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The tumor immune microenvironment contributes to tumor initiation, progression, and
response to therapy. Among the immune cell subsets that play a role in the tumor microen-
vironment, innate-like T cells that express T cell receptors composed of γ and δ chains
(γδ T cells) are of particular interest. γδ T cells can contribute to the immune response
against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary,
and prostate cancer) directly through their cytotoxic activity and indirectly by stimulating or
regulating the biological functions of other cell types required for the initiation and estab-
lishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+
T cells. However, the notion that tumor-infiltrating γδ T cells are a good prognostic marker
in cancer was recently challenged by studies showing that the presence of these cells
in the tumor microenvironment was associated with poor prognosis in both breast and
colon cancer. These findings suggest that γδ T cells may also display pro-tumor activities.
Indeed, breast tumor-infiltrating γδ T cells could exert an immunosuppressive activity by
negatively regulating dendritic cell maturation. Furthermore, recent studies demonstrated
that signals from the microenvironment, particularly cytokines, can confer some plasticity
to γδ T cells and promote their differentiation into γδ T cells with regulatory functions. This
review focuses on the current knowledge on the functional plasticity of γδ T cells and its
effect on their anti-tumor activities. It also discusses the putative mechanisms underlying
γδ T cell expansion, differentiation, and recruitment in the tumor microenvironment.

Keywords: plasticity, γδT cells, cytokines, anti-tumor response, pro-tumor response

INTRODUCTION
Cancer initiation, progression, and invasion rely on the active com-
munication between cancer cells and the different cell types in the
tumor microenvironment, such as fibroblasts, endothelial cells,
and immune cells. It is now well established that the immune
contexture of the tumor microenvironment can influence cancer
progression and outcome (1). All subsets of immune cells can be
found within tumors, but their density, functionality, and orga-
nization vary according to the tumor type and stage and also
from patient to patient. Within the tumor microenvironment,
several sub-populations of effector cells participate in controlling
and eliminating cancer cells. Among them, innate-like T cells that
express T cell receptors (TCR) composed of γ and δ chains actively
contribute to the anti-tumor immune response in many tumors
(lymphoma, myeloma, melanoma, breast, colon, lung, ovary, and
prostate cancer) (2–12). They can do this directly through their
cytotoxic activity against tumor cells, or indirectly by stimulating
and regulating the biological functions of other immune cell types,
such as dendritic cells (DC) or interferon γ (IFN-γ)-producing
CD8+ T cells, required for the initiation and establishment of an
efficient anti-tumor immune response.

γδ T cells belong to the non-conventional or innate lympho-
cyte family. They differ from conventional αβ T cells, since most
of γδ T cells do not express the CD4 and CD8 co-receptors and,
as a consequence, antigen recognition by γδ TCR is not restricted

to major histo-compatibility complex (MHC) molecules (13, 14).
Thus,while αβ TCR interact with peptides bound to MHC class I or
class II molecules,γδ TCR recognize a diverse array of self and non-
self antigens, such as small peptides, soluble or membrane proteins,
phospholipids, prenyl pyrophosphates, and sulfatides. Because of
this antigenic diversity, a single mechanism might not explain all
observed TCR-dependent γδ T cell responses (15). Moreover as γδ

T cell activation does not require antigen processing and presen-
tation by antigen-presenting cells (APC), γδ T cells can be rapidly
activated and act during the early phase of the immune response.
Like natural killer (NK) cells, γδ T cells also respond to stimula-
tion by stress- and/or infection-induced ligands, such as the MHC
class I-related molecules H60, RAE1, and MULT-1 in mice (16), or
MICA/B and ULBP in humans (17). Normally, these ligands are
weakly or not expressed, they are up-regulated only in the pres-
ence of stress (DNA damage, heat stress) or infection and activate
γδ T cells by binding to the activating NKG2D receptor expressed
on these cells (18–21) and, in some cases, through direct recog-
nition by human γδ TCR (22, 23). Moreover, human γδ T cells
also express pattern recognition receptors (PRR), such as Toll-like
receptors (TLR), which modulate their activation (24).

In humans, γδ T cells represent 0.5–16% (on average: 4%) of
all CD3+ cells in adult peripheral blood, in organized lymphoid
tissues (thymus, tonsil, lymph nodes, and spleen),<5% in tongue
and reproductive tract and 10–30% in intestine (25, 26). In adult
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mice, 1–4% of all T cells in thymus, secondary lymphoid organs
and lung are γδ T cells. γδ T cells are more abundant in other
mucosal sites. Indeed, they constitute 10–20% of all T cells in
female reproductive organs (27), 20–40% of the intestinal intraep-
ithelial T cells (28) and 50–70% of skin dermal T cells (29, 30).
Moreover γδ TCR repertoire is restricted and depends on the
tissue type and their localization. Specifically, Vγ9Vδ2 TCR are
expressed by 50–95% of γδ T cells from human peripheral blood
(31), whereas, TCR including other Vδ elements are predomi-
nantly found in intestinal (Vδ1 and Vδ3) or skin (Vδ1) γδ T
cells (32, 33). In mice, γδ T cells with distinct Vγ/Vδ usage are
present in spleen (Vγ1 and Vγ4), skin and intestine (Vγ7Vδ4,
Vγ7Vδ5, and Vγ7Vδ6), lung (Vγ4 and Vγ6), and reproductive
organs (Vγ6Vδ1) (33, 34). While both αβ and γδ T cell subsets
are found in human skin (35), γδ T cells expressing the invariant
Vγ5Vδ1 are the major population found in mice skin. They form
a dense network of dendritic-like cells that are called dendritic
epidermal T cells (DETCs) (36).

