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L E T T E R Scaling issues of neutral theory reveal violations of ecological
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Abstract
Neutral models are often used as null models, testing the relative importance of niche versus neu-
tral processes in shaping diversity. Most versions, however, focus only on regional scale predic-
tions and neglect local level contributions. Recently, a new formulation of spatial neutral theory
was published showing an incompatibility between regional and local scale Þts where especially
the number of rare species was dramatically under-predicted. Using a forward in time semi-spa-
tially explicit neutral model and a unique large-scale Amazonian tree inventory data set, we show
that neutral theory not only underestimates the number of rare species but also fails in predicting
the excessive dominance of species on both regional and local levels. We show that although there
are clear relationships between species composition, spatial and environmental distances, there is
also a clear differentiation between species able to attain dominance with and without restriction
to speciÞc habitats. We conclude therefore that the apparent dominance of these species is real,
and that their excessive abundance can be attributed to Þtness differences in different ways, a
clear violation of the ecological equivalence assumption of neutral theory.
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INTRODUCTION

Why are some species dominant and others rare? Posed by
Charles Darwin, this question remains among the most

important in ecology (Sutherland et al. 2013) and its answer
frames our fundamental understanding of community assem-
bly. Classical Hutchinsonian ecology emphasises the determin-
istic processes based on niche-thinking and environmental
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heterogeneity. Neutral theory, emerging from the theory of
Island Biogeography (MacArthur & Wilson 1967), lottery
models (Chesson & Warner 1981) and earlier work by popula-
tion geneticists (Kimura 1983), argues for stochastic processes
and environmental stochasticity. The latter was put forward
as a null model to test if these interactions and differences
between species matter to the assembly of ecological commu-
nities. In a way it is similar to the Hardy–Weinberg theorem
in population genetics (Hardy 1908; Weinberg 1908), testing
assumptions regarding the evolution of populations. Neutral
theory likewise tests assumptions regarding the dynamics of
communities. The Þrst neutral models of ecology were spa-
tially implicit, with recruitment from either within a local
community or from a metacommunity (Fig. S1). These models
fail, however, to correctly estimate migration from a spatially
explicit world (Pos et al. 2017), even though they generate
accurate predictions of community structure. Considering the
overwhelming evidence that migration is in all probability
very important (Magurran & Henderson 2003; Volkov et al.
2003), spatially explicit models were developed to study the
relative importance of migration and neutral processes in
determining community structure (Chave & Leigh 2002; Zillio
& Condit 2007; de Aguiar et al. 2009; Rosindell & Cornell
2009). These models generated good predictions for species
rank abundance distributions and species–area relationships
(Hubbell 2001) but focused only on explaining such patterns
on regional scales. A lack of previous attempts to combine
both regional and local scale predictions has prevented a
proper validation of fundamental predictions of neutral the-
ory. Recently, a spatially explicit analytical approach revealed
severe scaling issues of neutral theory predictions (OÕDwyer &
Cornell 2018). Here it was shown that the number of rare spe-
cies was severely underestimated by neutral theory predic-
tions. The authors proposed that a lack of stabilising
mechanisms, allowing rare species to be maintained, could
potentially explain the skew towards the tail of species abun-
dance distributions. This, however, does not include an expla-
nation towards the extreme dominance of species often
observed in the Þeld towards which much effort has been
devoted, both experimentally and theoretically. Stephen Hub-
bell in his original publication of neutral theory had already
anticipated such use to study what he termed Ôdominance
deviationsÕ using his spatially implicit model (Hubbell 2001).
However, as of yet this has not yet been successfully studied
theoretically under the assumptions of spatially explicit neu-
tral theory, which would be a far more accurate approach to
reality. Here we, therefore, combine regional and local results
of a neutral spatially semi-explicit model (Poset al. 2017)
using parameters based on species characteristics and ask the
question if neutral theory can explain the excessive dominance
of species as often observed across spatial scales. In other
words, we test if there is a biologically sound prediction on
regional scales, following from accurate predictions on local
scales. If migration is the main process determining commu-
nity structure (reßecting mainly the neutral perspective), our
model should approach empirical data accurately both on
regional and local scales. If, however, the model results devi-
ate substantially from empirical data on both or either scale,
key assumptions of the model are violated and other processes

