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temperature rising would slow 
down tropical forest dynamic in the 
Guiana shield
Mélaine Aubry-Kientz1,2, Vivien Rossi3,4, Guillaume Cornu  3, Fabien Wagner5 & 
Bruno Hérault  3,6

Increasing evidence shows that the functioning of the tropical forest biome is intimately related to the 
climate variability with some variables such as annual precipitation, temperature or seasonal water 
stress identified as key drivers of ecosystem dynamics. How tropical tree communities will respond 
to the future climate change is hard to predict primarily because several demographic processes act 
together to shape the forest ecosystem general behavior. To overcome this limitation, we used a joint 
individual-based model to simulate, over the next century, a tropical forest community experiencing 
the climate change expected in the Guiana Shield. The model is climate dependent: temperature, 
precipitation and water stress are used as predictors of the joint growth and mortality rates. We ran 
simulations for the next century using predictions of the IPCC 5AR, building three different climate 
scenarios (optimistic RCP2.6, intermediate, pessimistic RCP8.5) and a control (current climate). The 
basal area, above-ground fresh biomass, quadratic diameter, tree growth and mortality rates were 
then computed as summary statistics to characterize the resulting forest ecosystem. Whatever the 
scenario, all ecosystem process and structure variables exhibited decreasing values as compared to the 
control. A sensitivity analysis identified the temperature as the strongest climate driver of this behavior, 
highlighting a possible temperature-driven drop of 40% in average forest growth. This conclusion is 
alarming, as temperature rises have been consensually predicted by all climate scenarios of the IPCC 
5AR. Our study highlights the potential slow-down danger that tropical forests will face in the Guiana 
Shield during the next century.

The tropical forests cover accounts for 25% of the terrestrial carbon pool, and therefore plays an essential role on 
carbon cycle and storage1,2. Higher atmospheric CO2 concentration might increase carbon uptake, maintaining 
the carbon sink historical role of tropical forests3. But recent droughts linked to El Nino phenomenon have weak-
ened this carbon sink4–7, highlighting the dependence of tropical forest dynamics on the global Earth climate. 
On the other hand, tropical forest dynamic, through tree growth and mortality, itself impacts carbon storage and 
cycle, and provides important feedbacks on climate change. In this context, more and more efforts are being made 
to describe the long-term impact interplays between climate change and tropical forest functioning8–13. Recently, 
the impacts of exceptional droughts have been coaching more attention, first because droughts are predicted to 
be more frequent and severe in the tropics14, and second because tropical forests have already suffered from past 
severe droughts15–17. Massive tree mortality have been observed after droughts18,19, potentially caused by hydrau-
lic failure and/or carbon starvation20, and affecting more severely large trees19,21. Beyond exceptional droughts 
and other long-term changes in water availability, temperatures are also expected to rise and the dry season 
length to increase over the next century in Amazonia14,22. These changes will likely impact tree dynamics23,24, and 
dynamic global vegetation models (DVGMs) sometimes predict a shift toward drier forests or even savannas25.

Coarse scale DGVMs allow efficient large-scale carbon cycle prediction with little input data, relying on a wide 
set of mechanistic assumptions26. These models were initially developed to simulate ecosystem carbon fluxes, they 
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develop fast and are now used among other things to model nitrogen cycle27 or land management28, but also plant 
range shift29 or forest mortality30. However, DVGMs failed to predict observed regional patterns of tropical forest 
dynamics31 for two reasons. First, although DGVMs may model different major species or plant functional traits, 
they do not account for the huge tree diversity found in tropical forests so that they neglect the diverse functional 
strategies and the equally-diverse demographic strategies that shape tropical forest response to climate-induced 
disturbances32–35. Second, they are not demographic-explicit30. And we do know that it is essential to disentangle 
the ecosystem trajectory in a comprehensive process-based approach, i.e. by segregating the climate control on 
each demographic processes (growth, recruitment, mortality) as opposed to an all-in-one model in which only 
the ecosystem response is modeled, to reveal mechanisms underlying tropical forest response to disturbance and 
to make more robust predictions of the future trajectories32,36,37. To overcome these limitations, individual-based 
vegetation models provide a good framework to explore how climate and individual tree demographic strategy 
may interact and impact community tree dynamics. Managing diversity in these models can be done with func-
tional traits that provide good proxies of the demographical strategies38–41 and at the same times reflects physio-
logical differences in response to climate variations42–45.

