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Functional-structural plant models (FSPMs) generally simulate plant development and

growth at the level of individual organs (leaves, flowers, internodes, etc.). Parameters

that are not directly measurable, such as the sink strength of organs, can be estimated

inversely by fitting the weights of organs along an axis (organic series) with the

corresponding model output. To accommodate intracanopy variability among individual

plants, stochastic FSPMs have been built by introducing the randomness in plant

development; this presents a challenge in comparing model output and experimental

data in parameter estimation since the plant axis contains individual organs with different

amounts and weights. To achieve model calibration, the interaction between plant

development and growth is disentangled by first computing the occurrence probabilities

of each potential site of phytomer, as defined in the developmental model (potential

structure). On this basis, the mean organic series is computed analytically to fit the

organ-level target data. This process is applied for plants with continuous and rhythmic

development simulated with different development parameter sets. The results are

verified by Monte-Carlo simulation. Calibration tests are performed both in silico and on

real plants. The analytical organic series are obtained for both continuous and rhythmic

cases, and they match well with the results from Monte-Carlo simulation, and vice versa.

This fitting process works well for both the simulated and real data sets; thus, the

proposed method can solve the source-sink functions of stochastic plant architectures

through a simplified approach to plant sampling. This work presents a generic method for

estimating the sink parameters of a stochastic FSPM using statistical organ-level data,

and it provides a method for sampling stems. The current work breaks a bottleneck in

the application of FSPMs to real plants, creating the opportunity for broad applications.

Keywords: greenlab, inverse method, source-sink parameters, functional-structural plant model, stochastic

development, parameter estimation
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INTRODUCTION

Plant architecture, which is derived from the concept of
plant morphology, is the result of endogenous growth
processes and exogenous environment conditions (Barthélémy
and Caraglio, 2007), hinting that the endogenous growth
processes can be inferred from plant architecture and the
environment. Functional-structural plant models (FSPMs)
aim to represent three-dimensional (3D) plant structure by
combining physiological functions (Vos et al., 2010) to create a
bridge linking the joint effect of internal growth and the external
environment with the visible plant architecture. The state of the
art of FSPM and its applications were recently reviewed in the
special issue of the FSPMA2016 joint conference (Evers et al.,
2018). In recent years, the focus of FSPM has switched from
the reconstruction of static 3D plant and canopy architecture
for analyzing the effects of plant traits on light capture to
the dynamic simulation of plant growth and development
determined by the underlying eco-physiological processes (such
as photosynthesis and allocation of assimilates).

In contrast to traditional process-based plant models (e.g.,
TomSim, Heuvelink, 1999) that address carbon production and
allocation at the plant level, the spatial scale of FSPMs is
generally at the individual phytomer/organ level, which is an
important intermediate scale linking the cell level to plant-
or field-level studies in systems biology. However, an FSPM
cannot be used to draw reliable conclusions without being
parameterized. Here, the term “parameterization” refers to the
estimation of developmental and functional (source and sink)
parameters controlling dynamic growth processes as opposed
to the reconstruction of static 3D plant structures using image-
based approaches or laser scanning. Some calibrations occur
at the submodel level by incorporating measured, empirical
values (Garin et al., 2018; Perez et al., 2018; Robert et al.,
2018), or by individual parameter estimation (Gu et al., 2018;
Perez et al., 2018; Zhu et al., 2018), while some calibrations
are performed at the whole-model level (Bongers et al., 2018;
Ma et al., 2018; Robert et al., 2018). Among the submodels,
photosynthesis modeling, which dates back to the classical work
of Farquhar (Farquhar and Roderick, 2003), has been studied
extensively at the leaf and canopy levels in recent years with the
support of plant 3D structure (Li and Tang, 2017). Currently,
a great deal of attention in FSPM is devoted to transport and
allocation processes within plants (Evers et al., 2018). Allocation
(sink control) is an active area of research that has clearly
benefited from the application of an FSPM approach. However,
sink function or transportation parameters usually do not have
clear physiological meaning, and their values greatly depend on
the context of the model. The inverse method, i.e., estimating
parameters by minimizing the difference between whole-model
output and measured data using an optimization algorithm, has
become a common choice.

Intracanopy variability among individual plants is prevalent
in crops: even within the same stand of a monoculture
under a homogeneous environment, the size, and number of
organs (leaves, flowers, internodes, etc.) differ among plants.

Challenges arise in how to statistically evaluate the organ-level

plant production and how to compare the results with the

corresponding model output. Until now, most calibration studies
have been dedicated to deterministic plant architectures (Ma
et al., 2008) with continuous development or some randomness
(Evers and Vos, 2013), which has limited the application of
FSPM to a more generic use. With the application of high-
throughput phenotyping facilities and intelligent algorithms,
architectural data are more accessible than ever, which has
enabled the development of a universal analysis method that can
be applied to different crops. Among FSPMs, GreenLab is one
of the pioneering works in model calibration, and the relevant
studies beginning from a simple single stem to stochastic trees,
as well as related models, are summarized in Table 1. GreenLab
describes plant growth and development according to a set of
recurrent equations and adapts to most of the 23 architectural
models of Hallé et al. (1978). Most recently, calibration studies
for stochastic plants have been performed (Vavitsara et al., 2017;
Tondjo et al., 2018), but the analytical basis has not yet been
sufficiently presented.

From a botanical perspective, different plant architectural
features can be distinguished from crops to trees such as
continuous vs. rhythmic (Barthélémy and Caraglio, 2007). In
the continuous case, phytomers are added one by one without
a significant rest period, as occurs in many crops and tropical
trees. In the rhythmic case, the meristem alternates between
extension periods and rest periods, as occurs in many temperate
trees. Stochastic axis modeling of continuous and rhythmic
developmental features has previously been presented (de Reffye
et al., 2012). In this paper, we demonstrate how to calibrate a
stochastic FSPM for plants (the case of the GreenLab model)
with different developmental features at the whole-model level
to estimate the functional and, especially, the sink parameters.
The principle is more or less generic as it deals with architectural
models that are recognized by other FSPMs. Moreover, a
loop between submodels for plant development and growth is
common for many FSPMs, although the details of the model
differ. The presented approach is applicable for plants or shoots
exhibiting regular development in their young stages but not
those that have experienced heavy pruning or other artificial
interference.