must be more dominant or at least strongly complementary to
migration. To explain such a potential discrepancy and to
identify model assumption violations we also performed a
number of different (multivariate) analyses on the empirical
data, complementary to the simulations and studied distribu-
tion of dominant species. Using empirical data from 223 hec-
taresÕ worth of forest inventory plots in the Amazon, covering
4493 species and 120.322 individual trees, we simulate forests
in the order of 8000 hectares, with 400-500 individuals per
hectare. With the Amazon being one of the most diverse for-
ests of the world in terms of tree species (Hubbellet al. 2008;
ter Steegeet al. 2013, 2017), such a large data set allows us to
test the model on different spatial scales and different commu-
nities in terms of diversity.

MATERIALS AND METHODS

Spatially semi-explicit models: modelling the green mass

We used a mechanistic model (Poset al. 2017) simulating not
only separate plots and their direct interaction (Fig. S1), but
also the intermediate Ôgreen matrixÕ connecting these plots
(not unlike the analytic network approach by Economo &
Keitt (2008)). Although we often look at the forest using only
a relatively small sample of plots, it is this intermediate green
matrix that plays a vital role in determining species composi-
tion of each local plot, acting as a bridge, exchanging species
between the plots being sampled. The model is built up as a
three-dimensional array, with each column representing a sin-
gle plot within a forest with its individuals stacked as the indi-
vidual blocks (Fig. S2). The different colours of blocks
represent different species and the number of individuals (i.e.
amount of stacked blocks) is based on an average amount per
plot as observed in the used empirical set. Creating the forests
starts with each block (i.e. each individual) being assigned to
a species by randomly sampling from a hypothetical meta-
community. This metacommunity follows a logseries, which
has been shown to be the best approximation for describing
species richness of hyper diverse communities (Hubbellet al.
2008; ter Steegeet al. 2013, 2017; Baldridgeet al. 2016). The
logseries is parameterised using the actual Þeld data to which
the simulation is being compared, similar to an earlier study
(Pos et al. 2017). With each time step of the simulation the
forest is allowed to change with one individual in each plot
randomly chosen for replacement. Replacements can come
from either of Þve categories: (1) the plot itself (local recruit-
ment), (2) adjacent plots, (3) the entire forest, (4) the hypo-
thetical metacommunity or (5) a speciation event, which
creates a new species neither present in the forest nor in the
metacommunity. We estimate probability of migration from
adjacent plots using the Corrected Plot Geometry method
(Chisholm & Lichstein 2009; Poset al. 2017) and mean dis-
persal distance based on phenotypic characteristics, see below.
Migration probability of each subsequent category is calcu-
lated as 10% of the former following earlier publications (ter
Steegeet al. 2017), for example if the migration probability
from adjacent plots is estimated at 0.071, that from the entire
forest is set at 0.0071 and from the hypothetical metacommu-
nity at 0.00071. We calculated speciation as in the original
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UNTB: theta/(2 *J) with theta equal to FisherÕs alpha (Hub-
bell 2001) and J the total number of individuals in the forest.
Parallel processing, using either multiple cores on one proces-
sor or a cluster using the packagesforeach, doParallel and
doSnow(Weston 2015), allows multiple forests to be simulated
at once, drawing all from the same larger hypothetical meta-
community. These separate forests are indirectly connected as
they draw from the same metacommunity, essentially simulat-
ing vagrant dispersal from a larger species pool. This allows
for much faster computation of a large area. Each step of the
simulation itself is explained in chronological order in the
Supporting Information S1.