In this paper, we investigate the potential impacts of climate change on long-term forest dynamics using an 
individual-based model calibrated with data from the Paracou long-term disturbance experiment, in the Guiana 
Shield. We simulated a tropical forest community under projected future climate scenarios. These simulations 
allow us to identify (1) the climate variables that will likely be responsible for most of the changes in forest dynam-
ics, (2) the sensitive ecosystem processes and attributes that will be impacted, and (3) the way the forest structure 
will consequently change.

Methods
The SELVA individual-based model. The simulator SELVA is a an individual-based forest simulator 
set-up on the CAPSIS 4.0 Java platform46,47. In the simulator, individual growth, mortality and recruitment are 
described by sub-models on a two-year time step. Each tree i is described with the diameter at breast height 
(DBHi), the species (si), a set of functional traits associated with each species (Table 1), and an individual vigor 
estimate. The simulator implements an already-parameterized joint growth-mortality model described ear-
lier48–50, and a neutral recruitment model, based on the neutral assumption that each dead tree is replaced by a 
new recruited tree, respecting the proportion of each species in the metacommunity. The growth-mortality model 
used the individual tree parameters and climatic variables (Table 2) to compute individual growth and mortality 
probability at each time step. Details can be found in the Supplementary Information. The calibration of a precise 
recruitment model would necessitate more information about the small trees (diameter < 10 cm) and seedlings51, 
such information is often lacking in tropical forests. In the study site of Paracou, where no information is recorded 
for trees with DBH < 10 cm, a good modelling framework of recruitment is lacking. Therefore, we made the sim-
plistic assumption of a neutral recruitment.

Accounting for the individual vigor. The tree vigor was defined at the individual tree level and reflects 
the individual tree growth effect on the mortality model parameters, acknowledging that trees of a given species 
growing less than expected (as compared to individuals of the same species) have a far higher probability of dying 
and vice-versa49, the so-called dominance of the suppressed52. In our simulations, we used the individual vigor 
in two ways, reflecting two ways of seeing this intraspecific diversity in tree performance. First, we assume that 

Functional traits Variable name Range Process

Maximum diameter (m) DBHmax [0.13; 1.11] mortality and growth

Maximum height (dam) Hmax [0.8; 5.6] mortality and growth

Trunk xylem density (g.cm−3) WD [0.28; 0.91] mortality and growth

Laminar toughness (N) Tough [0.22; 11.4] mortality

Foliar δ13C composition (%) δ13C [−3.61; −2.62] growth

Table 1. The five functional traits used as proxies of ecological strategies in order to simulate a hyperdiverse 
tropical forest of the Guiana Shield under future climate scenarios. Description, name used in this study, range 
observed in our data set, and demographic process linked to the trait (growth or mortality, see Supplementary 
Information for details).

Variable Abbreviation σ

BASE A B C

μ μ δ μ δ μ δ

Area over REW and <0.4 Aunder 8.1 20.2 20.2 0 22.9 0.0275 25.6 0.050

Precipitation (mm/2 years) Pre 261.4 5858.6 5565.6 −2.99 5272.7 −5.98 4979.8 −8.97

