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Abstract

Background: Measuring the impact of combinations of genetic or chemical perturbations on cellular fitness,
sometimes referred to as synthetic lethal screening, is a powerful method for obtaining novel insights into gene
function and drug action. Especially when performed at large scales, gene-gene or gene-drug interaction screens
can reveal complex genetic interactions or drug mechanism of action or even identify novel therapeutics for the
treatment of diseases.
The result of such large-scale screen results can be represented as a matrix with a numeric score indicating the
cellular fitness (e.g. viability or doubling time) for each double perturbation. In a typical screen, the majority of
combinations do not impact the cellular fitness. Thus, it is critical to first discern true “hits” from noise. Subsequent
data exploration and visualization methods can assist to extract meaningful biological information from the data.
However, despite the increasing interest in combination perturbation screens, no user friendly open-source program
exists that combines statistical analysis, data exploration tools and visualization.

Results: We developed TOPS (Tool for Combination Perturbation Screen Analysis), a Java and R-based software tool
with a simple graphical user interface that allows the user to import, analyze, filter and plot data from double
perturbation screens as well as other compatible data. TOPS was designed in a modular fashion to allow the user
to add alternative importers for data formats or custom analysis scripts not covered by the original release.
We demonstrate the utility of TOPS on two datasets derived from functional genetic screens using different
methods. Dataset 1 is a gene-drug interaction screen and is based on Luminex xMAP technology. Dataset 2 is a
gene-gene short hairpin (sh)RNAi screen exploring the interactions between deubiquitinating enzymes and a number
of prominent oncogenes using massive parallel sequencing (MPS).

Conclusions: TOPS provides the benchtop scientist with a free toolset to analyze, filter and visualize data from
functional genomic gene-gene and gene-drug interaction screens with a flexible interface to accommodate different
technologies and analysis algorithms in addition to those already provided here. TOPS is freely available for academic
and non-academic users and is released as open source.
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Background
Genes operate in complex cellular networks, and eluci-
dating this connectivity is critical for understanding nor-
mal physiology and disease. Functional genomic screens
that combine two perturbations have been used with
great success to uncover such genetic interactions, and
also to reveal mechanisms of drug action [1,2]. This is
generally done by perturbing a biological system, most
often a cell, in a defined manner i.e. by overexpression
or knockdown of a gene or by addition of a drug and
subsequently administering a second set of perturbations
and analyzing the system for non-additive readout (i.e.
synergistic/antagonistic or synthetic lethality/synthetic
rescue) [3].
These perturbation experiments have traditionally been

performed in model organisms such as yeast where gen-
etic manipulation is relatively easy compared to mam-
malian cells [2]. Now, with the advent of technologies
including RNA interference (RNAi) and the recent emer-
gence of nuclease-based genome engineering, human cells
can also be used to perform functional genomic screens.
Cellular fitness, often represented by cell number, division
rate or death, is used as a proxy for many of these screens
since it is a parameter that can be measured with relative
ease. This proxy is also of particular relevance in case gen-
etic interactions are sought as potential anti-cancer ther-
apies. Here, the aim is to kill only cells carrying cancer
mutations by targeting an interacting gene which is in syn-
thetic lethal configuration to the mutation. This can be
achieved by targeting this second gene product with a
small molecule inhibitor or antibody. The non-cancer cells
would remain unaffected from this therapy as inhibiting
only one interaction partner will not lead to lethality. In-
deed, many cancer mutations can be tested systematically
against drugs to uncover selective resistance/sensitivity
mechanisms, or against small interfering RNAs to find
potential new drug targets [4-6].
A pairwise wise interaction screen yields a matrix of

interaction (or fitness-) scores. For two non-overlapping
sets of perturbations A and B the number of measure-
ments and statistical tests T required to evaluate all
unique pairwise combinations is given by:

T ¼ Aj j � Bj j

In practice, the number of data points typically gener-
ated is further increased to T x n by the requirement of
n replicate measurements. Thus, a screen of, for ex-
ample, 100 genes against 100 drugs measured in quadru-
plicate requires 40,000 measurements. A Dataset of this
size is usually beyond the limits of what can be con-
veniently analyzed without the use of dedicated statis-
tics software.
To generate these large datasets, multiplexing strategies
greatly improve the throughput of the experiment, by com-
bining genetic perturbations in a single well (multiplexing
drug treatments is typically not feasible). A convenient
multiplexing strategy is to introduce DNA barcodes into
the genome of mutant cell lines such that each genetic per-
turbation corresponds to a single barcode sequence. In this
scenario DNA barcodes act both as unique identifiers for
each genetic perturbation and as a proxy for cell number/
fitness. Barcodes can be encoded by short hairpin (sh)RNA
sequences themselves or introduced into the genome as
non-transcribed DNA sequences using lentiviral vectors
[7,8]. Practically, a set of barcoded cell lines (A) can then
be pooled together and divided into aliquots that are then
screened against the second set (B) of perturbations.
In our laboratory we have generated multiplexed gene-

gene and gene-drug interaction data using two distinct
technologies [Figure 1]:

(1)Luminex xMAP – a hybridization based
multiplexing technology that allows up to 500
measurements in a single sample. Here, DNA
barcoded panels consisting of genetically modified cell
lines (i.e. expressing an oncogene or knockdown of a
tumor suppressor gene) and an unmodified control
from the same genetic background are pooled in a
single well of a multiwell plate (genetic perturbation,
set A) and treated with either a drug or a second
genetic perturbation (drug perturbation, set B). In this
case only perturbation set A is multiplexed.

(2)Massive Parallel Sequencing (MPS). In this case, a
panel of non-barcoded cell lines carrying perturb-
ation set A from (1) are infected with a library of
lentiviral shRNA vectors (genetic perturbation, set
B). Here, the shRNA sequence that integrate into
the genome serves both as perturbation and as DNA
barcode. Further multiplexing can be achieved by
indexing the second perturbation in a single sequen-
cing run. For example, a MPS run yielding 108

aligned reads on average allows 100 cell lines to be
screened against 100 drugs at a reasonable average
sequencing depth of 10,000 reads per DNA barcode.

In both cases the abundance of DNA barcodes amplified
from the genomic DNA is measured after a period of expo-
nential cell growth and used as a score for cellular fitness.
To deconvolute, analyze and visualize this type of data in a
modular and intuitive manner we established TOPS.

Implementation
Programming Language, external software and system
requirements
TOPS was developed as a graphical user interface for an
analysis pipeline that we originally developed in R. In



Figure 1 Overview of the two discussed multiplexing technologies used for gene-drug and gene-gene interaction studies. (A) Luminex
multiplexing for a gene-drug interaction screen. The gene perturbation is multiplexed and encoded as a DNA barcode that can be hybridized to
Luminex beads and quantified. Drugs are not multiplexed. (B) MPS double multiplexing screen for gene-gene interactions. The first (genetic)
perturbation can be multiplexed as a Illumina index barcode, and the second perturbation is identified by sequencing the hairpin cassette,
which acts as a second DNA barcode.
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order to make these R scripts accessible to non-expert
users, in particular scientists with little background in
scripting languages, we took advantage of the R package
rJava (http://www.rforge.net/rJava/) to run the scripts
from a Java based interface. TOPS can therefore run its
R scripts on all platforms for which rJava is available
(currently MacOS, Linux and Windows).
The hardware requirements to run TOPS depend

mostly on the volume of data to be analyzed and the
algorithm to be used. We have developed and tested
TOPS on two independent datasets derived from differ-
ent experimental approaches, and on a standard office
computer with a 2.4 GHz dual core processor and 2.5 GB
of RAM. We note that for larger datasets the linear
model (linearModel.R) algorithm provided with this re-
lease requires more memory than is usually available
on an office computer. Therefore, we have provided an
alternative that splits the analysis in smaller parts (line-
arModel_split.R) and later assembles the results. This
modification necessitated an adjustment in the data
normalization [Figure 2].
Output from the R interface, including and error mes-

