V. R. Pidatala, K. Li, D. Sarkar, W. Ramakrishna, and R. Datta, Identification of biochemical pathways associated with lead tolerance and detoxification in Chrysopogon zizanioides L. Nash (vetiver) by metabolic profiling, Environ. Sci. Technol, vol.50, pp.2530-2537, 2016.

I. Thornton, R. Rautiu, and S. Brush, Lead-the Facts, 2001.

W. Zhang, J. Yang, X. Wu, Y. Hu, W. Yu et al., A critical review on secondary lead recycling technology and its prospect, Renew. Sustain. Energy Rev, vol.61, pp.108-122, 2016.

R. Harrison, Lead Pollution: Causes and Control

T. W. Ellis and A. H. Mirza, The refining of secondary lead for use in advanced lead-acid batteries, J. Power Sources, vol.195, pp.4525-4529, 2010.

X. Tian, Y. Gong, Y. Wu, A. Agyeiwaa, and T. Zuo, Management of used lead acid battery in China: Secondary lead industry progress, policies and problems, Resour. Conserv. Recycl, vol.93, pp.75-84, 2014.

S. Bisessar, Effect of heavy metals on microorganisms in soils near a secondary lead smelter, Water Air Soil Pollut, vol.17, pp.305-308, 1982.

M. E. Farago, I. Thornton, N. D. White, I. Tell, and M. B. Mårtensson, Environmental impacts of a secondary lead smelter in Landskrona, southern Sweden, Environ. Geochem. Health, vol.21, pp.67-82, 1999.

J. S. Mao, J. Cao, and T. E. Graedel, Losses to the environment from the multilevel cycle of anthropogenic lead, Environ. Pollut, vol.157, pp.2670-2677, 2009.

A. R. Schneider, B. Cancès, M. Ponthieu, S. Sobanska, M. F. Benedetti et al., Lead distribution in soils impacted by a secondary lead smelter: Experimental and modelling approaches, Sci. Total Environ, vol.568, pp.155-163, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02136536

G. Liu, Y. Yu, J. Hou, W. Xue, X. Liu et al., An ecological risk assessment of heavy metal pollution of the agricultural ecosystem near a lead-acid battery factory, Ecol. Indic, vol.47, pp.210-218, 2014.

K. Chen, L. Huang, B. Yan, H. Li, H. Sun et al., Effect of lead pollution control on environmental and childhood blood lead level in Nantong, China: An interventional study, Environ. Sci. Technol, vol.48, pp.12930-12936, 2014.

H. Cheng and Y. Hu, Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review, Environ. Pollut, vol.158, pp.1134-1146, 2010.

D. Settle and C. Patterson, Lead in albacore: Guide to lead pollution in Americans, Science, vol.207, pp.1167-1176, 1980.

. Who, . Who/europe, . Environment, and . Health-lead, Poisoning Prevention Week: Ban Lead Paint, p.12, 2018.

, Childhood Lead Poisoning. Available online, p.12, 2018.

S. ?mirjákova, O. Ondra?ovi?ová, A. Ka?ková, and K. Lakticova, The effect of cadmium and lead pollution on human and animal health, Folia Vet, vol.49, pp.31-32, 2005.

S. Pan, L. Lin, F. Zeng, J. Zhang, G. Dong et al., Effects of lead, cadmium, arsenic, and mercury co-exposure on children's intelligence quotient in an industrialized area of southern China, Environ. Pollut, vol.235, pp.47-54, 2018.

B. Brunekreef, S. J. Veenstra, K. Biersteker, and J. S. Boleij, The Arnhem lead study: I. Lead uptake by 1-to 3-year-old children living in the vicinity of a secondary lead smelter in Arnhem, The Netherlands, Environ. Res, vol.25, pp.441-448, 1981.