Mean temperature (°C) Tmp 0.26 26.5 27.8 0.013 29.4 0.029 31 0.046

Table 2. The climate variables included in the growth-mortality model. Description, abbreviation used in this 
study, standard deviation (σ) observed in the actual (1991–2011) data set, actual mean value, predicted values 
for 2101 in the four scenarios (μ) and associated annual increment δ. Seasonal drought Aunder was computed 
using a local water balance model55.
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the individual tree vigor is an endogenous property of a given tree and thus we sampled tree vigor once before 
starting the simulations. In this way, the individual tree vigor value will not be impacted by the climate-induced 
growth changes (model 1). Second, we assume that tree vigor is also under environmental control so that climate 
changes, by modifying the average growth of a given species, will also impact the individual vigor. In this way, we 
recalculated the individual tree vigor at each time step as the difference between the individual growth and the 
average species growth (model 2) and modified the mortality probability accordingly. Two versions of the model 
corresponding to these two hypotheses were used in this study. See Supplementary Information for mathematical 
details.

Model inputs. To initialize the tree population, we used the tree inventories of the experimental site of 
Paracou, French Guiana, collected in 2001. The experimental site of Paracou (5°18′N,52°55′W) is a lowland trop-
ical forest near Sinnamary, French Guiana. The forest is a typical Guiana shield forest, with dominant tree families 
including Fabaceae, Chrysobalanaceae, Lecythidaceae, and Sapotaceae. There are more than 700 woody species 
attaining 10 cm diameter at breast height (DBH) at the site. Six undisturbed plots of 6.25 hectares each totalizing 
22,401 individual trees were used to constitute the initial population in the forest simulator. The functional traits 
used in this study are extracted from a large database collected in the Guiana Shield and described earlier53,54.

Three climate variables are needed to run the model48 (Table 2): a water stress estimator (Aunder), the total 
precipitation over two years (Pre) and the mean temperature (tmp). The water stress estimate Aunder was based 
on a water balance model developed at our study site and taking the daily precipitation from the CRU as input 
data55,56. Four climate scenarios were investigated based on the scenarios of the IPCC report14. The first scenario 
(A) is equivalent to the RCP2.6, the second (B) is an intermediary scenario, and the third (C) is equivalent to the 
RCP8.5. The last scenario (BASE) is a control scenario that uses the current values of the climatic variables and 
assumes that they will remain stable over time.

At each time step, climate variables were sampled in a normal distribution where the mean changed over time, 
while the standard deviation remained the same, equal to the historical standard deviation. Historical values were 
computed between 1991 and 2011 using climatic data from the Climatic Research Unit (CRU) at the University of 
East Anglia57. The predicted mean temperatures (Temp) and rain (Pre) for the next century were computed using 
the prediction of the IPCC report14. The water stress estimator Aunder was computed using an estimated change 
of the dry season length of plus two weeks over a century for the RCP8.522 (Table 2). Details about the climatic 
scenarios can be found in the Supplementary Information.

Model outputs. At each time step, we computed the community growth and mortality rates to track forest 
dynamics in time. To characterize the community structure at the end of the simulations, we computed the basal 
area per hectare (BA), the quadratic diameter (QD) and the above-ground fresh biomass (AGFB) with a local 
equation58.

Sensitivity analysis. Different climate variables are used as drivers of the forest dynamics in our model, 
and these variables are predicted to evolve more or less drastically in the future. To disentangle which variables 
might be responsible for the forest dynamics evolution, we performed a variance based sensitivity analysis. This 
analysis consists in repetitions of simulation with varying intputs (climate variables) and study of the varying 
outputs (growth and mortality rates, BA, QD, and AGFB) with a sensitivity index computed with the variances 
of the outputs. The sensitivity analysis on the climate variables was conducted using a complete factorial design 
of 27 scenarios (3 scenarios, 3 climate variables). We ran the 27 scenarios 50 times and computed the first-order 
sensitivity index of Sobol (Si) for each climate variable i59:
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where Xi is an input variable from the vector =X A Pre TMP( , , )under , and Yj is an output variable from the vector 
=Y BA morta growth AGFB QD( , , , , ), |V E Y X[ ( )]j i  is the variance of the expected value (E) of the output variable 

Yj knowing the input variable Xi, and V(Yj) is the variance of the output variable Yj. The higher the sobol index, 
the higher the input variable impact on the output variable.