sages, is stored in text files for troubleshooting. The
overall progress of a session can be monitored and is
logged separately.
User skills and installation
Installation of TOPS consists of unpacking the zipped
file into a directory. For TOPS to run, Java, R and
the package rJava are must also be installed. Upon
first launch, definition of the paths in which R and
rJava are located may be required. The most com-
mon locations for MacOS, Linux and Windows are
checked automatically and the user will be prompted
only if the libraries cannot be found. For conveni-
ence, alternative locations to be checked in this
manner can be added in libPaths.txt in the TOPS
directory.
TOPS uses a single semicolon separated values (CSV)

data input file. This file has to be generated by the user
and can for instance be exported from a Microsoft Of-
fice Excel spreadsheet. Alternatively the example data-
sets can be used for testing. To use TOPS no scripting
skills are necessary.
Results and discussion
Example datasets provided
TOPS comes with two datasets to test the different pro-
cedures. Thus, users can explore the software without
having to generate original data.

http://www.rforge.net/rJava/


Figure 2 Correlation of p-values for linear and split linear model
algorithms. Splitting the data set into smaller subsets and normalizing
as well as analyzing each of them separately only introduces minor
deviations in the resulting candidate hits (i.e. 39 of the top 50 hits in
one method are among the respective top 50 of the other method).
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Example dataset 1: a gene-drug interaction screen in
breast cancer
To simulate oncogenic events in breast cancer we cre-
ated a panel of 70 different isogenic cell lines ectopically
expressing oncogenes or knocking down tumor suppres-
sor genes commonly found in breast cancer. Findings
based on this dataset have been published previously [7].
For multiplexing purposes, each cell line was infected

with a vector introducing a genetic barcode (xMAP tag)
into the genomic DNA. The cell lines were then pooled,
distributed among multi-well plates and treated with 87
individual drugs. After a period of exponential growth,
genomic DNA was harvested and barcodes were quanti-
fied using Luminex xMAP beads. Raw bead data was
converted to median measurements per interaction by
calculating the truncated mean. The resulting data is in
the format ‘Cell line (name)’, ‘Drug (name)’, ‘Barcode
score (numerical)’. The barcode score is a measure of
the relative fitness as it is an estimate of the total num-
ber of cells for each isogenic cell line under the drug
treatment condition.

Example dataset 2: a gene-gene interactions screen in
breast cancer
We screened 27 isogenic cell lines expressing oncogenes
against a library consisting of approximately 400 shRNA
vectors covering 80 deubiquitinating enzymes (DUBs).
DUBs represent an emerging class of cancer targets
involved in many different cellular processes with thera-
peutic potential. After a period of exponential growth
cells were harvested and genomic DNA was extracted in
order to PCR-amplify the shRNA barcode cassettes.
During the amplification process primers with 60 unique
barcode sequences corresponding to the 27 cell lines in
4 replicates were used as described in [9]. The tagged
PCR samples were then pooled, a sequencing library was
generated and the samples were sequenced on two lanes
(50 basepairs) of a Hiseq 2000 instrument (Illumina).
The MPS raw data were converted to FASTQ format
and split according to the indexing PCR primers with a
custom Python script. Each sample’s NGS reads were
aligned to the shRNA sequences using shALIGN [10]
allowing for zero, one, and two mismatches. The output
CSV file is in the format: ‘Cell line (name)’, ‘shRNA
(name)’, ‘number of reads’. Number of reads corresponds
to shRNA abundance and this is the readout for
relative fitness.