This paper is organized in follows: in section. Materials and
methods, the underlying botanical knowledge for the GreenLab
model and the components of the mathematical model are
presented. section Estimating parameters with organic series
presents the computation of the mean organic series and its use
to estimate sink parameters. In the section Results, the analytical
results for continuous and rhythmic development are verified by
Monte-Carlo simulation, and a calibration test is performed both
in silico and for a real plant. The value and limitations of this work
are discussed in section Discussion Conclusions are presented in
section Conclusion.

MATERIALS AND METHODS

Basis for Modeling
Botanical Knowledge
Apical meristems contribute to axis development by adding new
phytomers step by step. This function can be continuous or
rhythmic. In the continuous case, phytomers are added one by
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TABLE 1 | A summary of the work on FSPM calibration.

Deterministic FSPM Stochastic FSPM Other models

Continuous

development

Crops Single stem Maize Guo et al., 2006,

tomato Dong et al., 2008

Branching

structure

Wheat Kang et al., 2008a,

pepper Ma et al., 2011

Wheat Evers et al., 2007;

Inflorescence Arabidopsis Christophe

et al., 2008,

chrysanthemum Kang et al.,

2012

Spilanthes Vavitsara et al.,

2017

Trees Eucalyptus Diao et al.,

2012, development only

Rhythmic

development

Seasonal trees Monocyclic Poplar Liu et al., 2009 Pine tree Wang et al., 2010 LIGNUM Perttunen et al.,

1996

Polycyclic Beech tree Letort et al.,

2008;

Teak Tondjo et al., 2018 Peach Lopez et al., 2008,

apple Costes et al., 2008,

L-kiwi Cieslak et al., 2011

Aseasonal trees

one without a significant rest period. The cumulative number of
phytomers in an axis is generally proportional to the daily sum of
temperatures (“thermal time”). Many plants exhibit development
following this pattern (tomato, maize, cotton, coffee). In the
rhythmic case, themeristem alternates between extension periods
and rest periods, with each extension period bearing a growth
unit (GU) that is a set of phytomers built during that period. As
a result, an annual shoot comprises one GU (monocyclic case)
or several GUs (polycyclic case). In the monocyclic case, only
one GU is produced each year. The extension of GUs usually
ends in spring, and the rest period will complete the year. In
the polycyclic case, the annual shoot can comprise several GUs.
During the rest period of the meristem, a bud is generally built
containing embryos of future phytomers.

The GU can be issued from preformation or neoformation.
Preformation is common in the case of rhythmic development
when a bud is formed during a rest period, as observed in beech
or poplar. The flush, or the simultaneous extension of all organs
in a bud, generates a GU named the preformed part, which can
be followed by several months before the next flush appears. By
contrast, the continuous functioning of meristems gives rise to
a neoformed part. For some particular tree architectures, such
as elm or poplar, this phenomenon occurs immediately after the
extension of the preformed part.

Botanists have classified 23 botanical architectural models
(Hallé et al., 1978). In the Roux model, the trunk is a
monopodial orthotropic axis that shows continuous growth, and
the plagiotropic branches are inserted continuously; flowering
is lateral on the branches, as in coffee trees. The Rauh model
is characterized by rhythmic growth and branching, in which
all axes are monopodial and sexuality is lateral, as represented
by numerous woody plants such as pine trees. These two
architectural models are chosen since they are typical of
continuous and rhythmic development.

Hypothesis
Regarding plant development, it is hypothesized that the amount
of time elapsed between two successive phytomers follows an

independent and identical distribution. Thus, the appearance
of a new phytomer is regarded as a renewal process, and the
number of events during a certain period, or counting variable, is
asymptotically normal, which can be approximated by a binomial
law for the discrete case (de Reffye et al., 2012; Diao et al., 2012).

Regarding biomass partitioning, it is hypothesized that the
biomass of an individual organ is the result of a source-sink
balance. Additionally, a common pool hypothesis for biomass
allocation (Heuvelink, 1995) is assumed, regardless of the
distance from the source to the sink. Based on this, organs of
the same age and type share the same amount of resources from
the common pool. For trees, this hypothesis actually applies to
the modeling of primary growth; the local vigor of branches is
expressed as secondary growth, which is linked to the number of
leaves (Letort et al., 2008).

Mathematical Model
Being an FSPM, the whole GreenLab model consists of
a development model (organogenesis) and a growth model
(organ expansion). The stochastic development model for both
continuous and rhythmic cases are presented first, starting from
the axis (single stem) to a branching structure.

Modeling Axis Development

Continuous-Development
According to de Reffye et al. (2012), the continuous functioning
of the terminal meristem of an axis during a certain period
can be simulated by a Bernoulli process consisting of discrete
development steps. Each step is called a computing unit (CU, de
Reffye et al., 2012) or a development cycle (DC) that correspond
to the minimal time between the appearances of two successive
phytomers. At each DC, a phytomer appears with a development
probability b (Figure 1A), creating 0/1 series with 0 representing
a pause during which no phytomer is born. The chronological age
(CA) is defined as the number of DCs that the axis experienced
since its appearance. For a given CA of an axis (n DCs), the
number of phytomers produced follows a binomial law (n, b).
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FIGURE 1 | Illustration of the axis development simulation for (A) the continuous case and (B) the rhythmic case. In (B), a GC is composed of Nu = 21 DCs. For each

DC, a green rectangle indicates the creation of a phytomer, an empty rectangle (0) indicates a pause, and a black rectangle indicates the interruption of development.

N1 and N2 represent the active and pause periods, respectively.

Additionally, because of nutrition poverty or insect attack, a
reliability probability c is introduced to simulate such abortion of
meristem activity. Once the mortality of a meristem takes place
during a DC, the axis development is interrupted (Figure 1A).
The effects of these parameters are explained in more detail in
Supplement A. The different aspects of meristem activity are
represented by an “axis of development” (de Reffye et al., 2012)
that is composed of a series of 1 s and 0s that correspond to the
success or failure, respectively, of phytomer production at each
DC (Figure 1).

Rhythmic-Development
Consider the case of an axis with rhythmic development
with preformation and neoformation. First, similar to the
continuous case, the appearance of a GU can be simulated
by a Bernoulli process with a development probability B. For
the mortality probability c, it is more realistic to consider
that death takes place at the end of a GU under rhythmic
development.

The total duration of both the extension and rest periods
is termed the growth cycle (GC). Inside a GC of duration Nu

DCs, the meristem produces phytomers during an active period
of N1 DCs and then enters a pause period of N2 DCs until
the end of GC. In Figure 1B for example, the GC duration
is Nu = 21 DCs, and that of preformation is N1= 5 DCs; 1
GC and 3 DCs are indicated in total. For a GU, according
to observations, the numbers of phytomers of the preformed
part are distributed according to a positive binomial law (e.g.,
beech), and the numbers of phytomers of the neoformed part are
distributed according to either a positive (e.g., cherry) or negative
(e.g., elm) binomial law.