O. H. Pattee and D. J. Pain, Lead in the environment, Handb. Ecotoxicol, vol.2, pp.373-399, 2003.

C. U. De-freitas, E. M. De-capitani, N. Gouveia, M. H. Simonetti, M. R. De-paula-e-silva et al., Lead exposure in an urban community: Investigation of risk factors and assessment of the impact of lead abatement measures, Environ. Res, vol.103, pp.338-344, 2007.

, Int. J. Environ. Res. Public Health, vol.15, pp.1030-1044, 2018.

F. Zhang, Y. Liu, H. Zhang, Y. Ban, J. Wang et al., Investigation and evaluation of children's blood lead levels around a lead battery factory and influencing factors, Int. J. Environ. Res. Public Health, vol.13, 2016.

J. Rieuwerts and M. Farago, Heavy metal pollution in the vicinity of a secondary lead smelter in the Czech Republic, Appl. Geochem, vol.11, pp.17-23, 1996.

C. Luo, C. Liu, Y. Wang, X. Liu, F. Li et al., Heavy metal contamination in soils and vegetables near an e-waste processing site, south, China. J. Hazard. Mater, vol.186, pp.481-490, 2011.

P. Gottesfeld, F. H. Were, L. Adogame, S. Gharbi, D. San et al., Soil contamination from lead battery manufacturing and recycling in seven African countries, Environ. Res, vol.161, pp.609-614, 2018.

P. Gottesfeld and A. K. Pokhrel, Review: Lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities, J. Occup. Environ. Hyg, vol.8, pp.520-532, 2011.

W. E. Daniell, L. Van-tung, R. M. Wallace, D. J. Havens, C. J. Karr et al., Childhood lead exposure from battery recycling in Vietnam, BioMed Res. Int, 2015.

F. Chen, W. Zhang, J. Ma, Y. Yang, S. Zhang et al., Experimental study on the effects of underground CO 2 leakage on soil microbial consortia, Int. J. Greenh. Gas Control, vol.63, pp.241-248, 2017.

F. Chen, M. Tan, J. Ma, S. Zhang, G. Li et al., Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: A greenhouse study, J. Hazard. Mater, vol.302, pp.250-261, 2016.

F. Chen, B. Yang, J. Ma, J. Qu, and G. Liu, Decontamination of electronic waste-polluted soil by ultrasound-assisted soil washing, Environ. Sci. Pollut. Res, vol.23, pp.20331-20340, 2016.

F. Chen, Z. Luo, G. Liu, Y. Yang, S. Zhang et al., Remediation of electronic waste polluted soil using a combination of persulfate oxidation and chemical washing, J. Environ. Manag, vol.204, pp.170-178, 2017.

S. D. Bao, Soil and Agricultural Chemistry Analysis, 2000.

F. Chen, Z. Luo, J. Ma, S. Zeng, Y. Yang et al., Interaction of cadmium and polycyclic aromatic hydrocarbons in co-contaminated soil, Water Air Soil Pollut, vol.229, 2018.

J. Ma, W. Zhang, S. Zhang, Q. Zhu, Q. Feng et al., Short-term effects of CO 2 leakage on the soil bacterial community in a simulated gas leakage scenario, PeerJ, vol.5, 2017.

R. J. Norman, J. C. Edberg, and J. W. Stucki, Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry 1, Soil Sci. Soc. Am. J, vol.49, pp.1182-1185, 1985.

S. Guan, Soil Enzyme and Its Research Methods, 1986.

M. Ahmadi, S. Jorfi, A. Azarmansuri, N. Jaafarzadeh, A. H. Mahvi et al., Zoning of heavy metal concentrations including Cd, Pb and As in agricultural soils of Aghili plain, vol.14, pp.20-27, 2017.

, GB15618-1995: Environmental Quality Standard for Soils, MEP, 1996.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: A flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, pp.2114-2120, 2014.

. Rdp-resources, , 2018.

. Mothur, , 2018.