Field data sets

Three independent data sets were used: Guyana/Suriname
combined, French Guiana and Ecuador/Peru also combined.
All identiÞcations within each data set were harmonised, are
independent and non-overlapping (Poset al. 2014). Each data
set consisted of plots having all trees� 10 cm diameter at
breast height (DBH) inventoried. Species IDÕs were standard-
ised to the W3 Tropicos database within each data set, using
TNRS (Boyle et al. 2013; ter Steegeet al. 2013). The Guyana/
Suriname set consisted of 67 plots all of one hectare in size,
yielding 37.446 individual trees distributed among 1042 mor-
phospecies. French Guiana is comprised of 63 plots, ranging
between 0.40 and 1 hectares in size (0.40 ha 1 plot, 0.50 ha 3
plots, 0.80 ha 1 plot, 0.98 ha 2 plots and 1 ha 56 plots)
accounting for 35.075 individuals belonging to 1204 morphos-
pecies and Ecuador/Peru having 93 plots, ranging in size from
0.2 to 1 hectares in size (0.1 hectares 2 plots, 0.2 ha 1 plot,
0.25 ha 6 plots, 0.5 ha 1 plot and 1 ha 87 plots) yielding
47.801 individuals and 3018 morphospecies. A map of the
locations of all plots is provided in the supporting informa-
tion (Fig. S4).

Parameterising the model

The mean dispersal distance for each data set to be imple-
mented in the Corrected Plot Geometry method (Chisholm &
Pacala 2010; Poset al. 2017) was calculated by assigning a
mean dispersal distance depending on the category, based on
literature (Yumoto 1999; Seidler & Plotkin 2006; Muller-
Landau et al. 2008) (Table S2). This was done for each plot
and ultimately averaged over all plots per data set (see below).
As a control, we also simulated the forests for a range of
combinations where the total summed amount of migration
was randomly divided over all the different categories. A table
of all used parameters is provided in the supporting informa-
tion (Table S2). To test for the inßuence of severe and absent
ecological drift on the difference between local and regional
patterns of diversity, we also implemented near null (� .1)
and near-unity parameters of migration (0.9).

Sampling and analyses

After the simulations, a number of plots equal to the amount
of plots in the data set used for comparison were sampled
randomly from the forest. Shapes of the rank abundance

distributions for both the simulation output and the empirical
data were compared using the nonparametric Kolmogorov–
Smirnov test (Massey 1959) as it allows for a goodness-of-Þt
test between two distributions without assuming a prior distri-
bution and calculates the statistical distance between the two
distributions. The reported D values indicate a maximum dis-
tance between the two distributions, withP-values indicating
the probability of such a D statistic being larger or equal to
the observed value. Mean number of species in the total sam-
ple, number of singletons and FisherÕs alpha were compared
using the nonparametric Wilcoxon rank sum test (Wilcoxon
1945). FisherÕs alpha mathematically describes the relationship
between the number of species and their abundance, that is it
estimates the parameter alpha in the logseries distribution
(Fisher et al. 1943). We posited that if forest dynamics are
similar to our neutral model, these aspects of the empirical
and simulated data sets should also be similar. Any substan-
tial deviation would represent non-dispersal related inßuences
on species composition. Thus, we treat the model as a null-
model, much like the Hardy–Weinberg theorem in population
genetics (Hardy 1908; Weinberg 1908), with only dispersal as
a mechanistic driver. In addition to studying the regional pat-
terns in diversity, we did the same for local patterns studying
the average number of species per plot and the ranking in
dominance of these species per local community over the
whole data set. To complement these comparisons, we per-
formed three different analyses to study the relative impor-
tance of geographical distance and environmental Þltering.
These were non-metric multidimensional scaling (NMDS)
(Fasham 1977; Minchin 1987; Salakoet al. 2013) using the
Morisita index of diversity (Morisita 1959) as distance mea-
sure and a correlation analysis between environmental, geo-
graphic and species distance matrices using Mantel tests
(Mantel 1967; Legendre & Fortin 2010), using the same dis-
tance measure. All are explained in more detail in the Sup-
porting Information S2. A list of all R packages used is given
in the supporting information.