γδ T cells share many functional characteristics with conven-
tional effector αβ T cells, for instance human Vγ9Vδ2 T cells can
display cytotoxic activity against infected or transformed cells and
produce pro-inflammatory cytokines, such as tumor necrosis fac-
tor α (TNF-α), IL-17, and IFN-γ (33, 34, 37). A unique feature
of human Vγ9Vδ2 T cells is the TCR-dependent recognition of
non-peptidic phosphorylated antigens, called phosphoantigens.
Natural phosphoantigens, such as (E)-4-hydroxy-3-methyl-but-
2-enyl pyrophosphate (HMBPP) are produced by many bacteria
through the prokaryotic isoprenoid pathway (also called non-
mevalonate isoprenoid pathway or Rohmer pathway) and are
extremely potent activators of human Vγ9Vδ2 T cells (38, 39).
On the other hand, eukaryotic cells use the mevalonate iso-
prenoid pathway to produce phosphoantigens, such as isopentenyl
pyrophosphate (40), which are much less active than the natural
phosphoantigens produced by bacteria. As the mevalonate path-
way plays a key role in multiple cellular processes, the increased
metabolism of tumor cells stimulates the over-production and
secretion of endogenous phosphoantigens that are sensed by
human γδ T cells as tumor-related antigens (40). Through their
unique capacity to recognize phosphoantigens, Vγ9Vδ2 T cells
play an essential role in anti-infection immunity and also in tumor
immune surveillance (41, 42).

Vγ9Vδ2 T cells have rapidly emerged as an attractive ther-
apeutic target for anti-tumor therapies. Indeed, they display a
very efficient, non-MHC restricted lytic activity against a broad
panel of tumors, they abundantly produce IFN-γ and can be eas-
ily expanded from peripheral blood with agonist molecules. Many
clinical trials have been carried out based on the adoptive transfer
of in vitro stimulated Vγ9Vδ2 T cells or on the in vivo stimulation
of their activity using clinical-grade agonists (43, 44). So far, no
concluding result has been obtained from clinical trials based on
the adoptive transfer of expanded autologous Vγ9Vδ2T cells; how-
ever, in vivo stimulation of γδ T cells showed objective responses in
10–33% of patients (45). Although, the lack of response to therapy
could be attributed, in some cases, to deficient expansion of effec-
tor Vγ9Vδ2 T cells (5, 10, 12), many patients who did not respond
to the treatment exhibited significant and sustained Vγ9Vδ2 T cell
activation and proliferation. These results suggest that the current

γδ T cell-based treatments are feasible and safe, but have some
obvious limitations. Thus, a better understanding of effector γδ T
cell regulation is required to improve their efficacy (45). Interest-
ingly, recent in vitro and in vivo data highlighted that γδ T cells
show some degree of plasticity driven by environmental signals
that can affect and modify their anti-tumor functions and limit
their efficacy. Therefore, much research effort is currently focused
on precisely understanding the molecular mechanisms that gov-
ern the functional plasticity of Vγ9Vδ2 T cells and other γδ T
sub-populations and the role of cancer cells and of the tumor
microenvironment on the recruitment, polarization, and biologi-
cal functions of such cells. This knowledge is required to develop
optimal strategies for the expansion of γδ T cells with anti- rather
than pro-tumor activity.

Here, we provide an overview of the current knowledge on
γδ T cell functional plasticity and its effect on their tumor activ-
ities. We also discuss the putative mechanisms that underlie γδ

T cell expansion, differentiation, and recruitment in the tumor
microenvironment.

FUNCTIONAL PLASTICITY OF γδ CELLS
The differentiation of conventional αβ T cells into effector cells is
driven by TCR engagement and specific environmental signals.
For example, naive αβ CD4 T cells can differentiate into Th1
or Th2 cells following priming by viruses or extracellular para-
sites, respectively (46–49). This polarization is stably imprinted
by lineage-specific transcription factors to allow the generation of
memory T cells with appropriate functions to rapidly eliminate
the infectious agents after new exposure. However, recent studies
demonstrated considerable flexibility, or plasticity, in T cell fate,
unraveling the complex relationships among effector and regula-
tory αβ T cell sub-populations. Similarly, γδ T cells also present
some plasticity that contributes to their functional specialization.

PLASTICITY OF HUMAN Vγ9Vδ2 T CELLS
Several studies showed that after phosphoantigen activation,
peripheral human Vγ9Vδ2 T cells promote a Th1 immune
response (50–52) characterized by potent TNF-α and IFN-γ
production and cytotoxic responses (53, 54). This Th1 cell-like
polarization of Vγ9Vδ2 T cells is probably acquired during their
postnatal peripheral expansion upon exposure to environmen-
tal microbial antigens. Gibbons and collaborators reported that
neonatal γδ T cells can produce IFN-γ and that they acquire the
ability to produce TNF-α after 1 month of post-partum envi-
ronmental exposure (55). However in vitro, depending on the
cytokines and the γδ TCR stimulus provided, adult Vγ9Vδ2 T
cells can be polarized into cells with features associated with Th2
cells, Th17 cells, follicular T helper cells (Tfh), or regulatory T cells
(Treg) (56–60) (see Table 1).

It has been first demonstrated that,Vγ9Vδ2 T cells can be polar-
ized toward IFN-γ-secreting Th1-like γδ T cells upon activation by
IPP in the presence of IL-12 and an anti-IL-4 antibody, or toward
IL-4-producing Th2-like γδ T cells upon stimulation by IPP in the
presence of IL-4 and an anti-IL-12 antibody (56).

Interestingly, Thedrez et al. demonstrated that expansion of
phosphoantigen-activated Vγ9Vδ2 T cells from peripheral blood
mononuclear cells (PBMCs) in the presence of IL-21 and IL-2
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Table 1 | γδT cell functional plasticity.