Modeling the Development of Branching Structure
Previous approaches for modeling organogenesis include L-
system and its extension (Perttunen et al., 1998; Kurth et al.,
2005; Costes et al., 2008; Lopez et al., 2008; Cieslak et al.,

2011), rewriting rules, reference axis (Barczi et al., 1997) and
automaton (Zhao et al., 2003). Considering that we are dealing
with both continuous and rhythmic development in this study,
the dual-scale automaton is chosen as the organogenesis model
(Supplement B). With this botanical automaton, a macro level
corresponds to GC/GU, and a micro level corresponds to
DC/phytomer. When only one DC is set for a GC, it is a
continuous case. Plant development can be programmed by
setting different parameters (Zhao et al., 2003; Kang et al., 2008b).

The notion of physiological age (PA) is used to classify branch
typologies in a hierarchy along a morphological growth gradient.
For example, the main stem of a coffee tree has an orthotropic
(erect) habit, while the branches are plagiotropic: cuttings from
a branch cannot generate a coffee tree, only a creeping plant.
The PA of an axis (p) is denoted by an integer, with 1 for
the main stem, 2 for a first-order branch, etc. The highest PA
of the plant is denoted by maxp. For the Roux architectural
model, the PA is almost equivalent to the branching order,
except for the reiteration case. It is possible to deduce efficient
mathematical operators by counting the number of phytomers
of the same type and age, both for deterministic and stochastic
cases, without explicitly building the topological structure
(Kang et al., 2008b).

Branching probability a is used to describe the chance that
an axillary bud develops into a branch. With the potential
number of buds given for each type of axis, this probability
gives different numbers of branches at a branching node. For
the rhythmic case (e.g., the Rauh architectural model), there
can be multiple phytomers that bear branches of different
PA within a GU, and each probability is dependent on the
PA of axis p. First, the number of DCs that can bear a
phytomer (n) is drawn according to the chosen binomial law
(N1, b), and once n is fixed, we draw the branches at random
according to the multinomial law (n, pu1,1, pu1,2, ..., pu1,maxp),
with pup,q being the proportion of branches of PA q on
an axis of PA p. The potential number of axillary branches
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per GC can be deduced from the parameters N1, b and
pup,q.

Modeling Plant Growth
The functional model of GreenLab is inherited from classical
crop models (Brisson et al., 2003) and the accompanying
hypotheses of net photosynthesis and light use efficiency. The
functional model deals with biomass production (dependent on
leaf area), allocation (dependent on sink strength and number of
organs) and organ expansion. Accordingly, the computation of
biomass production and allocation is tightly linked to the number
of individual organs that result from the development model. In
the context of stochastic development, Monte-Carlo simulation
can provide stochastic samples of plants with the corresponding
organ size. This method is very common for stochastic FSPM,
and it directly shows the effect of plant development on growth.
However, to achieve a good estimation of the population, a large
sample is needed, which could be costly. Instead, we expect to
obtain the population mean of plants based on the growth of
a topologically mean plant. The results are based on equations
but not simulations. Such an analytical result is efficient for
analyzing the effects of certain parameters on model behavior
and, accordingly, for parameter estimation, because in the latter,
the procedure for computing the statistical results of the model
is performed repetitively. Here, we study both approaches and
compare the results. The growth model has been published
previously in deterministic form, and here, it is applied without
further justification. How stochastic samples for an average
plant are computed is shown in Supplement C, and the list of
abbreviations and parameters is summarized in Supplement F.

Derived Notions
For convenience in the following demonstration, we introduce
several notions related to the stochastic model, which will be used
later.

Chronological Structure
Simulating plant development with the Monte-Carlo method
produces a series of 1 and 0 values, as shown in Supplement A:
0 represents a temporal pause, and 1 represents the creation
of a phytomer. The 0s contain temporal information that is
related to the age of the organs. In a Monte-Carlo simulation,
it is occasionally interesting to retain these void entities in the
displayed plant structure to better understand the effect of bud
probabilities. The plant structure retaining the temporal series
(both realized and void entities) is called the chronological
structure (see Figure 2 for the continuous case). The advantage
of this structure is that a phytomer’s age can easily be deduced
from the rank of the phytomer in the chronological structure. For
example, a phytomer of rank 3 from the axis tip has experienced
3 DCs since its appearance.

In the analytical study, the 0s and 1s at each location
are replaced by the probability of occurrence of the possible
phytomer.

Topological Structure
The topological structure of plants normally refers to the
organization of phytomers in the plant structure (Godin and
Caraglio, 1998). In this context, the topological structure
refers specifically to the simulated structure containing the
realized phytomers, without the temporal entities of 0s as in
the chronological structure (Figures 1, 2). The Monte-Carlo
simulation of plant uses the actually realized structure. Because
of the bud probability, in the topological structure, the age of a
phytomer is no longer obvious: for example, a phytomer at rank
3 from the tip can have an age of 7 because of the pause. This
finding is similar to the situation in nature, i.e., an organ near the
tip can be old and big.

In the analytical study, however, the topological structure
is computed from the analytical chronological structure by
considering all possible combinations of organ ages.

FIGURE 2 | Chronological, topological and potential structures of a Roux architectural model. As a result of Monte-Carlo simulation, the chronological structure

(middle, B) is composed of realized phytomers and void entities. Suppressing the void entities yields the observable topological structure (left, A). In the potential

structure (right, C), each phytomer is associated with a probability of occurrence depending on a, b and c, which represent the branching, growth, and reliability

probabilities, respectively.
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Potential Structure and Probability of Occurrence
The maximum topological structure as defined by the
development model is called the potential structure. The
potential structure corresponds to the deterministic case when
all probabilities are equal to 1 and can be understood as the
upper bound of the structure. However, the size of organs in the
potential structure is dependent on the bud probabilities and the
source and sink parameters.

Each potential phytomer site is characterized by a probability
of occurrence, which is the probability that a phytomer appears
at this temporal site. In the Monte-Carlo simulation, this
probability can be estimated as the average of the 1s and 0s at
the same site of the chronological structures through numerous
simulations.