A. Chao, Nonparametric estimation of the number of classes in a population, Scand. J. Stat, vol.11, pp.265-270, 1984.

C. E. Shannon, A mathematical theory of communication, ACM SIGMOBILE Mob. Comput. Commun. Rev, vol.5, pp.3-55, 2001.

R. H. Whittaker, Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr, vol.30, pp.279-338, 1960.

E. Da-c-jesus, T. L. Marsh, J. M. Tiedje, and F. M. Moreira, Changes in land use alter the structure of bacterial communities in Western Amazon soils, vol.3, pp.1004-1011, 2009.

, Int. J. Environ. Res. Public Health, vol.15, pp.1030-1045, 2018.

N. Udikovic-kolic, F. Wichmann, N. A. Broderick, and J. Handelsman, Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization, Proc. Natl. Acad. Sci, vol.111, pp.15202-15207, 2014.

W. Chang, R Graphics Cookbook: Practical Recipes for Visualizing Data, 2012.

. Qiime.-available and . Online, , 2018.

N. Rivas, M. Burton, O. T. Wise, P. Zhang, Y. Hobson et al., A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis, J. Allergy Clin. Immunol, vol.131, pp.201-212, 2013.

C. Hong, Y. Si, Y. Xing, and Y. Li, Illumina miseq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas, Environ. Sci. Pollut. Res, vol.22, pp.10788-10799, 2015.

, SSCO. Soil Chronicles in Suburban Xuzhou City, 1985.

J. Tian, Y. Lou, Y. Gao, H. Fang, S. Liu et al., Response of soil organic matter fractions and composition of microbial community to long-term organic and mineral fertilization, Biol. Fertil. Soils, vol.53, pp.523-532, 2017.

M. T. Karimi-nezhad, S. M. Tabatabaii, and A. Gholami, Geochemical assessment of steel smelter-impacted urban soils, J. Geochem. Explor, vol.152, pp.91-109, 2015.

F. Shen, R. Liao, A. Ali, A. Mahar, D. Guo et al., Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng county, China. Ecotoxicol. Environ. Saf, vol.139, pp.254-262, 2017.

A. Karaca, S. C. Cetin, O. C. Turgay, and R. Kizilkaya, Effects of heavy metals on soil enzyme activities, Soil Heavy Metals, pp.237-262, 2010.

R. L. Tate and . Iii, Microbiology and enzymology of carbon and nitrogen cycling, In Enzymes Environment, Activity, Ecology and Applications

&. Taylor and . Francis, , pp.227-248, 2002.

B. A. Caldwell, Enzyme activities as a component of soil biodiversity: A review, Pedobiologia, vol.49, pp.637-644, 2005.

T. Ba, M. Zheng, B. Zhang, W. Liu, K. Xiao et al., Estimation and characterization of PCDD/Fs and dioxin-like PCBS from secondary copper and aluminum metallurgies in China, Chemosphere, vol.75, pp.1173-1178, 2009.

X. Yin, C. Yao, J. Song, Z. Li, C. Zhang et al., Mercury contamination in vicinity of secondary copper smelters in Fuyang, Zhejiang province, China: Levels and contamination in topsoils, Environ. Pollut, vol.157, pp.1787-1793, 2009.

S. Kuo, L. Hsieh, C. Tsai, and Y. I. Tsai, Characterization of PM 2.5 fugitive metal in the workplaces and the surrounding environment of a secondary aluminum smelter, Atmos. Environ, vol.41, pp.6884-6900, 2007.

R. Li, R. Tao, N. Ling, and G. Chu, Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality, Soil Tillage Res, vol.167, pp.30-38, 2017.

J. Rousk, E. Bååth, P. C. Brookes, C. L. Lauber, C. Lozupone et al., Soil bacterial and fungal communities across a pH gradient in an arable soil, ISME J, vol.4, pp.1340-1351, 2010.

P. De-la, M. Jimenez, A. De-la-horra, L. Pruzzo, and M. R. Palma, Soil quality: A new index based on microbiological and biochemical parameters, Biol. Fertil. Soils, vol.35, pp.302-306, 2002.