γδT cell subsets TCR activation Cytokines PolarizationTranscription factors Effector molecules Reference

Adult blood Vγ9Vδ2 T cells + IL-12 or IL-18 Th1-like T-bet, eomesodermin IFN-γ, TNF-α (56)

+ IL-4 Th2-like GATA-3 IL-4 (56)

+ IL-15+TGF-β Treg-like Foxp3 IL-10, TGF-β (60)

+ IL-6+ IL-23+ IL-1β+TGF-β

+Ahra agonists

Th17-like RORγt IL-17 (61)

+ IL-23+ IL-1β+TGF-β Th17-like, RORγt Th1/17 like,

RORγt, T-bet Th22, FOX04

IL-17 IFN-γ, IL-17

IL-22

(62)

+ IL-2 APC functions ND MHC I and II (63, 64)

Adult blood and tonsillar

Vγ9Vδ2 T cells

+ IL-21 Tfh-like Bcl6 IL-4, IL-10, CXCL13 (58, 59)

Th1 Vγ9Vδ2 T cells − IFN type I Th1-like ND IFN-γ (65)

Cord blood Vγ9Vδ2 T cells + IL-6+ IL-1β+TGF-β Th17-like, RORγt Th22-like, FOX04 IL-17 IL-22 (62)

+ IL-6+ IL-1β+TGF-β+ IL-23 Th1/17 like RORγt, T-bet IFN-γ, IL-17 (62)

Human Vγ1+ and Vγ2+

thymocytes

− IL-2 or IL-15 Th1 like T-bet, eomesodermin IFN-γ, TNF-α (66)

Murine γδ T cells − IL-23+ IL-1β Th17 RORγt IL-17, IL-21, IL-22 (67)

aAryl hydrocarbon receptor.

promotes their cytolytic function (Th1 function), with increased
expression of CD56 and several lytic molecules and also higher
tumor-induced degranulation capacity (68). However, IL-21 can
also promote differentiation of Vγ9Vδ2 T cells toward a Tfh-like
phenotype. Indeed, activation of purified Vγ9Vδ2 T cells with
phosphoantigens in the presence of IL-21 induces Tfh-associated
features, as indicated by the expression of the BCL-6 transcrip-
tion factor, ICOS, CD40-L, and CXCR5 as well as IL-21R, CD244,
CXCL10, and CXCL13 and their trafficking to lymph node germi-
nal centers (59). Both soluble and contact-dependent mechanisms
seem to be involved in the B cell helper activity of Tfh-like Vγ9Vδ2
T cells. Indeed, Ig production is consistently impaired by inhibition
of CD40-L and ICOS interaction with their respective receptor
and ligand or by neutralization of IL-4 and IL-10 (58). It would be
interesting to determine whether the interaction between Tfh-like
Vγ9Vδ2 T cells and B cells in reactive tumor-associated lymphoid
tissues might positively affect the production of high affinity anti-
bodies against tumor antigens, thus favoring antibody-dependent
cell cytotoxicity (ADCC) mechanisms (Figure 1E).

Besides these effects on the cytotoxic activity and B cell helper
functions of Vγ9Vδ2 T cells, our preliminary data suggest that
IL-21 might also confer some regulatory functions to γδ T cells.
Overall these data suggest that IL-21 together with environmen-
tal signals can strongly influence Vγ9Vδ2 T cell functions by
polarizing them toward Th1-, Tfh-, or Th1/Treg-like T cells.

Other co-signals can induce the polarization of Vγ9Vδ2 T cells
into Treg cells. Particularly, when they are activated by IPP in the
presence of IL-15 and TGF-β, Vγ9Vδ2 T cells express the FOXP3
transcription factor and display regulatory/immunosuppressive
activity as demonstrated by their capacity to suppress the pro-
liferation of anti-CD3/anti-CD28-stimulated PBMCs (60). How-
ever, they do not simultaneously display regulatory and Th1-like

effector functions, differently from regulatory γδ T cells developed
in the presence of IL-21. Interestingly, treatment with decitabine
(a DNA hypomethylating agent) and IL-15/IL-2/transforming
growth factor-β (TGF-β) associated with phosphoantigen activa-
tion facilitates the induction of the immunosuppressive functions
of Vγ9Vδ2 T cells derived from human PBMCs and favors the
regulatory activity of Vγ9Vδ2 T cells (69).

First established for murine γδ T cells (67), the production of
IL-17 by human γδ T cells was also recently demonstrated (70). In
both mouse and human, IL-7 promotes substantially an expansion
of IL-17-producing γδ T cells (71). Moreover, several studies have
shown that when cultured in the presence of various combina-
tions of cytokines, naive Vγ9Vδ2 T cells acquire an IL-17-secreting
Th17-like phenotype or a mixed Th1/Th17 phenotype and pro-
duce both IFN-γ and IL-17 (61–63). Human cord blood-derived
Vγ9Vδ2 T cells stimulated with HMBPP require IL-6, IL-1β, and
TGF-β to differentiate into γδTh17 cells, whereas, differentiation
into γδTh1/Th17 cells needs also IL-23 (62, 63). In adults, differ-
entiation of naive γδ T cells into memory γδTh1/Th17 T cells and
γδTh17 T cells requires IL-23, IL-1β, and TGF-β, but not IL-6.
γδTh17 cells can also produce IL-22 (especially cells in the cord
blood) (62, 63). Recently,Wu et al. demonstrated that, in a colorec-
tal cancer model, activated inflammatory DCs polarize Vγ9Vδ2
cells into γδTh17 cells that secrete high amount of IL-17, but
also IL-8,TNF-α, and granulocyte macrophage colony-stimulating
factor (GM-CSF) in an IL-23- dependent manner (64).