In the analytical study, each phytomer site is attributed an
analytical probability according to the bud probabilities. The sum
of all phytomer probabilities in the potential structure defines
the mean number of phytomers produced by the structure. The
numbers of each organ type (leaf, internode, and fruit) by PA
are known on a given phytomer, thus providing the mean organ
production, from which the mean plant demand can be defined.
The growth of this conceptual structure produces an analytical
plant that is difficult to realize by simulation.

Organic Series
An organic series was originally defined as the dimension
or weight of organs produced sequentially along an axis of
development (Buis and Barthou, 1984), and this architectural
characteristic contains rich information about the growth of a
plant. Such information has been used to describe the plant
profile and for parameter estimation in deterministic FSPM (Ma
et al., 2008). In the stochastic model, there are variations in
organic series of the same type with the same parameters; thus,
an average organic series is expected. For the axis of the same
PA, since organs of the same PA and CA have the same biomass
partitioning according to the model hypothesis, one organic
series is sufficient for a given PA. Considering the number of
organ types (t) in the axis, in total, there are maxp × t organic
series for a plant.

In the Monte-Carlo simulation, for a chronological organic
series, each component is the average value of organ size
including empty phytomers. The topological organic series is
defined as the average organ size of phytomers of the same
rank from the top or bottom of the observed axis. In the
analytical study, an organic series is computed by growing the
potential plant structure with the probability of occurrence for
each phytomer.

Software Implementation
The simulation and computation experiments were performed
in the software “Gloups” developed under the Windows
environment using MATLAB (The MathWorks, Inc., America).
The main procedures include one for simulation and another
for calibration. In the simulation, the Monte-Carlo method is
applied for stochastic development. The results are shown for
different plant samples. A virtual target data file can be output. In
the calibration, the analytical computation of the organic series

is performed according to the initial parameter values, and the
result is fit with the target data, either from simulation or from
real plants. A simple tutorial is shown in Supplement E.

ESTIMATING PARAMETERS WITH
ORGANIC SERIES

Organic Series for Shoots With Continuous
Development
Probability of Occurrence
For plants with continuous development, the probability of
occurrence is a compound result of the probabilities of
branching, growth, and reliability (a, b, and c), respectively
(Figure 2). For example, for the potential phytomer of PA 1 that
appeared at the ith DC, its occurrence probability is b1c

i
1.

Analytical Demand
The potential structure with its corresponding probability of
occurrence represents an analytical average plant that does
not exist. Computing the growth of potential structure gives a
measure of an average plant. In the Monte-Carlo simulation, a
superscript s is used to indicate the variable of random plant
sample; see Supplementary C. By contrast, in the analytical
study, the variables are denoted by a superscript θ , such as
Qθ (n). The computation of Qθ (n) shares the same formula
as that for stochastic samples. For the analytical demand, the
equation’s form is different from that for stochastic simulation
and is computed by replacing the number of organs with the
corresponding probabilities of occurrence in a chronological
series:

Dθ (n) =

M
∑

id=1

∑

o

(

π(id) · P
p
o(i)

)

(1)

where M is the total number of phytomers in the potential
structure; n is the plant age; π(id) is the compound probability of
occurrence of phytomer id, depending on its position in the plant
structure; Po is the sink strength of the organ; p is its physiological
age; and i is the number of DCs experienced since its expansion.

Accordingly, the biomass increment for the organ o at age i is:

1q
p,θ
o (i, n) = P

p
o(i)

Qθ (n− 1)

Dθ (n)
(2)

Analytical Chronological Series
Accumulating the biomass increment in each cycle gives the

analytical chronological organic series
[

q
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]

of organ o, as

in (3).
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If the reliability probability c is high, the number of organs
in plants are mainly the result of a Bernoulli process, and the
simulated Qs(t) and Ds(t) are roughly symmetrically distributed.
In this case, the following approximation can be properly
obtained as verified by stochastic simulations:

qso (i, n)ch ≈ qθ
o (i, n)ch (4)

where i is the CA of organs; o represents the organ type;
and ch refers to the data of chronological organic series.
As mentioned, superscripts s and θ represent simulated
(Supplementary Equation S5) and analytical results,
respectively.

Analytical Topological Series
The analytical topological series (indexed with tp) is computed
to provide a model result equivalent to the measured data. The
series is computed from the chronological series by converting
the age to position. Considering a phytomer of rank K from
the tip of a living axis, the possible CA (i) of this phytomer is
K, K+1, ..., n because of the Bernoulli process. Accordingly, the
probability that a phytomer of rank K from the tip has a CA i,
PrK (i), follows a truncated negative binomial distribution (K, b)
as follows:

PrK (i) =







Ci
n · b

i−K · (1− b)K K ≤ i < n

1−
n
∑

j=K
C
j−1
n · bj−K · (1− b)K i = n

(5)

Given the organ age, the weight of the organ is defined in
chronological series. Then, the average organ weight located

at rank K from the axis tip, q
p,θ
o (K, n)tp, is a compound sum

of organs with age i (K≤ i ≤n), qθ
o (i, n)ch, computed in a

chronological structure.

q
p,θ
o (K, n)tp =

∑n
i=K PrK(i) · q

p,θ
o (i, n)ch

∑n
i=K PrK(i)

(6)

In the Monte-Carlo simulation, the average organ weight at a

given phytomer rank from the axis tip, q
p
o (K, n)tp, is computed

directly from the simulated samples q
p,s
o (K, n)tp:

q
p
o (K, n)tp =

1

T

T
∑

s=1

q
p,s
o (K, n)tp (7)

where T is the number of simulated samples. Although one
is from stochastic simulations and the other is from analytical
computations, the following equivalence holds:

qo (K, n)tp ≈ q
p, θ
o (K, n)tp (8)

In summary, the analytical mean organic series can be obtained
by ‘growing’ an average plant. The results can be verified by the
results of the Monte-Carlo simulation to provide an organ-level
measure of a stochastic FSPM for comparison with experimental
data, which is the basis for parameter estimation.

Organic Series For Shoots With Rhythmic
Development
Probability of Occurrence
Rhythmic development is an extension of the continuous case
in which each GU is regarded as a phytomer. The existence of a
phytomer is jointly decided by GC (macro level) and DC (micro
level).

GC-level
The probability of occurrence of a GU is similar to that of
a phytomer in the continuous case. It can depend on the
Bernoulli process of bearing a GU (probability B), the sequence
of ramifications (probabilities a), and the succession of GUs along
the axes with probability c. Figure 3 shows a relatively simple case
where B= 1, which means at each year a GU is produced.