Importing data
A typical input file consists of five columns with the
following information:

perturbation A; perturbation B; fitness score; replicate
1; replicate 2

In the provided example dataset 1, perturbation A cor-
responds to the gene (i.e. overexpression or knockdown)
and perturbation B is a drug treatment. For dataset 2,
perturbation B is an shRNA vector targeting a specific
DUB and perturbation A is the gene. Fitness score rep-
resents the barcode abundance in these examples. Repli-
cates 1 and 2 designate if measurements are replicates of
each other. Replicate 1 identifies multiple perturbations
towards the same outcome (i.e. multiple different hair-
pins for one gene, multiple vectors encoding the same
cDNA) while replicate 2 identifies the replicate number
for a given A-B combination.
TOPS has custom importers covering both types of

files from the example datasets. These importers convert
the data coming from Luminex or MPS to the input
file format.
Entries with non-unique identifiers for perturbation A

and perturbation B are automatically interpreted to be
replicate measurements by the importers.

Pre-analysis filtering
We implemented a filtering method to allow the user to
detect and remove bad replicates or samples before
running the analysis as this can result in false positive
hits. This filtering is based on the assumption that the
frequency of gene-gene or gene-drug interactions is
low among all possible combinations [11]. Therefore
noisy perturbations can be identified by how well they
correlate with others. For each perturbation a pairwise
Spearman correlation is calculated against all other
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perturbations in the dataset. A poor correlation then
indicates a technically noisy sample that the user may wish
to exclude from further analysis. We perform this correl-
ation for both A and B perturbations and correlation cut-
offs can be chosen for each individually [Figure 3].

Analysis algorithms
TOPS is supplied with two analysis models that are well
suited for interaction data of the type that is supplied in
the example datasets. However, custom analysis methods
can be conveniently plugged into TOPS. The first method
is based on a multiple linear regression model and the
second one is based on the Mann-Whitney U Test.

Statistical analysis: linear model
Linear models have been used previously to normalize
[12,13] and analyze [14,15] high-throughput measure-
ments. Accordingly, our analysis is composed of two
consecutive linear models: the first one is used for data
normalization; the second one identifies outliers that
represent “hits” i.e. potentially biologically meaningful
interactions that warrant further study.
Data normalization relies on the assumption that rela-

tive fitness values intensityi as determined by barcode
quantification (via MPS or Luminex) are constituted of
four components:

1) the systematic effect of perturbation A on fitness
2) the systematic effect of perturbation B on fitness
Figure 3 Pre-analysis filtering for both sets of perturbations. Spearma
Noisy perturbations can be removed before normalization by changing the
3) the signal that is due to the (synergistic)
combination of perturbation A and B consistent
across biological replicates, which is the signal of
biological interest

4) noise caused by biological and technical variability
between the replicates.

These four components can be modeled as:

intensityi ¼ βA Aþ βB Bþ si

where intensityi represents the measured fitness score,
βA, βB are regression coefficients, A, B are categorical
variables representing perturbations A and B respect-
ively, and si is a remaining signal including both noise
(biological and technical) and a potential synergistic
contribution of A and B perturbations. The model is fit
to the experimental data to estimate the first two com-
ponents from the fitness score corresponding to the sys-
tematic, non-synergistic perturbations induced by A and
B. The linear model was fit by robust regression using
an M estimator (function rlm in R library “MASS”) to
avoid influence of outliers.
The second linear model further dissects the compo-

nent si to identify potential synergy. Since we want to
analyze the effect of each perturbation on the other one,
si is dissected twice by fixing either the perturbation A
or B first. Namely, fixing A first, we can reduce si to the
signal observed for each successive value of A, which we
n correlations are plotted as a histogram for both sets of perturbations.
cutoff slider according to the desired stringency.
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denote by si|A. On this reduced data, the effect of per-
turbation B is estimated by the model:

∀A : sijA ¼ βBjABþ ε

where A, B are categorical variables as above, βB|A the
regression coefficient, and ε a term capturing the contri-
bution of noise. The same procedure is applied when
perturbation B is fixed first:

∀B : sijB ¼ βAjBAþ ε

The coefficients of these linear models (βA|B and βB|A)
capture the effect of a perturbation within the context of
a specific other perturbation. The coefficients combine
the signal of replicate experiments and estimate the
magnitude of the biological effect thanks to the noise
component ε.
The ‘rlm’ function of the R ‘MASS’ library is employed

to compute a robust estimate of the coefficients of the
linear model. This function also offers the possibility to
calculate the statistical significance of each coefficient by
performing a one-sided t-test (βA|B ≠ 0 or βB|A ≠ 0). For
small sample sizes this test can suffer from false posi-
tives due to underestimating variance as described in
Axelsson et al. [16].
As both linear models are applied after log transform-

ation of the input data these additive coefficients reflect
modeling a multiplicative effect of the fitness response
of the pairwise fitness effects βAand βB [17,18].
In the case of the sLM split linear model aimed at re-

ducing computation time and memory usage, the dataset
is subdivided into groups of 50 perturbations (A and B),
resulting in less data points available for the t-test, hence
the reduced statistical power.

Statistical analysis: Mann-Whitney U-test
The second method we implemented to analyze fitness
score data is based on the Mann-Whitney U-test, a more
robust alternative to the Student’s t-test that does not as-
sume a normal distribution. For this analysis a distinct
normalization procedure is employed.
First, numerical data was arranged in a matrix with

rows and columns representing perturbations A and B,
respectively. Next, we calculate a normalized value for each
gene-gene or gene-drug “interaction” in the matrix as:

mij ¼ AijBij

median Aj
� �

median Bið Þ

Here, i and j represent row and column positions in
the matrix, and Aj and Bi represent sets containing all
values for row j and column i, respectively. Thus, each
value in a row is divided by the corresponding row me-
dian, and each value in a column by the column median
across the matrix. Each fitness score in the matrix is
subsequently log10 transformed.
Next, the algorithm performs two-sided tests to calcu-

late p-values. The model requires at least 3 replicates
per interaction to perform this test. As with the linear
method algorithm we calculate two p-values for each
interaction, corresponding to perturbation set A or B.
Combining p-values
Both methods of analysis presented above calculate p-
values in either direction of the interaction matrix. This
means that either the distribution of A’s or B’s for a
given A-B interaction matrix is used to derive the signifi-
cance score. The distributions of A’s and B’s are likely to
be different, depending on the assay technology used to
generate the data. Therefore a pvalue derived from one
distribution (pvalue A) is not necessarily equal to the
pvalue derived from the second distribution (pvalue B)
for the same A-B interaction. To obtain an overall score
to rank hits, we tested three methods to combine p-values:
(1) calculating the average of both values, (2) multiplica-
tion of both values with each other, and (3) Brown’s
Method [19], a modification of Fisher’s method for com-
bining dependent p-values [Figure 4]. Taking the average
of two p-values strongly penalized fitness scores just below
the significance level, potentially resulting in more false
negatives while Brown’s Method rewarded combinations
where both p-values are close to significant. Multiplication
of both p-values gave comparable but slightly more
extreme results than Brown’s. We therefore selected
Brown’s Method to calculate combined p-values as a
conservative middle ground between the other two more
extreme methods.
Importing analyzed data into the “results browser” and
generating plots
Once data has been analyzed by either method, the results
of the analysis are stored in a text file in the following
format:
perturbation A; perturbation B; relative magnitude A;

relative magnitude B; absolute magnitude A; absolute
magnitude B; p-value A; p-value B; combined p-value by
Brown’s Method.
Where perturbation A and B are the identifiers for

the tested perturbations, relative magnitude A and B
gives an indication of the ratio of treatment versus
the median of all treatments (control), absolute mag-
nitude A and B are the raw signals from the assay
and the p-values are calculated as discussed previ-
ously. Given this format, other datasets not gener-
ated with our analysis pipeline can also be imported,
filtered and plotted using TOPS.