Besides their T cell effector functions, phosphoantigen-
activated Vγ9Vδ2 T cells can express lymph node migration recep-
tors (e.g., CXCR5) and display several hallmarks of professional
APCs, such as up-regulation of MHC class I and II molecules and
of the co-stimulatory molecules CD40 and CD83 and also the abil-
ity to phagocytose and process antigens and to activate naive αβ T
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Lafont et al. Plasticity and γδ T cells

FIGURE 1 | Anti-tumor functions of γδT cells. (A) γδ T cells can recognize
tumor cells through interaction with (i) TCR ligands, such as phosphoantigens
(P-Ags), F1-ATPase, BTN3A1, EPCR, . . ., and (ii) innate receptor ligands, such
as ULBP, MICA/B, and nectin-like 5. Following sensing of tumor antigens or
stress signals, γδ T cells are activated and can kill tumor cells through
cytotoxic mechanisms that rely on the perforin/granzyme pathway, the death
receptor pathway in response to TRAIL or Fas-L expression, and ADCC in the
presence of tumor-specific antibodies. (B) γδ T cell activation leads to TNF-α
and IFN-γ production and CD40-L expression that promote DC maturation and
T cell differentiation into Th1 cells. IL-17-producing γδ Th17 cells favor Th17
effector cell development. Th1 and Th17 effector T cells display anti-tumor

functions to control tumor development. (C) Through a trogocytosis
mechanism, activated γδT cells can capture and express CD1d molecules and
then promote iNKT cell activation. Activated γδ T cells can also display APC
functions (MHC I and II, CD40, CD83, and CD86 expression) and activate both
naive and effector T cells with cytotoxic activity against tumor cells.
(D) Activated γδ T cells can provide a co-stimulatory signal to NK cells through
CD137L expression to promote their anti-tumor activity. (E) In the presence of
specific signals, activated γδ T cells can display a Tfh profile (i.e., IL-4, IL-10,
and CXCL13 production and CD40-L expression) to help B cell antibody
production. Although not yet demonstrated, production of antibodies against
specific tumor antigens could be involved in the humoral anti-tumor response.

cells (72–74) (Figure 1E). These observations are based on results
obtained in vitro. The APC functions of γδ T cells in vivo have not
been evaluated and remain to be demonstrated.

Moreover, similarly to αβ T cells, the differential induction of
specific effector functions may also depend on the innate immu-
nity receptor class that is engaged and the nature of the cytokine
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stimuli. For example, NKG2D engagement triggers the induction
of human Vγ9Vδ2 T cell cytotoxic functions, thereby influencing
the fate of target cells (lysis or survival), but has limited effects on
cytokine production (21). Similarly, type I IFN-released by stim-
ulated myeloid and plasmacytoid DCs induces exclusively IFN-γ,
but no TNF-α, production by human Vγ9Vδ2 T cells (65).

In conclusion, Vγ9Vδ2 T cells display a surprisingly broad
array of functional activities. One essential question is to deter-
mine whether such functional plasticity is an intrinsic feature of
the whole Vγ9Vδ2 T cell population or whether it is restricted
to specific Vγ9Vδ2 T cell subsets. This is an important issue,
because it could directly affect γδ T cell-based therapeutic strate-
gies. Indeed, boosting γδ T cell regulatory activity is suitable in
some instances (i.e., autoimmune disease), conversely optimiz-
ing, for example, their APC or cytotoxic functions could be more
important for the treatment of tumors or infections. In terms of
cytokine production and cytotoxic activity, Vγ9Vδ2 T cells can be
divided in different subsets based on the expression of cell sur-
face markers. Upon in vitro activation and extended culture in
the presence of IL-2, naive Vγ9Vδ2 T cells (CD27+CD45RA+)
can sequentially differentiate into TCM (CD27+CD45RA−),
TEM (CD27−CD45RA−), and TEMRA (CD27−CD45RA+)
cells. CD45RA−CD27− TEM cells show the highest IFN-γ secre-
tion, while CD45RA+CD27− TEMRA cells are characterized by
a strong cytotoxic activity. In contrast, naive CD45RA+CD27+
Vγ9Vδ2 T cells display very low, if any, functional activity (75).
Studies using cell sorter-purified Vγ9Vδ2 T cell subsets have deter-
mined that only naive CD45RA+CD27+ Vγ9Vδ2 T cells can
differentiate into IL-17-producing cells when exposed to IL-1β,
IL-6, IL-23, and TGF-β (61). IL-17-producing Vγ9Vδ2 T cells dis-
play a TEMRA phenotype, promote neutrophil migration through
production of CXCL8 and up-regulate β-defensin production in
epithelial cells (61). Similarly, Vγ9Vδ2 T cell cytotoxic activity can
be assigned to specific subsets, especially to (CD45RA+CD27−)
TEMRA and (CD56+CD16+) cells (75–77), but their clonal
plasticity remains uncertain.

In addition, whether a given Vγ9Vδ2 T cell phenotype induced
by specific environmental stimuli, such as cytokines, is stable or
reversible, remains to be investigated. Although the expression of
lineage-associated transcription factors in Vγ9Vδ2 T cells has been
assessed in some studies, so far no clear correlation between the
expression of transcription factors and a specific stable cytokine
profile has been reported.

Finally, most of these studies concerned the Vγ9Vδ2 T cell sub-
set thus raising the question of whether other human or mouse
γδ T cell populations display similar plasticity. Ribot and collab-
orators have reported that also human Vγ1 and Vγ2 thymocytes
show functional phenotypic plasticity and can differentiate into
cytotoxic type 1 effector cells following IL-2 or IL-15 stimulation
(66) but no investigation was reported on other human γδ T cell
subsets.