DC-level
If a GU exists inside this GC, phytomers at each DC are simulated
with a Bernoulli process, as in the continuous case. In generic case
both pre- and neoformation exist inside a GU. Since the number
of phytomers in the preformation part usually follows a binomial
distribution, say (N1, b), a fixed duration of development (N1) is
set for this period, as is the case of Figure 3. The distribution of
the number of DCs in this preformation period, x1, can thus be

FIGURE 3 | Potential structure of a Rauh architectural model with a

synchronous structure. A GC is composed of 7 DCs. The age of the plant is 4

GCs (28 DCs). The development period is 6 DCs for PA 1 (blue), 5 DCs for

PA 2 (green) and 4 DCs for PA 3. The axes of PA 2 and PA 3 have a probability

of branching of a2 and a3, respectively, and the viability of the meristems at

the GU level in the axes is c2 and c3, respectively. b is the occurrence

probability of a phytomer. An empty rectangle indicates a pause.
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expressed as follows:

P (x1 = i) =

{

0 (i 6= N1)

1 (i = N1)
(9)

The number of DCs in the neoformation period (x2) follows
another distribution (F) that is either a positive or negative
binomial distribution. Moreover, since the neoformation part
does not always exist, there is a passage probability (d) from
preformation to neoformation correspondig to period Nd.
Finally, the distribution of having a duration of i DCs for axis
development, G(Nd), is a mixture of P and F distributions.

G (Nd = i) =
(

1− d
)

· P (x1 = i) + d ·

i
∑

k=1

P
(

x1 = k
)

· F(x2 = i− k)

(10)
This distribution can infer the probability that this GU continues
organogenesis at the ith DC from its beginning, by summing
all the probabilities of having less than i GCs for development
(Nd < i). Like the continuous case, if there is a probability (b) of
making a phytomer at each DC, independent of the distribution
of the number of DCs in pre- and neoformation, one obtains
a law that is between the development times and the Bernoulli
process. The probability of the occurrence of the phytomer at the
ith DC in a GU is finally written as:

bi = b ·



1−

i−1
∑

j=1

G(Nd = j)



 (11)

The product of the occurrence probability of a GU (similar to the
continuous case) and that of a phytomer in the GU gives the final
occurrence probability of each potential phytomer.

Analytical Demand
Therefore, the development axis is constructed from the
periodic sequence of GCs, in which the phytomers appear
with probabilities bi. The potential structure is constructed by
assembling the axes according to branching rules. As mentioned,
for branching of the axis of PA p, we choose a multinomial law
(Nd, pup,p, pup,p+1,..., pup,maxp) so that the proportions among
different types of branches remain constant when Nd varies
according to the compound law. In simulation, the branches are
drawn and sorted in acrobatic or basitonic order. The potential
number of axillary branches per GU is deduced from these
parameters. For example, the potential number of branches of
PA 2 on GU of PA 1 is N1

∗pup,q.
The probability of occurrence at each DC is the product of

the probabilities of GU and phytomer, i.e., P∗GUbi. Accordingly,
for a GU born at GC x, its analytical demand from all potential
phytomers, DGU

θ (x), is written as the following:

DGU
θ (x) =

∑

o

Nu
∑

i=1

PGU(x) · bi · Po(Nu − i) (12)

where PGU(x) is the occurrence probability of a GU and Po(Nu−i)
is the sink strength of the organ that appears at the ith DC in

a GU. It is therefore possible to calculate the total demand of a
plant by summing the demand of all potential GUs. Similarly,
by “growing” the potential plant, one can obtain the analytical
chronological series, whose data are organized at both the macro
and micro level.

Estimating Parameters for Organ Growth
Since an FSPM basically consists of two parts: a module for organ
production (organogenesis) and a module for organ growth,
the key model parameters can correspondingly be divided into
two parts. Figure 4 lists the general framework for parameter
estimation. First, plant crown analysis (Diao et al., 2012) (top-
down statistical analysis of the number of phytomers in plant axis
pairs) is used to estimate parameters for organogenesis, including
the development probabilities (b and B), reliability probability (c)
and branching probability (a). The macrolevel analysis for the
rhythmic case is similar to that for the continuous case. Inside a
GU, the distributions for pre- or neoformation can be estimated
by counting the number of phytomers. Second, parameters for
organ growth, which control the functional model including the
source and sink parameters, are identified by fitting the measured
organic series with their analytical correspondents.

As previously mentioned, the estimation of organ functioning
parameters from the plant architecture measurements has been
worked out for plants with deterministic development (single-
stem plants), such as maize (Guo et al., 2006) and beetroot
(Lemaire et al., 2009). The target for fitting includes maxp types
of axes (maxp being the largest PA) and t types of organs. In
total, there are maxp × t organic series, which are few. For
example, for a plant population of the Roux model with only two
types of organs (leaves and internodes), although each plant may
potentially bear approximately 20 first-order branches, in total
four organic series are sufficient for describing the population:
two for the main stem organs and two for the branch organs.

Source and sink parameters are inversely estimated by fitting
the observed statistical organic series with the analytical model
output. An optimization algorithm is applied to find the best set
of parameter values that can minimize the difference between the
analytical and measured topological organic series for all organ
types and measurement dates.

∣

∣dif
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∣ =
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∣
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(13)

where
[

q
p,θ
o (∗, n)

]

tp
is computed in (6). For real plants,

[

q
p
o(

∗, n)

]

tp

is the average weight of organs ranked from the top

of the plant crown, without recording the full plant topological
structure as previously done (Kang et al., 2008a; Letort et al.,
2008), which is very practical. We use the nonlinear generalized
least squares method to achieve the estimations. The principle is
similar to the deterministic case, but themeasure accounts for the
intervariability.
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FIGURE 4 | The framework used for estimating parameters for a stochastic functional-structural plant model.

RESULTS

FSPMs are generally very complex, and software implementing
FSPMsmust be carefully tested to give sound numerical results. It
is relatively easy to obtain a plausibly reasonable plant structure,
but for parameter estimation and model analysis, proper results
are of the highest importance. Monte-Carlo simulations of plants
provide two types of results concerning both development and
growth:

• Stochastic plant crowns, which are outputs of plant
development and implicitly contain the parameter values of
the meristem functioning;

• Stochastic organic series, which are outputs of plant growth
and implicitly contain the values of the sink-source parameters
of the organ functioning.