RESULTS

No single model parameter setting was capable of reproducing
patterns of high dominance on either regional or local scales
Þtting empirical observations (Figs 1 and 2). Intermediate pat-
terns of regional rank abundance distributions (truncated at
ranks 50–750), however, showed a non-signiÞcant difference
from empirical distributions (Kolmogorov –Smirnov test,
Fig. 1). Total number of species and FisherÕs alpha of the
total sample (Fig. 2) also showed a reasonable, although not
signiÞcant Þt between observed and predicted patterns for two
out of three data sets (Guyana/Suriname and French Guiana).
For Guyana/Suriname, there was a signiÞcant difference
between the complete (i.e. non-truncated) predicted and Þeld
rank abundance distributions, although maximum distance
(D, also derived from the Kolmogorov–Smirnov test) between
the two distributions was small (Fig. 1). There was also a rela-
tively small yet signiÞcant difference in the observed and pre-
dicted mean number of species per plot but no signiÞcant
differences between observed and predicted mean number of
singletons (species with only one individual) (Table 1).
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Complete simulated and empirical regional rank abundance
distributions were also signiÞcantly different for French Gui-
ana (again with small maximum distance), with a signiÞcant
difference between observed and predicted mean number of
species and mean number of singletons per plot at local scales.
For Ecuador/Peru, simulations yielded a much less diverse
sample than the empirical data resulting in strong signiÞcantly
different observed and predicted rank abundance distribu-
tions, yielding less than half of the species found in the empir-
ical data as well with a maximum distance over twice as large
as for the other two data sets, mainly caused by a lack of rare
species from neutral predictions. There were also signiÞcant
differences in observed and predicted mean number of species
and singletons per plot (local scale), although truncated rank
abundance distributions again showed no signiÞcant differ-
ence. All rank abundance distributions on a regional scale

showed the familiar logseries (Fig. 1), although comparisons
of mean FisherÕs alpha per plot revealed signiÞcant differences
for all data sets between observations and predictions. Regio-
nal (total) FisherÕs alpha indicated close comparisons for both
Guyana/Suriname and French Guiana whereas Ecuador/Peru
again showed larger differences between observed and simu-
lated values. From both the rank abundance and maximum
dominance distributions it can clearly be seen that in all cases
the extremely dominant species are responsible for large dis-
tances, which is also indicated by the non-signiÞcant differ-
ences for the truncated rank abundance distributions.

As a proper test of deviation between neutral expectations
and observed rank abundance distribution speciÞc for the
(most) dominant species, we tested for departures in the abun-
dances of individual species. For this we bootstrapped sam-
pling to calculate conÞdence intervals for each species from

0 500 1000 1500 2000

Regional prediction

Empirical RAD
Logseries RAD LOESS prediction
RAD LOESS predicton (50 draws)
Range RAD LOESS predictions