PLASTICITY OF MOUSE γδ T CELLS
In mice, several studies demonstrated that γδ thymocytes are
functionally pre-committed and polarized in term of cytokine
production (78–80). During fetal development, γδ T cells are gen-
erated from two waves of thymocytes that express invariant TCR.

The first group migrates into the skin (Vγ5Vδ1 DETC) and is
programed to produce IFN-γ; the second group migrates into the
vaginal epithelium and the peritoneal cavity (Vγ6Vδ1 subset) and
is programed to produce IL-17 (33, 81). Other γδ T cell subsets
appear postnatally in the thymus and express TCR with various
Vδ and Vγ combinations. In adult mice, these cells are found in all
lymphoid organs and below the epithelium or mucosal surfaces
of many tissues, including the small intestine and lung. Most of
them display a programed polarization acquired during thymic
selection (33, 81) through a process regulated by TCR (78–80) and
co-receptor signaling (81). Thus,γδ T cell differentiation into IFN-
γ-producing cells require TCR and CD27 signals (78–80). CD27,
a member of the tumor necrosis factor receptor family, regulates
the balance between IFN-γ and IL-17 producing γδ T cell subsets
(82). CD27+ γδ T cells are committed to express IFN-γ genes,
whereas, CD27− γδ T cells display a permissive chromatin config-
uration at loci encoding IFN-γ and IL-17 as well as their regulatory
transcription factors. They can thus differentiate into both IFN-γ-
and IL-17-producing cells (82). It has also been shown that IL-
23 in combination with IL-1β promotes IL-17, IL-21, and IL-22
expression by mouse γδ T cells in the absence of additional signals;
however, the authors did not investigate CD27 expression in this
setting (67).

Altogether, these results suggest that mouse γδ T cells have a
low plasticity compared to human γδ T cells. Nevertheless further
investigation on mouse and human γδ T cell functional plasticity
are required to better characterize the molecular mechanisms and
the precise role of each γδ T cell subset in the immune response
and in pathologic conditions in order to improve γδ T cell-based
therapies.

IMPACT OF γδ T CELLS ON THE TUMOR IMMUNE RESPONSE
γδ T cells can: (i) detect and sense any type of stress through
a MHC-independent mechanism, (ii) produce huge quantities
of pro-inflammatory cytokines, and (iii) exert potent cytotoxic
activity against a broad panel of tumors. For these reasons, γδ

T lymphocytes are key players in the tumor immune response.
Like other cytotoxic effectors, γδ T cells directly participate in
the elimination of tumor cells, but they also control indirectly the
tumor immune response by modulating the activity and functions
of other immune cells. In this section, we will summarize both
pro- and anti-tumor activities of γδ T cells by focusing mainly on
their tumor recognition mechanisms and the triggered biological
responses.

ANTI-TUMOR ACTIVITY OF γδ T CELLS
Mechanisms of tumor cell recognition
Similarly to any other T cell population, γδ T cell activation and
acquisition of effector functions are triggered by TCR engage-
ment (Figure 1A). Specifically, γδ TCR recognize molecules that
are over-expressed in stress conditions. In normal cells, the con-
centration of metabolites of the isoprenoid pathway, such as IPP,
is too low to be sensed as a danger signal by Vγ9Vδ2 T cells.
Deregulation of the isoprenoid pathway in some tumors leads to
IPP over-production that is detected and considered as a tumor
antigen by Vγ9Vδ2 TCR (40, 83). Similarly, incubation of tumor
cells with bisphosphonates that inhibit the farnesyl pyrophosphate
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synthase enzyme in the isoprenoid pathway leads to IPP accumu-
lation and makes tumor cells more sensitive to Vγ9Vδ2 T cell
cytotoxicity (84–86). Several reports have shown that phospho-
antigens need to interact with specific proteins to be recognized
by TCR and to activate Vγ9Vδ2 T cells. First, Mookerjee-Basu
et al. showed that F1-ATPase, which is expressed on the sur-
face of some tumor cells, binds to the adenylated derivative of
IPP and is involved in triggering Vγ9Vδ2 T cell activation and
anti-tumoral activity (87, 88). More recently, it was reported that
butyrophilin 3 A1 (BTN3A1) can contribute to γδ T cell activa-
tion by sensing changes in phosphoantigen concentration within
tumor cells. Specifically, phosphoantigen binding to the intracellu-
lar domain of BTN3A1 could initiate a cascade of events that result
in extracellular changes or cell surface rearrangements (includ-
ing immobilization of BTN3A extracellular domain) and lead to
Vγ9Vδ2 T cell activation (89, 90). Dechanet-Merville and collab-
orators found that a human δ2 negative T cell subset recognizes
both CMV-infected and transformed cells through the interaction
between the endothelial protein C receptor (EPCR) and the TCR
(91). EPCR is over-expressed in CMV-infected endothelial cells
and transformed cells and it is conceivable that it might act as
a determinant of stress surveillance during epithelial cell trans-
formation to communicate a state of “dysregulated self” to γδ T
cells.