The simulation result itself is noisy, and the statistical precision
is dependent on sample size. However, its value lies in (1)
providing a way to verify the analytical result, which is computed
with an independent procedure, and (2) providing virtual plant
samples for in silico fitting before use with real plants of the
same type. For the second purpose, the advantage is that the
actual developmental and functional parameters are known; thus,
whether the fitting process works properly can be tested. The
results are organized as follows: first, the test of parameter
estimation is shown for plants with the continuous case for both
virtual and real plants. The case covers all bud probabilities
mentioned above. Then, the test result is shown for the case of
rhythmic development.

Case of Continuous Development
Set the development parameters for the Rouxmodel with two PAs
as b1= 0.8, b2= 0.8, a2= 0.9 and c2= 0.95 (constant). The main
stem has no abortion (its reliability probability c1 is set to 1). Let

CA of the plant be 30 DCs. Let the sink strength be identical for
leaves and internodes. The expansion function of organs Fo is set
to an even distribution.

Test in silico

Showing-the-derived-concepts-on-a-single-stem-plant
To provide a clear understanding of the mentioned concept,
focus is first given to a single-stem plant (by setting maxp =1).
Both the functioning and expansion durations of organs are set
to 5 DCs. Figure 5A shows a potential structure containing 30
phytomers, the same number as the plant CA. Figure 5B shows
three pairs of chronological and topological structures from the
Monte-Carlo simulation: at left (“ch,” chronological structure),
blank entities are inserted to show a pause, and in total, they
always contain 30 entities. At right (“tp,” topological structure),
the actual simulated entities are shown.

Figure 5C contains rich information, which is helpful to
understand the difference between the chronological and
topological series in a numerical way. As the chosen expansion
function is linear, the top part in the chronological series (solid
line) is linear as well. However, when the results are converted
to the topological series (dotted line), the top part is no longer
linear since each data point is a combination of those from the
chronological series.

The average organic series from the simulation is shown in
symbols and matches well with the analytical data. Note that this
is not fitting but a comparison of the results from the analytical
computation using the potential structure with the results from
the Monte-Carlo simulation.

Parameter-estimation-test-in-the-roux-architectural-model
In this example, the leaf functioning time, ta, is set to 9 cycles. The
expansion time of organ tx is set to 9 cycles as well. The specific
leaf weight, e, is set to 0.05 g cm−2. Sinks for all organs are set
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FIGURE 5 | Potential, simulated and analytical (computed) chronological and topological organic series for a single stem developed from a Bernoulli process (b = 0.7,

n = 30) with 1000 simulations. The left (A) is the potential structure followed by three pairs of stochastic simulations (B) in chronological mode (ch) and the

corresponding topological mode (tp); yellow leaves are no longer functional. The right (C) shows the corresponding curves for the organic series sorted from the stem

tip (right side); the analytical results (lines) and results from simulations (symbols) are both given for comparison.

to be equal for the internode and leaf and for the main stem and
branch, with po = 1; the light use efficiency (r) for leaves is set to
30; and the production surface, SP, is set to 2000 cm

2.
The target data for fitting (Figure 6A) are the result of virtual

sampling of the simulated plants (illustrated in Figure 6B).
Figure 6A shows data at age 15 and 30. At each age, there
are a total of four (topological) organic series: two for the
stem (leaf and internode) and two for the branches (leaves
and internodes). Since the leaf and internode share the same
sink functions, their organ series are simplified as the same.
Therefore, at each plant age, only two series are considered:
one for the stem and one for the branches. Figure 6B shows
three plant samples from 50 simulations. The samples for branch
can be “picked” from different plants according to their rank.
The dead branches with all yellow leaves are omitted. The
branches are then averaged from the top to bottom to obtain
average organic series for the branches. This simulates the
action in a real experiment. It is not necessary to sample all
branches.

Figure 6C show the results of the fitting test, using the data
from virtual samples to fit the target. The standard deviations
of the average data are shown as well. The virtual sample
data are fit by the analytical results computed directly from
parameter values. The hidden parameters to be The standard
deviations of the average the target data are r, SP, pa for the
leaf and pi for the internode. Starting with initial values with a
10% deviation from the real values, the nonlinear generalized
least squares method yields stable solutions with r = 29.7,
SP = 1978 cm2, pa = 0.96, and pi = 0.98. These values
are quite similar to the original data used to simulate the
stochastic plant. The fitting of the average organic series with
the analytical results is processed simultaneously for the two
growth stages, which is called multifitting. The fitting curves
are shown in Figure 6, which reveals that the analytical organic
series fits well the corresponding average organic series. The

time of parameter estimation is only tens of seconds. Moreover,
the time depends on the initial parameter values for real
plants.

Test on Real Plants: Case of Young Coffee Trees
A recent publication on the application in real plants is Vavitsara
et al. (2017). Here, we present another study of the coffee tree that
was conducted in Ivory Coast by Sélastique Akaffou (University
Jean Lorougnon Guédé, Ivory Coast) with a collection of young
coffee trees. The analysis was done through 14 repetitions of the
same plant (clones) of the same age. These young plants did not
yet show meristem abortion or fruitage.

Plant-material
The coffee tree is a woody plant with stochastic development and
continuous growth. Phytomers bear two leaves and potentially
two axillary meristems (on the stem). Plant architecture follows
the Roux model with orthotropic stems and plagiotropic
branches that yields two PAs and two kinds of organic series
(leaves, internodes) for each PA. Note that woody plants have
girth growth. How the GreenLab model identifies the parameters
of girth growth is demonstrated in Kang et al. (2002).

Fourteen young coffee trees of the same age belonging to
the species Coffea pseudozanguebariae were cultivated in a
stand under homogeneous conditions. This widespread species
is studied since it is naturally caffeine-free and provides the
opportunity to produce a low-caffeine or caffeine-free variety of
the cultivated species Coffea canephora (Robusta). The organs
used to build organic series of stems and branches were measured
in dry weights.

Estimating-development-parameters
Figure 7 shows five observed topological structures among the
14 coffee trees included in the data sets. One can see the results
of the stochastic development. Branches are always missing
at the bottom, and the ramification rate increases with plant
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FIGURE 6 | In silico parameter estimation for plants with continuous development. Top left (A): simulated plant samples for selecting organic series for stems (blue)

and branches (green). Bottom left (B) the fitting curves between the average organic series taken from the simulation (circles and squares, bars showing standard

deviation) and the analytical series (solid and dotted lines) at DC 15 and 30, for main stem (Ax1) and branches (Ax2). The table (C, right) shows the target data for

topological organic series at two ages (15 and 30 cycles) on the main stem (Ax1) and branches (Ax2).

development. The Bernoulli process is visible. Two adjacent
branches belonging to the same whorl on the stem can have
different phytomer numbers.