D = 0.1
P < 0.05
P_inter = 0.598

0 20 40 60 80 100

20
50

10
0

20
0

Empirical MDD
MDD LOESS predicton (50 draws)
Range RAD LOESS predictions

D = 0.761
P < 0.05

0 500 1000 1500 2000

1
5

10
50

50
0

D = 0.088
P < 0.05
P_inter = 0.24

20
50

10
0

D = 0.46
P < 0.05

0 500 1000 1500 2000 2500 3000

1
5

10
50

50
0

D = 0.216
P < 0.05
P_inter = 0.109

0 20 40 60 80 100

5
10

20
50

10
0

20
0

D = 0.381
P < 0.05

1
5

10
50

50
0

A
bu

nd
an

ce
A

bu
nd

an
ce

A
bu

nd
an

ce

Rank Rank

0 20 40 60 80 100

Rank Rank

Rank Rank

A
bu

nd
an

ce
 m

os
t d

om
in

an
t s

pe
ci

es
A

bu
nd

an
ce

 m
os

t d
om

in
an

t s
pe

ci
es

A
bu

nd
an

ce
 m

os
t d

om
in

an
t s

pe
ci

es

Local prediction

Figure 1 The rank abundance distribution (RAD, left) and maximum dominance distributions (MDD, right) for tree species in 223 Amazon forest plots
from Guyana/Suriname (top), French Guiana (middle) and Ecuador/Peru (bottom). Lines indicate empirical (green) and simulated data (black) or Þtted
logseries (red). Blue shading indicates upper and lower RAD or MDD based on 50 sampling iterations of the total simulated forest. For the RADs,x-axis
indicates the rank from most abundant to least abundant species, withy-axis showing actual abundances of the species for the ith rank. For the MDDs,x-
axis reßects ranking of plots andy-axis the maximum dominance of the most abundant species for each plot. D, P and P_inter values represent maximum
distance and signiÞcance values derived from the Kolmogorov–Smirnov tests with P_inter the comparison between the truncated RADs (ranks 50–750).
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an equal amount of samples as the respective empirical data
sets. Plotted with the empirical rank abundance distribution,
it becomes clear that we can reject neutrality especially for
these most dominant species in all three data sets (Fig. 3 and
Fig. S5). This also shows that for the intermediate to rare spe-
cies, conÞdence intervals bracketed the empirical distribution,
suggesting neutrality cannot be rejected, in accordance with
the non-signiÞcant differences between truncated rank abun-
dance distributions.

As simulations were unable to attain realistic patterns in
dominance distribution of species, we redid simulations using
near null migration (� 0.1) to mimic extreme ecological drift
at the local level. We also performed simulations at the other
extreme of near unity (0.9) migration, mimicking a panmictic
community. This clearly showed the disagreement between
regional and local predictions of the rank abundance distribu-
tions (Fig. 4). The Þrst resulted in maximum dominance dis-
tributions approaching the empirical data, yet too even and
too rich and signiÞcantly different at the cost of regional
diversity where RAD agreement was lost. With migration
probabilities set near unity, regional predicted patterns of
rank abundance distributions showed stronger approximation
with empirical data although richer and not attaining the

excessive dominance. Here, maximum dominance distributions
were almost ßat, that is individuals were too evenly dis-
tributed over the species and strongly different from the
observed patterns.

Analyses of composition

For all three data sets, there were signiÞcant correlations
between spatial distance and composition dissimilarity with
relatively high r statistics from the Mantel tests for Guyana/
Suriname (0.3101) and French Guiana (0.6723), whereas for
Ecuador this was considerably lower (0.2073) (Table S1). Dis-
similarity of composition was also compared with environ-
mental distance matrices where local ecology was
approximated by Euclidean distances for annual rainfall and
a binary distance index of 0 or 1 for forest type (Supporting
Information S2). For Guyana/Suriname, this yielded a weaker
r statistic of 0.1176 for the former but a similar r statistic of
0.2961 for the latter, both signiÞcant. For French Guiana,
only comparisons between local ecology and species distances
were available as all plots are from the same forest type, yield-
ing a signiÞcant r statistic of 0.1713. For Ecuador, in compar-
ing species distances with local ecology yielded an r statistic
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Figure 2 Boxplots summarising features of quantitative variables of composition for Guyana/Suriname, French Guiana and Ecuador/Peru (both simulated
and empirical). Statistics are shown by the labels for the plots from the simulation (red) and from the actual empirical data (green) after 50 sampling
iterations. Whiskers of boxplots indicate minimum or maximum values (excluding outliers), hinges reßect lower and upper quartiles with bold stripes
reßecting median values.

Guyana/Suriname French Guiana Ecuador/Peru

Sim Field Sim Field Sim Field

Mean nr species 110*** 84*** 114*** 157*** 113*** 168***
Total nr of species 1227 1042 1212 1204 2247 3018
Mean nr singletons 34 33 36*** 78*** 40*** 88***
Total nr singletons 215 210 212 208 462 998
Mean FA per plot 46** 31** 48*** 76*** 58*** 101***
FA of total sample 243 199 244 242 489 716

** Indicate signiÞcance levels atP � 0.01, *** at P � 0.001.

Table 1 Table comparing simulated (Sim) and empirical
data sets (Field) in terms of number of species, singletons
and FisherÕs Alpha (both total and mean per plot)
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