In addition to TCR engagement, stimulation of NKR expressed
by γδ T cells and particularly engagement of NKG2D receptor
can also efficiently trigger the anti-tumor functions of γδ T cells.
NKG2D is expressed by Vγ9Vδ2 T cells and binds to non-classical
MHC molecules of the MIC and ULBP families that are expressed
by tumor cells (18, 20, 21). Ligand binding to NKG2D induces the
release of IFN-γ and TNF-α, increases the expression of CD25,
the α chain of the IL-2 receptor and promotes γδ T cell cytolytic
activity (21). In particular, ULBP molecules have been involved in
the recognition by Vγ9Vδ2 T cells of leukemia and lymphoma (92)
and also of solid tumors, such as ovarian and colon carcinomas (93,
94). For instance, ULBP1 expression level determines lymphoma
susceptibility to γδ T cell-mediated cytolysis upon NKG2D bind-
ing (92). ULBP4 also can bind to Vγ9Vδ2 TCR and thus induce
the cytotoxic activity of Vγ9Vδ2T cells toward tumor cells through
both TCR and NKG2D engagement (22). More recently, Lamb and
collaborators have shown that temozolomide (TMZ), the main
chemotherapeutic agent used to treat glioblastoma multiforme
(GMB), increases the expression of stress-associated NKG2D lig-
ands on TMZ-resistant glioma cells,potentially making them more
susceptible to γδ T cell recognition and lysis (95). Furthermore,
as described for Vγ9Vδ2 T cells, recognition of MICA, MICB, or
ULBP expressed on cancer cells by human Vγ1δ1 T lymphocytes
can trigger or increase their cytolytic activity against tumor cells
that express NKG2D ligands (23, 96). Indeed, ULBP and MICA
interact with NKG2D or TCR on Vδ1 γδ T cells and induce their
activation. However, MICA binds in mutually exclusive manner
to NKG2D and TCR, suggesting that the two receptors might
be sequentially engaged following recognition of target tumor
cells (97).

DNAM-1 (also called CD226) is another NKR involved in the
regulation of the cytotoxic activity of γδ T cells. It is expressed
on the surface of both Vγ9Vδ2 and γ1 T cell populations and its

ligand nectin-like-5 has been detected on certain tumors. DNAM-
1 cooperates with TCR and NKG2D signaling in γδ T cells to
positively regulate their IFN-γ production and cytotoxic activity
against tumor cells (98, 99).

Like NK cells, human γδ T cells also express the CD16 (FcγRIII)
receptor that binds to the Fc portion of immunoglobulin G (IgG).
CD16 expression on Vγ9Vδ2 T cells can be up-regulated follow-
ing stimulation with phosphoantigens (100). Its engagement leads
to ADCC (101), a process that can result in lysis of tumor cells
bound by specific antibodies. Indeed, several in vitro studies have
clearly shown that γδ T cells are activated through CD16 and
mediate ADCC of tumor cells in the presence of therapeutic anti-
tumor monoclonal antibodies, such as rituximab, trastuzumab,
atumumab, and alemtuzumab (102–105). Reinforcing the rele-
vance of such in vitro data, it has been shown that stimulated γδ T
cells increase the efficacy of Trastuzumab in Her2+ breast cancer
patients (105).

Impact on immune cell activity
In addition to these direct effects against tumor cells, γδ T cells can
also control indirectly the anti-tumor immune response by pro-
moting the recruitment and modulating the activation of other
cell types in the tumor microenvironment, such as DCs, NK cells,
and effector T cells (Figures 1B–D).

In the presence of tumor cells, or following stimulation with
TCR agonists, NKG2D ligands, cytokines (such as IL-12 and IL-
18), or DNAM-1 engagement, human γδ T cells produce IFN-γ
and TNF-α (21, 56, 94, 106–108). These two cytokines can inhibit
tumor growth through several mechanisms, but especially by
enhancing CD8 T cell anti-tumor activity (Figure 1B) and by
inhibiting tumor angiogenesis (109–111). Mouse γδ T cells also
are an important and early source of IFN-γ within the tumor
microenvironment where IFN-γ enhances MHC class I expression
on tumor cells and CD8+ T cell responses (112–114). Altogether
these findings suggest that both human and mouse γδ T cells pos-
itively influence the anti-tumor immune response by increasing
the adaptive anti-tumor immunity (115) (Figure 1B).

As previously mentioned, both mouse and human γδ T cells
could be an important source of IL-17. This cytokine plays an
essential role in the host defense against microbial infections, but
also in autoimmune disorders and cancer (116). IL-17 contri-
bution to the tumor immune surveillance is still controversial.
Indeed, IL-17 has often been described as a cytokine with pro-
tumor properties, but several studies highlighted that it can also
display anti-tumor functions (117). Therefore, IL-17 heteroge-
neous sources and, perhaps, targets in the tumor microenviron-
ment may determine whether it will negatively or positively affect
tumor growth. In human, the majority of αβ and γδ Th17 cell
populations that produce IL-17 also concomitantly produce IFN-
γ (63) and the anti-tumor functions of IL-17-producing αβ T cells
strongly depend on IFN-γ (118). Moreover, IL-17-producing αβ

T cells stimulate the release of several cytokines (such as IL-6, IL-
12, CXCL9, and CXCL10) by immune or cancer cells, leading to
DC maturation or effector T cell recruitment to the tumor, and as
a consequence, to an increase of the anti-tumor immunity (119,
120) (Figure 1B). It is likely that γδ Th17 cells might do the same,
but this remains to be formally demonstrated.
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Importantly, in mice, IL-17-producing γδ T cells (Vγ4+ and
Vγ6+) contribute to chemotherapy efficacy because they are
required for the priming of IFN-γ-secreting tumor-specific T
cells. In this context, γδ T cells are considered as part of the
innate immune response that is involved in the subsequent specific
anti-tumor T cell response following treatment with chemother-
apeutic agents (121, 122). Nevertheless, it is not known whether
human IL-17 γδ T cells also contribute to the efficacy of anti-
cancer chemotherapy and whether combination treatments with
γδ T cell agonists and anthracyclines could improve the patient
outcome.