The crown analysis retrieves the development parameters (a,
b, and c) from the plant architecture measurements (Diao et al.,
2012). Fitting is performed independently to retrieve different
probabilities. The crown analyses for obtaining bud probabilities
are shown in Supplement D. Figure 8A shows the effect of the
Bernoulli process on the size of the branches at rank K from the
stem tip. Once the target file provided by the tree crowns is built,
we can solve the equation (S15) in Supplement D to assess the
parameters b1, b2 and w, and we obtain b1 = 0.8, b2 = 0.9, and w
= 0.75.

The coffee tree exhibits immediate branching, and missing
branches are the result of early axillary meristem abortion. The
rates of ramification increase from the bottom of the stem to
achieve stabilization after the rank K following the equation:

aK = 0.62 ·

(

K

9

)3.45

, K ≤ 9 (14)

aK = 0.62, K > 9

Beyond the rank 9 from the bottom, the ramification rate
stabilizes to a= 0.62 (Figure 8B).

These values that control the meristem functioning allow
stochastic simulations of plant development as well as the
potential structure to be built.

Organic-series-analysis
There are 4 types of organic series (leaves and internodes)
for both stems and branches. Averages of organ dry weights

according to the rank from the top of living axes generate the
organic series, and these observed series are fitted to the analytical
ones computed from the potential structure as previously worked
out. The target file for coffee trees is constructed for a CA
of 16 DCs. Some parameters can be assessed from direct
measurements, and the others are hidden and estimated by the
inverse method.

Parameters from direct measurements The parameters are
functioning times and allometries. Leaf functioning time is 12
DCs, and the expansion times of leaves and internodes are 4 and
3 DCs, respectively. The specific leaf weight, e, is 0.016 g cm−2,
and the sink strength of the stem leaves is conventionally set to
1. The production surface, SP, cannot be assessed and is set to a
large value of 100,000, which means that the self-shading at the
youth development stage is low.

Parameters from the inverse method One of the parameters
for sink strength evolution (Equation S2) is arbitrarily fixed;
another parameter is only computed because the system cannot
estimate the two beta law parameters together. The observed and
computed organic series are shown on Figure 9. The estimated
parameters are listed in Table 2.

Growth-simulation-and-architecture-visualization-of-coffee-

trees
The calibration of the model using the data sets from the coffee
tree observations provides the parameters for both development
and growth that are necessary and sufficient to simulate plant
growth and architecture, as in Figure 10.
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FIGURE 7 | Five topological structures of coffee trees.

FIGURE 8 | Obtaining development probabilities in tree crown analysis. (A) Fitting of the number of phytomers in branches at rank K from the stem top to give the

development probability b. (B) Fitting of the branching rate at each rank from the bottom of the stem to give the variable branching probability a. Circles: observed

data; solid lines: fitting results.

Case of Rhythmic Development
For the plants with rhythmic development, plant analysis
is organized at two levels: GU and phytomer. Crown
analysis at the GU level is similar to that of phytomers
in the continuous case. Therefore, more attention is
paid to the development inside a GU. In silico results are
given.

Figure 11 shows this type of tree with 3 PAs. The development
of the preformed part is completed in 4 DCs (T1 = 4), and the
neoformed part is distributed according to a positive binomial
distribution of n = 6 and b1= 0.8. Meristem functioning follows
a Bernoulli process b = 0.8. The probabilities of transition
to neoformation are d = 1, 0.5, and 0 for PA 1, PA 2, and
PA 3, respectively. Phytomers are functioning on 10 DCs,
and the duration of the 11-DC period is completed by a
terminal pause. Organ sinks are equal and constant during the
growth period. The simulation in Figure 11 shows the rhythmic
patterns.

The potential structure and three 2D simulated samples are
shown in Figure 12. Compared to previous work, an important
achievement here is that the analytical outputs of all simulated
plants can be evaluated. The most recent application of this work
is in the teak tree (Tondjo et al., 2018). Other applications are
ongoing.

DISCUSSION

The Value of Organic Series
In this work, we have presented how to obtain the analytical
organic series for continuous and rhythmic development. In the
context of FSPMs, it has previously been difficult to define an
average plant because of the variations in branching structures,
so to mathematically solve the source and sink functions, one
needs both data that are closely related to these functions (the
size of organs along stems) and corresponding model outputs
that are comparable to the measured data. According to the
assumptions of the developmental model, the statistical organic
series meet this requirement and thus provide a way to observe
and understand plant populations.

The procedure of computing analytical organic series seems
complicated, but once it is achieved using software, the series can
bemuchmore efficiently obtained fromMonte-Carlo simulation.

The concept of potential structure adds a new dimension of
understanding plants, which can be linked to studies of plant

potentials (Kang et al., 2016). For very complex plants for which
the analytical output is not available, massive model simulation
runs can provide approximate results for comparison with the
measured data and to inversely estimate the parameters; this is
possible through the rapid advances in computer sciences.
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FIGURE 9 | Fitting of organic series of leaves and internodes on the main stem (A) and the branches (B) of coffee trees. The symbols represent the observed (obs)

organic series (circles), and the lines represent the analytical (ana) series. The correlation coefficients (R) between the observed and computational values are shown.

TABLE 2 | Estimated source and sink parameters of coffee tree.

Organs Stem sink Branch sink Variation Ba1

Blade 1 0.67 1.03

Internodes 0.26 0.19 1.0

Girth growth 0.07 0.07

r 451

Qo 0.87

The Importance of the in silico Exercise
Because of the complexity of both real plants and the FSPM
itself, it is risky to fit real data without confidence in the software
that is implementing the simulation, analytical computation
and parameter estimation of the model. In silico plant samples
separate the complexity of reality from the model itself, which
is an important intermediate step toward the final parameter
estimation. Benefiting from the concept of botanical architectural
model, in this step, templates of parameter files can be
created for plants of different types to test the validity of

FIGURE 10 | Four 3D stochastic simulations of young Coffea

pseudozanguebariae coffee trees at DC 16 using Gloups software

(Cirad-Amap). Development and growth parameters come from crown and

organic series analysis with field measurement data from Ivory Coast by

Sélastique Akaffou.

the model. Further application of the models to real plants
can then be decomposed to the choice of the corresponding
architectural model and the focus on the specific features of

Frontiers in Plant Science | www.frontiersin.org 13 November 2018 | Volume 9 | Article 1688

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Kang et al. Estmating Stochastic FSPM Sink Parameters

FIGURE 11 | In silico analysis and parameter estimation for the Rauh architectural model with rhythmic development. The plant age is 4 GCs. (A) Rhythmic growth

pattern of biomass production (Q), demand (D) and their ratio (Q/D). (B) Biomass profiles of GUs by rank, and the distributions of the number of phytomers per GU.