Figure 4 Comparison of different methods for combining scores. Heatmap of the overall score out of the two individual p-values by either
mean (left), multiplication (middle) or Brown’s Method (right).
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Post-analysis filtering
After the analysis is complete, the results are displayed in a
table in the results browser [Figure 5] and can be sorted as-
cending or descending by clicking on the column headers.
Here the user can sort and filter the obtained results before
visualization by entering a string of filtering criteria. These
criteria can be connected with the AND (&) or OR (|)
Figure 5 Screenshot of the results browser. Data from the analysis can
table. Filtering strings can be entered in the text field below the results tab
operator and also allows for partial matches using the tilde
(~) sign or exclusion using a logical NOT (!). Details on fil-
tering strings can be found in TOPS’s help files. The opti-
mal filtering parameters vary with the technology used to
obtain the data. In our experience, the mean Luminex sig-
nal (xMAP) and mean number of reads (MPS) are reason-
able parameters to use for filtering out false positives.
be filtered by any of the parameters displayed in the header of the
le and data can be sorted by clicking on a column name.
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Removing the bottom 5-10% of signals sorted by these pa-
rameters gave a satisfactory reduction in noise.

User modules
TOPS has been designed in a way that allows future
users to easily write new importers in java to support
other input data formats. We have also implemented the
possibility to run user-written R-code for the data ana-
lysis which can then be called from within TOPS and
fed into the data filtering and visualization [Figure 6].
The R scripts provided with this release can be used as
templates to write custom modules as required.

Comparison of performance of the analysis models
In order to compare the performance of all three models
(linear, split-linear, and Mann-Whitney U-test) we gener-
ated a randomized dataset with a distribution based on
dataset 1. In this set we generated true positive hits with
an average signal of 0.5, 0.7 (reduced fitness) 1.3 and 1.5
fold (increased fitness) compared to the average of true
negatives.
To estimate false positive and false negatives, we used

this dataset to determine receiver operating characteris-
tics (ROC) for all three algorithms [Figure 7]. Overall, all
Figure 6 Basic layout of the analysis process in TOPS. TOPS has
been written in order to be flexible with regard to user modules.
User made importers can be written in Java and integrated with the
GUI while custom analysis algorithms can be supplied as R scripts.
algorithms show comparable characteristics with the
U-Test performing slightly better at lower-fitness hits,
and the linear models being more sensitive for increased
fitness hits. In general, decreased fitness hits were more
readily detected by our algorithms due to the non-normal
distribution of the data. In terms of run-time performance
the U-Test and Split Linear Model algorithm are practic-
ally identical while the Linear Model algorithm is slightly
more computationally costly [Figure 8].
For dataset 1, interactions have also been validated

experimentally. Comparing the three algorithms in terms
of the verified true positives they can identify from a
ranked list of the top 50 hits after filtering as described
in [7] shows comparable performance [Table 1] and an
acceptable true/false positive rate overall compared to
other high-throughput screens [20].
In [Figure 9A-C] we show a scatter plot of P-values for

perturbations A and B with the successful and failed val-
idation indicated. We can observe an increasingly better
spatial separation comparing the U-test with sLM and
LM models, which could be for instance be captured
by principal component analysis. However, since the
localization of successful versus failed validation data
points does not follow a simple pattern according to the
original coordinates provided by the two P-values and is
likely to be different for distinct datasets, this would
necessitate to have available such a validation dataset to
train a classifier performing better than simple P-value-
based thresholds. As a generic tool TOPS does not offer
this functionality but users might consider implementing
it since we release the code of the system as open
source. Combining the P-values for perturbations A and
B does not have a negative effect on discriminative
power but allows to provide a single interaction score
[Figure 9D-F].

Data visualization
Data from gene-gene or gene-drug interaction screens
can be difficult to inspect visually since the number of
hits is comparatively small to the number of interac-
tions. Traditional plotting methods from gene expression
studies like heatmaps do not perform well in this setting.
We therefore designed a circular bubble plot to display
the data. An axis for every condition B is drawn on
which the scores/p-values for the interactions with each
condition A are plotted. The axes are arranged in a ra-
dial fashion such that the least significant hits are in the
center of the plot and the most significant interaction
scores are on the circumference of the circle. This allows
the user to quickly spot outliers and problematic/noisy
perturbations. In addition the magnitude of the effect
can be encoded in the size of each dot, allowing the user
to identify hits that are both significant and show a
reasonable effect size. The direction of the interaction



Figure 7 Receiver operating characteristics for the analysis algorithms. ROC curves are derived from a random 100x100 perturbations dataset in
quadruplicate modeled after dataset 1 where 100 true positives were introduced and defined as either 0.5 (A), 0.7 (B), 1.3 (C) or 1.5 (D) times that of
the true negatives.