Dendritic cells are potent inducers of γδ T cell effector func-
tions through their ability to express γδ TCR ligands and to provide
co-stimulation signals (123, 124). Inversely, interactions between
activated γδ T cells and DCs were shown to induce DC activa-
tion and maturation, thus facilitating the establishment of the
T cell response (125, 126). Indeed, activated human Vγ9Vδ2 T
cells enhance IL-12 production by monocyte-derived DCs through
an IFN-γ- and IL-12-mediated positive feedback loop that can
then promote naive αβ T cell activation and differentiation into
Th1-type cells (127), an effect that may positively influenced the
anti-tumor immunity (Figure 1B).

As already mentioned, when activated by phosphoantigens,
Vγ9Vδ2 T cells can display APC features and acquire the ability to
activate naive and effector T cells (72, 73) (Figure 1C). Similarly,
Vγ9Vδ2 T cells can also present antigens to invariant NKT cells
(iNKT). Schneiders et al. demonstrated that, when co-cultured
with CD1d-positive cells, activated Vγ9Vδ2 T cells uptake CD1d
on their membrane through trogocytosis and acquire the capac-
ity to present glycolipid antigens to iNKT cells and activate them
(128) (Figure 1C). iNKT cell activation triggers the production
of large amounts of cytokines that play an important role in ini-
tiating and orchestrating anti-tumor immune responses, such as
Th1-biased pro-inflammatory responses.

Natural killer cells also have a role in anti-tumor responses and
their activity can be regulated by γδ T cells. When co-localized
within tumors, human γδ T cells can provide co-stimulatory sig-
nals to NK cells and induce NK cell-mediated killing of tumor
cells (129). Indeed, CD137L is expressed on activated γδ T cells
and interacts with the cognate receptor CD137 on NK cells, lead-
ing to the up-regulation of the activation markers CD25, CD54,
CD69, and NKG2D on the surface of NK cells and to the increase
of their cytotoxic function, particularly against solid tumors that
are usually resistant to NK cytolysis (129) (Figure 1D).

PRO-TUMOR ACTIVITY OF γδ T CELLS
In some conditions, γδ T cells can also promote tumor growth
via regulatory functions that impair the anti-tumor immune
responses (Figure 2).

Human Vγ9V δ2 T cells
Vγ9Vδ2 T cells with immunosuppressives functions may play an
important role in human cancers. Upon activation, human periph-
eral Vγ9Vδ2 T cells also can express IL-4, IL-10, and TGF-β and
inhibit T cell proliferation, thus developing a regulatory profile that
may play a role in the suppression of anti-tumor responses (130).
Indeed, depending on the context, Vγ9Vδ2 T cells may display a

Th1-, Th2-, Th17-, or Th1/reg-like profile and synthetize IFN-γ,
IL-4, IL-17 or IL-10, and TGF-β, respectively.

While IL-4 is a cytokine involved in Th2 responses (which are
not appropriate for anti-tumor immunity), IL-10 and TGF-β are
cytokines with immunosuppressive functions and thus could be
involved in the pro-tumor activities of γδ T cells. TGF-β has a cru-
cial role in tumor development because it can promote tumor cell
invasiveness and metastasis formation mainly by modulating the
immune system and the tumor microenvironment (Figure 2A).
The most important mechanisms of tumor progression linked
to TGF-β activities are the epithelial-to-mesenchymal transition
(EMT), immune system evasion,and promotion of cancer cell pro-
liferation by modulation of the tumor microenvironment (131).
The expression of IL-10 and TGF-β is frequently increased in vari-
ous cancer types. IL-10 directly affects APC function by inhibiting
the expression of MHC and co-stimulatory molecules, which
induces immune suppression or tolerance (Figure 2B). Addition-
ally, IL-10 down-regulates the expression of Th1 cytokines and
induces T-regulatory responses.

IL-17 plays a dual role by promoting both tumor growth and
anti-tumor immunity, depending on the tumor type, stage, and
target cells present in tumor microenvironment. The number of
IL-17-producing cells is increased in cancer and this is associ-
ated with poor prognosis (117, 132, 133). Several IL-17 activi-
ties contribute to tumor progression. In breast cancer, IL-17 can
directly promote tumor cell proliferation and dissemination (119)
and favor the development of cancer resistance to conventional
chemotherapeutic agents, such as docetaxel (133) (Figure 2A).
IL-17 can also act on cells in the tumor microenvironment. For
instance, IL-17 up-regulates the secretion of pro-angiogenic and
pro-tumor factors (e.g., VEGF, IL-6, and IL-8) by stromal cells and
fibroblasts, thus promoting angiogenesis and sustained chronic
inflammation (119, 120). In colorectal cancer, Vγ9Vδ2 T cells
can differentiate into Th17 cells that secrete IL-17 and also IL-
8, TNF-α, and GM-CSF and thus contribute to the accumula-
tion of immunosuppressive polymorphonuclear-myeloid-derived
suppressor cells (PMN-MDSCs) within the tumor microenvi-
ronment and influence the anti-tumor immune response (64)
(Figure 2C).

Human V δ1 T cells
Besides Vγ9Vδ2 T cells, other human γδ T cell subsets can display
immunosuppressive functions. First, Peng et al. demonstrated that
Vδ1 γδT cells infiltrating human breast cancer suppress DC mat-
uration and T cell effector functions both in vitro and in vivo.
When stimulated by tumor cells and an anti-CD3 antibody, Vγ1
T cells express IFN-γ and GM-CSF, but not IL-1β, TNF-α, IL-12,
IL-2, IL-4, IL-10, or TGF-β (134). Thus neither IL-10 nor TGF-β
seems to play a role in this immunosuppressive activity. Although,
the involved factor(s) remain to be identified, these authors found
that the suppressive activity was in the soluble fraction with a mol-
ecular mass higher than 100 kDa and could be inactivated by heat,
but not by DNAse or RNAse treatments (134) (Figure 2D). These
Vδ1 γδ T cells represent a large percentage of tumor-infiltrating
lymphocytes in breast and also in prostate cancer, suggesting that
they may play an important role in promoting an immunosup-
pressive tumor microenvironment. Interestingly, stimulation of
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FIGURE 2 | Pro-tumor functions of γδT cells. (A) Activation of γδ T cells
in the presence of specific stimuli can promote their polarization into
Th17- or Treg-like cells that produce IL-17 and TGF-β, thus favoring tumor
cell proliferation and dissemination. IL-17 produced by γδ T cells confers
chemotherapy resistance to tumor cells. (B) Activated γδ T cells can
inhibit DC maturation and their APC functions, thus impairing naive T cell
activation and differentiation into effector T cells. (C) IL-17 produced by γδ