(C) Biomass profiles of phytomers in the GU. The simulated (symbols) and analytical (lines) GU counterparts for the 3 PAs and the 4 GCs are in good agreement.

FIGURE 12 | Three stochastic simulations (A) and associated potential structure (B) for the Rauh architectural model with preformation and neoformation.
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this plant in the template parameter file. This application is
performed for the case of the Coffee tree. Which typically
belongs to the Roux architectural model. This strategy provides
a way to decrease the complexity of modeling work on real
plants.

Practically speaking, in silico experiments prepare in vivo
applications for real plants. The work of addressing real plants
can begin by replacing simulated target data with observed
data from real plants. This eases plant measurement since clear
guidance can be given based on in silico experiments, including
what is to be observed and how to preprocess the observed
data. The parameter estimation method decides the method
of observing the plant. For the preliminary experimental data,
one can set initial parameters that are estimated directly to
simulate plants samples that are similar to real ones. Based on
this, the target data format can be written by performing virtual
sampling of the simulation, which is helpful for organizing real
data. Inverse estimation of hidden parameters is performed only
in the end, when an approximately plausible parameter file is
prepared. Therefore, parameterization is achieved iteratively by
running the model and comparing the real and virtual plants.
A first trial of the method in vivo on a species of coffee
tree shows that the GreenLab model can correctly calibrate
the development and growth parameters of real plants with
stochastic architectures.

The Benefits to Plant Sampling
As experienced by numerous researchers in the FSPM domain,
measuring branching plant structures, such as measuring all
the weights and sizes of individual organs at several stages in
a wheat, can be very tedious. Sometimes even the measured
data cannot be fully used. In this work, the calibration
process is performed sequentially: first, the bud probabilities
linked to the meristem functioning of each type of axis are
estimated to determine plant development, and then the source-
sink parameters are estimated using organic series. From a
modeling point of view, it is difficult to determine whether
the cause is stochastic development or the internal source-
sink ratio of a plant, and estimating developmental parameters
and then solving the source-sink function provides a way
to understand their internal link, such as the cause of fruit
set (Ma et al., 2011). Accordingly, records of topological
structures and the collection of organ weights can be performed
separately on different plants and even by different people.
The sampling complexity is therefore reduced. This result
could enable further simulations that consider the interaction
between plant growth and development (Mathieu et al.,
2009).

The organic series contains the history of biomass production
and partitioning in a statistical way and provides a simplified
means of describing plant growth for parameter estimation.
There is no further obligation to fully record the detailed
architecture of sample plants that are later destructively
measured, as in AMAPMod (Godin et al., 1997). To obtain
the organic series, one can sample approximately dozens of
(depending on the variation in plant structure) stems and
branches from different plants, as shown in Figure 6. This

proposed approach is versatile as it does not rely on the
complexity of the plant architectural model or its specific
stochastic expression. This potentially broadens the application
of the model to numerous plants with complex architectures.

The Range of Application
Although the results of this approach are interesting, it is
not feasible for all plants. For example, in orchard trees such
as peach or the kiwi vine, plant development is seriously
disrupted by routine pruning or local gravity effects: depending
on the condition of the fruits, the bending of branches
modifies branching patterns and causes meristem abortions.
The notion of a common biomass pool is obviously unsuitable
for such plants. It therefore seems very difficult to build a
mathematical growth model for the whole plant, and thus
a full simulation-oriented modeling scheme appears to be
a more suitable way to begin studying the growth of such
complex systems. In FSPMs such as L-Peach (Lopez et al.,
2008) or L-Kiwi (Cieslak et al., 2011), the models are expressed
directly in software that is developed according to certain
rules, but the equations that describe the model behavior
are missing, and there is no clear strategy for statistical
analysis or calibration of the model inversely. Parameters are
empirically set according to the literature or miscellaneous
experiments and are not the result of model calibration on
a single observed plant. These FSPMs provide promising
insights into plant behavior through simulation experiments
but do not allow the parameters of an observed plant to be
assessed.

The GreenLabmodel describes plant growth and development
according to a set of recurrent equations and adapts tomost of the
23 architectural models of Hallé et al. (1978). Plants with these
architectural models exhibit regular development in their young
stages, during which global concepts such as PA and organic
series are applicable. Since most crops and the crown part of
many trees are intact, the presented approach is relevant to field
crops or even trees with regular shapes, such as poplar, pine
or conifers. The number of hidden parameters is small because
the goal is limited to computing the biomass production and
partitioning during growth using integrated parameters. These
features make this approach interesting for phenotyping and
plant analysis.

Future Work
Applications on other real plants such as spilanthes (Vavitsara
et al., 2017), soybean and maple trees have begun and provided
the first interesting source and sink parameter estimation
results. The Roux and Rauh architectural models presented
in this work have been used with many plants and have
already broadened applications. Although more effort is needed
to explore other architectural models, it is very interesting
and challenging to analyze real plants. While the model
seems complex, real plants show different types of complexity;
for example, the bud probabilities are not necessary stable
because of growth gradients, and there could be delays in
development and growth (such as in inflorescence). To address
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such variable cases, dedicated software development is a key
issue.

CONCLUSION

We have proposed a methodological framework for FSPM
parameter estimation for stochastically ramified plants. Focus
is given to the estimation of functional parameters inversely
by fitting organic series. The analytical mean organic series
can be computed based on the potential structure and thus
provides an efficient way tomeasure stochastic plants at the organ
level. As a result, an approach similar to that of deterministic
plant analysis frameworks can be applied to stochastic plants.
In silico experiments show that the analytical results converge
to the experimental values obtained from sets of Monte-Carlo
simulations. Fitting tests through virtual samplings performed on
both types of plants prove the feasibility of inverse estimation.
The framework is also tested on a real plant (coffee trees) for the
case of continuous development. This approach is applicable for
plants with continuous and rhythmic development because the
same computational methods are used. By sequential calibration
of a developmental model and functional model, this method
eases the sampling of stochastic branching plant structures,
which could otherwise be a burden. The current work breaks
a bottleneck in the application of FSPMs to species whose
structures show strong variability and can open FSPMs to wider
applications.
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