Results
Forest structure and dynamics. Average growth and mortality rates consistently decreased as the sce-
nario became pessimistic (most pessimistic scenario is C), with the community mortality rate falling from 2 
to 1.4% per 2 years and a community growth rate going from 0.25 to 0.16 mm per 2 years for the scenario C 
(Table 3). The forest structure variables BA, QD, and AGBF also decreased between scenario BASE and scenario 
C, but these reductions are less substantial than for the forest dynamic variables: BA mean is 30.7 in the scenario 
BASE and 30.1 in the scenario C, QD mean is 25.6 in the scenario BASE and 25.3 in the scenario C, and AGBF 
mean is 456 in the scenario BASE and 444 in the scenario C (Table 3).

On the role of individual tree vigor. The two versions of the model correspond to two different individual 
tree vigor estimators (fixed at the beginning or updated during simulations). The reduction in growth is almost 
the same for models 1 and 2, and is quite progressive between 2001 and 2100 (Fig. 1). The reduction in mortality 
is much clearer for model 1 than for model 2, with a minimum for scenario C observed at 1.4% per 2 years for 
model 1 and a minimum of 1.7% per 2 years for model 2 (Fig. 1).
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Sensitivity analysis. Sensitivity analyses of models version 1 and 2 are very similar (Fig. 2). Growth was 
primarily controlled by changes in temperature, whereas mortality patterns were driven by precipitation. All the 
forest structure variables BA, QD and AGFB were mostly impacted by temperature (on average 67% of variance) 
and less by precipitation (between 29 and 31% of variance). Almost no effect of the drought estimator Aunder was 
observed (0.7% of variance).

Discussion
We used an individual-based forest model, where species diversity is approximated by functional traits and demo-
graphic processes are explicit, to simulate the future dynamics of the Paracou forest for the next century using 
predictions of the IPCC 5AR for three different climate scenarios (optimistic RCP2.6, intermediate, pessimistic 
RCP8.5) and a control (current climate). Whatever the scenario, all ecosystem processes and structure varia-
bles exhibited decreasing values as compared to the control, suggesting a general slow-down of the forest under 
climate change. A sensitivity analysis identified the temperature as the stronger climate driver of this behavior, 
highlighting a temperature-driven drop of 40% in average forest growth for the most pessimistic scenario (from 
0.25 to 0.16 mm per .2 years−1, Table 3).

Modeling limitations. As any forest simulators, the SELVA individual-based model is based on simplified 
assumptions. In our simulated communities, we took into account two major ecological processes, i.e. compe-
tition and response to stress, using the individual vigor. Indeed, the individual vigor can be seen as competitive 
vigor, the quality of how a tree is able to compete for resources, or it may also be used as capability to react to 
environmental stresses49. In model 2, the individual vigor is under environmental control so that climate changes, 
by modifying the average growth of a given species, will also impact the individual vigor and, then, forest dynam-
ics. A major shortcoming of our approach is that, apart from the investigated climate drivers, other potentially 
important environmental variables were not explicitly modeled. Among others, the nutrient availability has 
often been highlighted as a major driver of forest dynamic in tropical forests60. In the Guiana Shield however, 
recent studies have concluded to a low control of soil nutrient availability on forest dynamics and suggested 
that nutrient-recycling mechanisms other than the direct absorption from soil (e.g. the nutrient uptake from 
litter, the resorption, or the storage of nutrients in the biomass), may be more important for forest functioning61. 
Hence we do recognize that SELVA present some limitations to study the future forest functioning but, because 
our modeling framework succeeded in reproducing the current forest structure and dynamics from real data 
(see Supplementary Information), we are quite confident in the model ability to explore their future evolution.