Th17 cells promotes the development of Th17 cells with pro-tumor

functions. γδ Th17 cells also produce a cocktail of cytokines and
chemokines involved in the recruitment of myeloid-derived suppressive
cells (MDSC) and small peritoneal macrophages (SPM) with
immunosuppressive and pro-tumor functions. (D) γδ Treg cells produce
cytokines (IL-4, IL-10, and TGF-β) and other immunosuppressive factors
that impair CD8 T and NK cell cytotoxic activity. γδ Treg cells can also
promote senescence of DC or αβ T cells and consequently favor tumor
growth.

suppressive Vδ1 γδ T cells in breast cancer by using a TLR8 agonist
reversed the anti-tumor response inhibition (134). More recently,
the same group demonstrated that regulatory γδ T cells can induce
both T cell and DC senescence. Specifically, regulatory γδ T cells
induce senescence of both naive and effector T cells, as indicated
by the impaired expression of the co-stimulatory molecules CD27
and CD28 and the low proliferative capacities of both Th1 and
Th17 T cell subsets. Senescent T cells and DCs become suppressive

cells, further amplifying the immunosuppression mediated by γδ

Treg cells (135). Furthermore, Ma and collaborators found that
high γδ T cell level in breast cancer tissues is correlated with poor
survival and high risk of relapse (136). Similarly, in colon ade-
nocarcinoma, a significant correlation has been observed between
presence of γTCR cells and disease stage. These two reports sug-
gest that γδ T cells may have a key prognostic role in colon
adenocarcinoma and breast cancers (137).
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Mouse γδ T cells
γδ T cells with immunosuppressive functions have also been
observed in mouse tumor models (138, 139). Seo et al. found
that murine γδ T cells that infiltrate tumors arising from B16
melanoma cells produce large amounts of IL-4 and IL-10 and
inhibit NK and iNKT cell activity (138) (Figure 2D). They demon-
strated that supernatants from these γδ T cells did not affect
NK and iNKT cell cytotoxicity, but reduced their proliferation,
suggesting that soluble IL-4 and IL-10 could contribute to the
inhibition of NK and iNKT cell activity by γδ T cells in this
model (138). Additional studies from this group showed that γδ

T cells that infiltrate MM2 mammary tumors in mice express IL-
10 and TGF-β, but not IFN-γ or IL-4. γδ T cells isolated from
these tumors and from the spleen hindered the cytotoxic activity
of NK and CD8 T cells. IL-10 and TGF-β neutralization inhibited
some of the immunosuppressive effects of these γδ T cells, sug-
gesting the involvement of these cytokines (Figure 2D). Moreover,
depletion of IL-10- and TGF-β-secreting γδ T cells by using a spe-
cific antibody enhanced the anti-tumor immunity and reduced
tumor growth in xenografted mice (139). More recently, Hao
et al. using the B16 melanoma model, showed that mouse Vγ1
T cells suppress the anti-tumor functions of the Vγ4 T cell sub-
set, thus promoting tumor growth. Specifically, Vγ1 γδ T cells
reduced IFN-γ, perforin, and NKG2D expression in Vγ4 γδ T cells
through contact-independent mechanisms involving IL-4 (140).
Collectively, these data strongly suggest that within the tumor
microenvironment, some mouse γδ T cell populations express IL-
4, IL-10, and TGF-β and inhibit the anti-tumor immune response.
IL-17-secreting γδ T cells show pro-tumor activity also in mouse
models. Recently, Rei et al. demonstrated that murine CD27-Vγ6
T cells that produce IL-17 promote ovarian cancer growth via
mobilization of small peritoneal macrophages (141) (Figure 2C).

Overall, these findings support the idea that γδ T cells, at least
in some cancers, can behave as Tregs or Th17 T cells that impair
the anti-tumor immune response and promote tumor growth,
through the secretion of different cytokines with regulatory func-
tions or the recruitment of immunosuppressive cells within the
tumor microenvironment.

CONCLUSION
During the last decade, our knowledge on the role of γδ T cells
in the tumor microenvironment has hugely improved. Plasticity
of γδ T cells increases the range of their biological responses as
different γδ T cell sub-populations can regulate different aspects
of the tumor immunity. Functional plasticity also can explain
the heterogeneous responses and contradictory functions of this
unconventional T cell population in the context of cancer immune
surveillance. As discussed in this review, due to the TCR-mediated
recognition and activation mechanisms and the fine regulation
of their activation through innate and cytokine receptors, γδ T
lymphocytes are attractive targets for immunotherapeutic proto-
cols with the final objective of boosting the anti-tumor immune
response. Several clinical trials have already assessed γδ T cell-
based immunotherapy in patients with advanced hematological
malignancies and solid cancers with encouraging results. However,
high density of γδ T cells in the breast and colon tumor microen-
vironment has been associated with poor clinical outcome. We

are convinced that a better characterization of the mechanisms
regulating their polarization should allow the development of
optimal therapeutic strategies to favor the expansion of γδ T cell
populations with anti-tumor rather than pro-tumor functions.
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