Figure 8 Runtime performance of the three algorithms. The U-Test
(UT), split linear model (sLM) or linear model (LM) algorithms were
tested for runtime performance analyzing a set of 200×200 interactions.

Muellner et al. BMC Bioinformatics 2014, 15:98 Page 9 of 12
http://www.biomedcentral.com/1471-2105/15/98
(increased or decreased fitness as compared to con-
trol) is encoded by different colors [Figure 10]. The
identifiers of one set of perturbations is plotted at the
circumference of the circleplot. The second perturbation
can be identified by hovering the mouse over a datapoint
in the plot. TOPS’ plots can be exported as bitmaps in
PNG format or as vector graphics as a PDF file.
Table 1 Experimentally validated true and false positive
hits from dataset 1

Model (pvalue) True positives False positives Unverified

LM (pvA) 8 2 40

LM (pvB) 1 1 48

LM (pvAll) 6 2 42

sLM (pvA) 8 2 40

sLM (pvB) 2 0 48

sLM (pvAll) 8 1 41

UT (pvA) 7 2 41

UT (pvB) 4 2 44

UT (pvAll) 6 2 42

The top 50 interactions from a ranked hit list are categorized by experimentally
validated as true or false positive. Hits that were not experimentally tested are
indicated as “unverified”. The true and false positive rates for the linear model
(LM), split linear model (sLM) or U-Test (UT) algorithms for either p-value A (pvA),
p-value B (pvB) or the combined p-value (pvAll) are shown.



Figure 9 Separation of successfully versus failed validations of selected hits. The cut-off for the top 50 hits are indicated by dashed lines.
(A-C) Position of validations in the P-value A and B space (log-scale). (D-F) Distribution of all the combined P-values (A and B combined according to
Brown’s method) with positions of validated hits. Experimentally validated true positives are indicated in green, false positive hits in red.

Figure 10 TOPS’s graphical output. Results of the analysis are displayed on a circular bubble plot with the color encoding the direction
(reduced fitness, red or increased fitness, black) of the interaction, distance from the center indicates score/pvalue and bubble size corresponds to
the magnitude of the measured effect. Labels at the circumference indicate the perturbation identifier, in this example drugs.
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Conclusions
We present a user-friendly software package to analyze
and visualize interaction data from functional genomic
dual perturbation screens. Although multiple tools for
analyzing cell viability screens are available [16,21-24]
these have their limitations by either being based on
commercial software (mostly MATLAB) or requiring
command line skills. TOPS incorporates statistical models
designed for the analysis of pairwise interactions of larger
gene/drug sets. Furthermore it is fully based on free soft-
ware and provides a graphical user interface. The software
is easily accessible and offers a powerful analysis tool for
the benchtop scientist while being expandable enough to
be attractive to users who would like to run their own
analysis methods. Importantly, not only Luminex xMAP
and Sequencing data can be analyzed with the presented
methods but in principle any data from other technologies
can be imported as long as the data can be reduced to a
“perturbation A”, “perturbation B”, “score” format and
true positives are relatively rare in comparison to true
negatives which is a necessity due to the nature of
normalization of the in-built analysis. We have included
two analysis pipelines based on different methods to dem-
onstrate the versatility of TOPS. We have also included
two importers for Luminex xMAP data and for pre-
processed screening data that makes these two technolo-
gies particularly easy to use with the software.

Availability and requirements
Project name: TOPS.
Project home page: https://sourceforge.net/p/topscemm/
wiki/Home/.
Operating system(s): Win32/OSX/Linux.
Programming language: Java and R.
Other requirements: Java 6 or newer. R 2.14 or newer.
License: Creative Commons Attribution ShareAlike
License V3.0.
Any restrictions to use by non-academics: Only those
imposed by the license.
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