On the importance of tree vigor. The two investigated models differed in the ways the tree individual 
vigor was implemented. In model 1, the reduction of growth due to higher temperature in time did not influence 
mortality rates so that the decreasing mortality rates was only due to rain diminution. In model 2, the reduc-
tion of growth due to higher temperature induced a reduction of the tree vigor which increased mortality rates. 
This compensates the effect of rain diminution itself and, all in all, leads to a less marked decrease in mortality 
rates than in model 1. This result highlights the key role of the individual tree vigor49, a component still insuffi-
ciently taken into consideration in forest models52. Model 1 looks better adapted to simulate the actual dynamics 
observed in our study site in French Guiana, as no evident correlation has been empirically found between tem-
perature and mortality rates in our studied forests48. This means that the rise in temperature would solely impacts 
the growth. However, strong links between growth slow-down and mortality risks are already well documented62, 
and past growth, a surrogate of our tree vigor, is sometimes used as a predictor of mortality in forest models63. 
During an experimental throughfall exclusion in Brazil, a decrease in growth was observed64, and followed a few 
years later by an increase in mortality rates65. These experimental results are more consistent with model 2, i.e. 
where a decrease in tree vigor translates, at next time step, into an increase in mortality risk. This makes the choice 
between model 1 and 2 difficult and we have to admit that we almost ignore how this tree vigor component will 

Definition 
units

growth morta BA QD AGFB

average growth rate 
mm.2 years−1

mortality rate 
%.2 years−1

basal area per hectare 
m2.ha−1

quadratic 
diameter cm

above ground fresh 
biomass t.ha−1

2001 0.26 2.1 30.4 25.1 436

1

BASE 0.25 ± 0.0018 2 ± 0.04 30.7 ± 0.33 25.6 ± 0.14 460 ± 6.4

A 0.22 ± 0.0022 1.8 ± 0.03 30.6 ± 0.27 25.5 ± 0.11 450 ± 4.7

B 0.19 ± 0.0019 1.6 ± 0.039 30.4 ± 0.25 25.5 ± 0.1 450 ± 4.7

C 0.16 ± 0.0015 1.4 ± 0.028 30.1 ± 0.26 25.3 ± 0.11 440 ± 5.1

2

BASE 0.24 ± 0.0018 2 ± 0.04 27.5 ± 0.24 24.2 ± 0.1 395 ± 4.5

A 0.22 ± 0.0019 1.9 ± 0.04 27.1 ± 0.24 24 ± 0.11 388 ± 4.6

B 0.18 ± 0.0018 1.8 ± 0.04 26.5 ± 0.24 23.8 ± 0.11 378 ± 4.5

C 0.16 ± 0.0015 1.7 ± 0.035 25.6 ± 0.25 23.5 ± 0.12 369 ± 4.7

Table 3. Summary statistics of the simulated model (versions 1 and 2), names used in the paper, definition, 
units and values. Values are presented at the beginning of the simulation (2001) and mean values are presented 
at the end of the simulation (2101) for the four scenarios: BASE, A, B and C, for the versions 1 and 2 of the 
model and with standard deviations.
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behave in the next century under the climate pressures that will be different from those currently observed. The 
reality will probably fall between models 1 and 2, and therefore these two models are useful to explore the possi-
ble futures and to measure the impacts of the different hypotheses we put forward to construct our simulations.

Figure 1. Evolution of the community-averaged growth and mortality rates for four climate scenarios and  
the two forest dynamic models. Growth rates (a and c) and mortality rates (b and d) for model 1 on the left  
(a and b) and model 2 on the right (c and d). Colored areas represent the 95% confidence interval. In model 1,  
we assumed that the vigor estimator is not impacted by climatic variables that impact the growth, whereas in 
model 2, we assumed that climatic variables that impact the community growth also impact the vigor and, 
consequently, the mortality. Scenario A is equivalent to the RCP2.6, B is an intermediary scenario, and C is 
equivalent to the RCP8.5. BASE is a control scenario that uses the current values of the climatic variables and 
assumes that they will remain stable over time (Table 2).