G. Rodríguez-caballero, F. Caravaca, M. M. Alguacil, M. Fernández-lópez, A. J. Fernández-gonzález et al., Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment, Soil Biol. Biochem, vol.109, pp.176-187, 2017.

S. Wang and X. Cheng, Changes in proteolytic bacteria in paddy soils in response to organic management, Acta Agric. Scand. Sect. B Soil Plant Sci, vol.67, pp.583-589, 2017.

, Int. J. Environ. Res. Public Health, vol.15, pp.1030-1046, 2018.

X. Xie, F. Fan, X. Yuan, W. Zhu, N. Liu et al., Impact on microbial diversity of heavy metal pollution in soils near dexing copper mine tailings, Weishengwuxue Tongbao, vol.39, pp.624-637, 2012.

Y. M. Jiang, C. Zhang, X. L. Huang, C. Y. Ni, J. F. Wang et al., Effect of heavy metals in the sediment of Poyang Lake estuary on microbial communities structure base on Mi-seq sequencing, China Environ. Sci, vol.36, pp.3475-3486, 2016.

D. Sobolev and M. Begonia, Effects of heavy metal contamination upon soil microbes: Lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers, Int. J. Environ. Res. Public Health, vol.5, pp.450-456, 2008.

P. Doelman and L. Haanstra, Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors, Plant Soil, vol.79, pp.317-327, 1984.

A. Kouchou, N. Rais, F. Elsass, J. Duplay, N. Fahli et al., Effects of long-term heavy metals contamination on soil microbial characteristics in calcareous agricultural lands (Saiss plain

, J. Mater. Environ. Sci, vol.8, pp.691-695, 2017.

R. Narendrula-kotha and K. K. Nkongolo, Bacterial and fungal community structure and diversity in a mining region under long-term metal exposure revealed by metagenomics sequencing, Ecol. Genet. Genom, vol.2, pp.13-24, 2017.

F. Gremion, A. Chatzinotas, K. Kaufmann, W. Sigler, and H. Harms, Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment, FEMS Microbiol. Ecol, vol.48, pp.273-283, 2004.

X. Duan and H. Min, Physiological toxicity of Cd 2+ to representative microbial species in submerged paddy soil, Ecol. Environ.-Ment. Sci, vol.14, pp.865-869, 2005.

J. Li and Y. Mu, Research advances on the microbial effects of cadmium polluted soil, Environ. Sci. Manag, vol.33, pp.59-61, 2008.

K. Feris, P. Ramsey, C. Frazar, J. N. Moore, J. E. Gannon et al., Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient, Appl. Environ. Microbiol, vol.69, pp.5563-5573, 2003.

D. C. Gillan, B. Danis, P. Pernet, G. Joly, and P. Dubois, Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment, Appl. Environ. Microbiol, vol.71, pp.679-690, 2005.

H. Sinkko, K. Lukkari, L. M. Sihvonen, K. Sivonen, M. Leivuori et al., Bacteria contribute to sediment nutrient release and reflect progressed eutrophication-driven hypoxia in an organic-rich continental sea, PLoS ONE, vol.8, 2013.

R. Hayat, S. Ali, U. Amara, and R. Khalid, Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review, Ann. Microbiol, vol.60, pp.579-598, 2010.

A. Mishra and A. Malik, Recent advances in microbial metal bioaccumulation, Crit. Rev. Environ. Sci. Technol, vol.43, pp.1162-1222, 2013.

S. Pereira, A. Zille, E. Micheletti, P. Moradas-ferreira, R. De-philippis et al., Complexity of cyanobacterial exopolysaccharides: Composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly, FEMS Microbiol. Rev, vol.33, pp.917-941, 2009.

S. Pereira, E. Micheletti, A. Zille, A. Santos, P. Moradas-ferreira et al., Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: Do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiology, vol.157, pp.451-458, 2011.

A. Sessitsch, M. Kuffner, P. Kidd, J. Vangronsveld, W. W. Wenzel et al., The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils, Soil Biol. Biochem, vol.60, pp.182-194, 2013.