material: Fresh aerial parts of ferns were collected in France, as follows: *Pteris cretica, P. vvittata and Adiantum peruvianum*: 31/08/2010, Botanical Garden of Strasbourg; *Cryptogramma crispa*: 01/09/2010, Botanical Garden of Nancy; *Adiantum pedatum*: 01/09/2010, Botanical Garden of Col de Saverne; *Anogramma leptophylla*: 14/04/2010, Le Lavandou (Var);

Chelanthes maderensis: 13/04/2010, Rayol-Canadel-sur-Mer (Var); Voucher specimens are deposited at the Laboratory of Botany (Faculty of Pharmacy, Limoges, France).

Plant part and GC-MS analyses: Fresh aerial parts of ferns were cubed and extracted with diethyl ether (Carlo Erba, 6 ppm BHT). After one week of maceration at room temperature, the concentrated organic extracts were used for Gas Chromatography Mass Spectrometry (GC-MS) analyses as reported in the literature [5a-c]. The main volatile components of Peridaceae were identified by comparison with National Institute of Standards and Technology Mass Spectral Library [11a-b]. Internal standards (α-alkanes) were used as reference points in the calculation of relative retention indices. GC-MS analyses were performed at the « Plateforme d’Analyses Chimiques en Ecologie », technical facilities of the LabEx CeMEB (Centre Méditerranéen pour l’Environnement et la Biodiversité).

Acknowledgments – The authors greatly thank the Botanical Garden of Col de Saverne for providing *Adiantum pedatum*, the Botanical Garden of Strasbourg for providing *Adiantum peruvianum*, *Pteris cretica* and *Pteris vittata*, and the Botanical Garden of Nancy for providing *Cryptogramma crispa*.

References

Element Content is a Highly Reliable Marker for Niche Vegetable Oils
Faez Mohammed, Dom Guillaume, Nada Abdulwali, Rahma Bchitou, Souad El Hajjaji and Ahmed Bouhaouss 609

Bentonite as a Refining Agent in Waste Cooking Oils Recycling: Flash Point, Density and Color Evaluation
Alberto Mannu, Gina Vlahopoulou, Veronica Sireus, Giacomo Luigi Petretto, Gabriele Mulas and Sebastiano Garroni 613

Chemical Composition of the Essential Oils of Pogostemon auriculatus, a Vietnamese Medicinal Plant
Prabodh Satyal, Nguyen Thi Hong Chuong, Van The Pham, Nguyen Huy Hung, Vu Thi Hien and William N. Setzer 617

Comparative Chemical Profiles of Essential Oil Constituents of Eight Wild Cinnamomum Species from the Western Ghats of India
Ramamoorthy Ananthakrishnan, Ettickal. S. SanthoshKumar and Koranappallil B. Rameshkumar 621

Constituents of Essential Oils from Dasymaschalon bachmaensis and Phaeanthus vietnamensis
Le T. Huong, Dao T.M. Chau, Ly N. Sam, Tran D. Thang, Do N. Dai and Isiaka A. Ogunwande 627

Antileishmanial Potentialities of Croton linears Leaf Essential Oil
Jesús García Díaz, Julio César Escalona Arranz, Denise da Gama Jaén Batista, Lianet Monzote Fidalgo, Jorge de la Vega Acosta, Maira Bidar de Macedo and Paul Cos 629

Circadian Rhythm, and Antimicrobial and Anticholinesterase Activities of Essential Oils from Vitex gardneriana
Evaristo Jose Pires Pereira, Jean Parcelli Costa do Vale, Priscila Teixeira da Silva, Joyce dos Reis Lima, Daniela Ribeiro Alves, Patricia Silva Costa, Tigressa Helena Soares Rodrigues, Jane Eire Silva Alencar de Menezes, Selene Maia de Morais, Paulo Nogueira Bandeira, Raquel O.S. Fontenelle and Hélcio Silva Santos 635

Antiacne-causing Bacteria, Antioxidant, Anti-Tyrosinase, Anti-Elastase and Anti-Collagenase Activities of Blend Essential Oil comprising Rose, Bergamot and Patchouli Oils
Nuntapol Wongsukkasem, Orawan Soynark, Montira Suthakitmanus, Emprang Chongdiloet, Chidchanok Chairattanapituk, Peamjit Vattanakitsiri, Tapanee Hongratanaworakit and Sarin Tadtong 639

Accounts/Reviews
Tubeimoside-1, Triterpenoid Saponin, as a Potential Natural Cancer Killer
Muhammad Zafar, Iqra Sarfraz, Azhar Rasul, Faiza Jabeen, Khizar Samiullah, Ghulam Hussain, Ammara Riaz and Muhammad Ali 643

Pteridaceae Fragrant Resource and Bioactive Potential: a Mini-review of Aroma Compounds
Françoise Fons, Didier Frissonard, Sylvie Morel, Jean-Marie Bessière, Bruno Buatois, Vincent Sol, Alain Fruchier and Sylvie Rapior 651
Natural Product Communications
2018
Volume 13, Number 5
Contents

Gerald Blunden Award (2017)

Molecular Insights of Hyaluronic Acid as Potential Source of Polymer-Drug Conjugate in the Target-Mediated Treatment of Cancer
Gnanendra Shanmugam, Rajesh Salem Varadarajan, Desika Prabakar, Syed Mohammed, Sathiyapriya Renganathan, Murano Erminio and Vincent Aroumoji