Figure 2. Results of the sensitivity analysis. Mean of the 50 Sobol indexes computed for each input and output 
variable. Inputs: QD: quadratic diameter, AGBF: above ground fresh biomass, growth: average growth rate, 
morta: mortality rate, BA: basal area. Outputs: Aunder: Area over REW and <0.4, Pre: precipitation, TMP: mean 
temperature, and interactions. Results of model 1 are on the left and model 2 on the right. Almost all outputs are 
primarily impacted by the temperature changes. Only mortality is strongly impacted by the precipitation changes.

https://doi.org/10.1038/s41598-019-46597-8
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Temperature is the main driver of future forest dynamic. Temperature rise is by far the strongest 
driver of almost all summary statistics while precipitation variability primarily influences mortality rates only. 
First and foremost, our results must be considered with caution because the simulated ranges of climatic vari-
ables solely depends on the IPCC 5AR predictions. According to the latter, the relative changes in temperature 
values will be higher than the relative changes for precipitation and water stress, and this clearly underlies our 
results (Fig. 2). Nevertheless, our results highlight the important role of future temperature rises in tropical for-
est dynamic and structure, confirming previous studies66,67. In our simulations, growth is the most impacted 
demographic process, and this slowing-down dynamics implies, all else being equal, a substantial reduction in 
above-ground biomass, quadratic diameter and basal area. If, as highlighted by the results from model 2, the 
temperature-driven growth reduction leads to higher mortality rates, the forest community structure will signif-
icantly change with few large old canopy trees and more small slow-growing trees, with possible consequences 
for e.g. ecosystem water uptake from deep soil layers during dry season68. This community change will impact 
the basal area (from 30.1 m2.ha−1 for scenario C with model 1 to 26 m2.ha−1 for scenario C with model 2) and 
the above-ground fresh biomass (from 444 t.ha−1 for scenario C with model 1 to 369 t.ha−1 for scenario C with 
model 2). In order to be concrete, temperature is expected to rise of 4.5 °C during the next century in the Guiana 
Shield. Such temperature can drastically affect photosynthesis by causing irreversible damage to the functioning 
of leaves4 and we have to admit we are in uncharted ground because, currently, no forests in the world exist in 
areas with mean temperatures of 31 °C. Nevertheless, we do know, from a leaf physiologist perspective, that as the 
temperature rises, the velocity of reacting molecules increases, leading to more rapid reaction rates but also to 
damage of the tertiary structures of the enzymes69. These two processes lead to the well-known bell-shaped curve 
of growth response to temperature70. Temperature also affect photosynthesis in a more indirect manner, through 
leaf temperatures defining the magnitude of the leaf-to-air vapor pressure difference, a key factor influencing 
stomatal conductances69. In the tropical environment of the Guiana Shield, as temperatures are already very high, 
rising temperatures will imply lower growth.

Uncertain impacts of precipitation changes. The predicted reduction of precipitation spearheads a 
noticeable reduction in mortality rates. This counter-intuitive results is however supported by a growing common 
understanding that strong winds and heavy rainfalls associated with severe convective storms are the dominant 
natural drivers of tree mortality in the Amazon71,72. This precipitation-driven mortality is obvious at Paracou 
where the proportion of fallen trees, relatively to standing death, is higher during the most rainy years48, trees 
being more vulnerable to uprooting when soil is water-saturated73. Consequently, the predicted decrease of pre-
cipitation implies a decrease in mortality rates in the simulated forest communities. But the IPCC AR5 also fore-
casts an intensification of abundant rain events in the tropics14, that may play the inverse role, increasing mortality 
rates. The problem is that such punctual and rare events are currently not well quantified, and relations between 
mortality and extreme events are statistically complex to model20,74. This makes mortality a crucial demographic 
process upon which we need to focus our research effort.

Conclusion
Our study highlights the potential slow-down danger that tropical forests will face in the Guiana Shield during the 
next century and this conclusion is alarming, as temperature rises have been consensually predicted by all climate 
scenarios of the IPCC 5AR.
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