Original Paper

Sesquiterpene Lactones and Phenols from Polyfollicles of Magnolia vovidessi and their Antimicrobial Activity
Thallia Ramírez-Reyes, Juan L. Monribot-Villanueva, Oscar D. Jiménez-Martínez, Ángel S. Aguilar-Colorado, Israel Bonilla-Landa, Norma Flores-Estévez, Mauricio Luna-Rodriguez and José A. Guerrero-Anacle

Chemical Composition and Antiinflammmatory Potential of Plinia edulis Fruits Peels
Luciane Angela Nottar Nascimento, Adriana Campos, Karla Cupistianno, Fátima de Campos Buzzi and Valdir Chechinel Filho

Two New Antidepressant Steroidal Aglycones from Stephanotis mucronata
Shu-juan Hao, Li-juan Gao, Shi-fang Xu, Yi-ping Ye and Xiao-ya Li

Strychnusinal, A New Alkaloid from Strychnos nux-blanda Fruits

Chemical Constituents of the Different Parts of Colchicum micranthum and C. chalcedonicum and their Cytotoxic Activities
Gizem Gulsoy-Toplan, Fatih Goger, Ayca Yildiz-Pekoz, Simon Gibbons, Gunay Sariyar and Affife Mat

Hairy Root Cultures of Eurycoma longifolia and Production of Anti-inflammatory 9-Methoxycanthin-6-one
Trang Thu Tran, Nam Trung Nguyen, Ngoc Bich Pham, Huy Nhat Chu, Trong Dinh Nguyen, Tadamitsu Kishimoto, Minh Van Chau and Hoang Chu

Eliciting Effect of Catharanthine on the Biosynthesis of Vallesiachotamine and Isovallesiachotamine in Catharanthus roseus Cambial Meristematic Cells
Jianhua Zhu, Shujie He, Pengfei Zhou, Jiachen Zi, Jincai Liang, Liyan Song and Rongmin Yu

Anti-inflammatory Effect of Protal in LPS-stimulated RAW 264.7 Cells via NF-κB Signaling Pathways
You Chul Chung, Sung-Min Park, Jin Hwa Kim, Geun Soo Lee, Jung No Lee and Chang-Gu Hyun

Flavonoid Aglycones and Glycosides from the Leaves of some Japanese Arctemisia Species
Ayumi Uehara, Kazuhide Shimoda, Yoshinori Murai and Tsukasa Iwas hina

LC-MS Identification of Proanthocyanidins in Bark and Fruit of six Terminalia species
Awantika Singh, Sunil Kumar and Brijesh Kumar

Protective Effects of Compounds in Bombax ceiba flower on Benzo[a]pyrene-Induced Cytotoxicity
Souichi Nakashima, Yoshimi Oda, Yuki O gawa, Kusaku Nakamura, Miyako Uno, Manlio Kishimoto, Masayuki Yoshikawa and Hisashi Matsuda

Antioxidant and Cosmeceutical Activities of Agarum cribrosum Phlorotannin Extracted by Ultrasound Treatment
Kasira Phasanasophon and Sang Moo Kim

Bioactive Metabolites from a Hydrothermal Vent Fungus Aspergillus sp. YQ-13
Qiannan Tao, Chihong Ding, Bibi Nazia Auckltoo and Bin Wu

Osmanthus fragrans Flower Aqueous Extract and its Enriched Acetoside inhibit Melanogenesis and Ultraviolet-induced Pigmentation
Shuo Liu, Zhen Zhao, Zhiqun Huo, Zhiru Xu, Yuan Zhong, Xiaoling Wang, Yiting Yang and Zhiyong Wang

Synthesis of new A-conjugated Quinolone and Spironolode Dammaranes by the Ozonolysis of 2,3-Indolodipterocarpol
Irina E. Smirnova, Elmira F. Khusnutdinova, Alexander N. Lobov and Oxana B. Kazakova

A New Cytotoxic Tetrahydroxanthene-1,3(2H)-dione Derivative from Uvaria cordata and Structure Revision of Valderramenol A
Duc Viet Ho, Hung Quoc Vo, Tho Huu Nguyen, Thao Thi Do and Hoai Thi Nguyen

Synthesis of Novel 2-Thioxothiazolidin-4-one and Thiazolidine-2,4-dione Derivatives as Potential Anticancer Agents
Alleni Suman Kumar, Rathod Aravind Kumar, Elala Pravardhan Reddy, Vavilapalli Satyanarayana, Jajula Kashanna, Boggu Jagan Mohan Reddy, Basireddy Venkata Subba Reddy and Jhillu Singh Yadav

A Short Step Conversion of Alkynyl Propargyl Sulfones into Six-Membered Cyclic β-Ketosulfones via an Amine-Induced Novel Ring Closure
Md. Ashraful Alam, Kazuaki Shimada, Hironobu Kamoto, Kasumi Shingo, Toshinobu Korenaga and Chizuko Kabuto

Synthesis of Sex Pheromones of the Citrus Leafminer (CLM) (Phyllocnistis citrella)
Alleni Suman Kumar, Vavilapalli Satyanarayana, Ahmad Alkhazim Alghamdi and Jhillu Singh Yadav

Composition, Anti-inflammmatory Activity, and Bioaccessibility of Green Seaweeds from Fish Pond Aquaculture
Andrea Ripol, Carlos Cardoso, Cláudia Afonso, João Varela, Hugo Quental-Ferreira, Pedro Pousão-Ferreira and Narcisa M. Bandarra

Continued inside backcover