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Parkinson’s disease (PD) is a progressive CNS disorder that is primarily associated
with impaired movement. PD develops over decades and is linked to the gradual loss
of dopamine delivery to the striatum, via the loss of dopaminergic (DA) neurons in
the substantia nigra pars compacta (SNpc). While the administration of L-dopa and
deep brain stimulation are potent therapies, their costs, side effects and gradual loss
of efficacy underlines the need to develop other approaches. Unfortunately, the lack
of pertinent animal models that reproduce DA neuron loss and behavior deficits—in
a timeline that mimics PD progression—has hindered the identification of alternative
therapies. A complementary approach to transgenic animals is the use of nonhuman
primates (NHPs) combined with the overexpression of disease-related genes using viral
vectors. This approach may induce phenotypes that are not influenced by developmental
compensation mechanisms, and that take into account the personality of animals. In
this review article, we discuss the combination of gene transfer and NHPs to develop
“genetic” models of PD that are suitable for testing therapeutic approaches.
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INTRODUCTION

Parkinson’s disease (PD) is a disorder of the CNS primarily due to the degeneration of
nigro-striatal dopaminergic (DA) neurons. Early symptoms are movement-related, including
shaking, rigidity, slowness of movement, postural instability and difficulty with walking.
Collectively, these symptoms are called ‘‘parkinsonism’’. However, non-motor symptoms,
such as depression and apathy, which are attributed to the degeneration of the mesolimbic
mesocortical DA pathway [neurons of the ventral tegmental area (VTA) projecting to the
nucleus accumbens, Lewis et al., 2003; Carriere et al., 2014; Dujardin and Lopes, 2014;
Dujardin et al., 2014], frequently appear before the motor symptoms (Figure 1). In addition
to fine-tuning of motor function, these pathways are also involved in reward (motivation),
pleasure, compulsion and perseveration. Later, sensory, sleep, emotional problems, depression
and dementia may arise in the late stages. Regarding the latter, the degeneration of non-DA
neurons (e.g., serotoninergic) are thought to contribute to depression (Tan et al., 2011).
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FIGURE 1 | The three major dopaminergic (DA) pathways in the brain linked
to Parkinson’s Disease (PD). The nigrostriatal pathway was DA cells from
substantia nigra pars compacta (SNpc) project into the striatum (in dark pink).
The mesolimbic/mesocortical pathway, which corresponds to the projection
of the midbrain ventral tegmental area (VTA) to the nucleus accumbens
(N. Acc) in the limbic areas, and to the frontal cortex (FC), respectively.

These early neuropsychiatric manifestations often precede motor
symptoms, which appear when approximately 70% of the
substantia nigra pars compacta (SNpc) DA neurons are lost or
are unable to deliver dopamine to the striatum. This implies
that PD is, in part, an axonopathy (O’Keeffe and Sullivan, 2018).
Finally, cognitive symptoms like dementia and hallucinations
tend to appear in the late phases of the disease and are related
to perturbation of the mesocortial pathway, which connects
the VTA to the prefrontal cortex. Eventually, deficits in the
noradrenergic, serotoninergic and acetylcholinergic systems also
appear. Clearly, early diagnosis will be of utmost importance for
disease prevention/reversal.

A handful of genes are involved in monogenic (recessive
or dominant) forms of PD. Together these genes account for
around 30% of familial forms and 3%–5% of sporadic cases
(Klein and Westenberger, 2012). Among these PD-related genes,
α-synuclein (SNCA) and leucine-rich repeat kinase 2 (LRRK2 or
PARK8) or are the best characterized because over-expression
and/or mutations in SNCA and LRRK2 are responsible for
autosomal-dominant PD forms. A mutation in SCNA that causes
an A53T change was identified in four families (Polymeropoulos
et al., 1997). Since then, other mutations, duplication and
triplication of this gene have been linked to PD (Deng and
Yuan, 2014). LRRK2G2019S is the most common mutation in
familial and sporadic PD. LRRK2 mutations are also found in
sporadic cases further supporting the prominent role of this
gene in PD aetiology. Finally, disease evolution of patients with
LRRK2 mutations, including the accumulation of Lewy bodies,
are clinically indistinguishable from those with idiopathic PD
(Gasser, 2009). Familial forms of PD are slowly providing clues
to underlying mechanisms of neurodegeneration.

While some drugs have markedly improved parkinsonism,
their efficacy often declines as PD progresses. To date, there
are no long-term disease-modifying treatments available for
the 10 million people worldwide suffering from PD. Therefore,
using pertinent models that allow the scientific community to
develop new approaches are of utmost importance to combat
PD.

ACUTE AND CHRONIC MODELS OF PD

One bottleneck associated with identifying therapeutic options
for PD is the lack of a robust and pertinent animal
model. While many models give potential results on a
given aspect of parkinsonism, none fully recapitulate the
pathognomonic lesions of PD (Dawson et al., 2010). Two
broad categories of models are being used: neurotoxin-
based (acute) and genetic-based (chronic) models. Neurotoxin
models are the most popular. They can be produced by
the use of the toxin 6-hydroxydopamine (6-OHDA), which
preferentially kills DA neurons by production of free radicals
(Przedborski et al., 1995), or 1-methyl-4-phenyl-1, 2, 3, 6-
tetrahydropyridine (MPTP); Schober, 2004), which interferes
with the mitochondrial metabolism, also producing free
radicals (Petroske et al., 2001) and strong neuroinflammation
(Luchtman et al., 2009, 2012). In addition to the loss of
dopamine in the nigrostriatal DA system, they also reach
extrastriatal regions, such as the subcortex and brainstem
(Bezard et al., 2013). While we have learned much from toxin-
induced PD models, their use in the development of disease-
modifying therapies is challenging. A well-recognized caveat
of toxin-induced PD models is that they mainly cause the
degeneration of the nigrostriatal DA pathway, which induces
robust motor symptoms, but poorly recapitulate symptoms
related to most, but not all, pathways (Brown et al., 2012).
These models, although very useful to test motor deficits or
L-dopa responsiveness (Dawson et al., 2002), remain acute
models where the progressive DA cell death is absent, and
poorly mimic PD progression over time (Hattori and Sato,
2007). To circumvent these drawbacks many labs have opted
for the creation of transgenic mice, widely based on SNCA
and LRRK2 mutants. However, transgenic SNCA mice, based
on missenses mutations A30P, E46K or A53T, have led to
limited parkinsonism (Deng and Yuan, 2014), especially in
terms of nigrostriatal degeneration (Chesselet, 2008; Dawson
et al., 2010). On the other side, the current cohort of
LRRK2 transgenic mice induce mild, if any, degeneration of
nigrostriatal DA neurons, Lewy body formation, or behavior
effects (Ramonet et al., 2011; Blesa and Przedborski, 2014).
Of note though, LRRK2 overexpression does accelerate the
pathological consequences of SNCAA53T in double transgenic
mice (Lin et al., 2009). The latter study also suggests that
the LRRK2 protein affects the intracellular trafficking and
accumulation of SNCA protein. A transgenic rat overexpressing
the G2019S mutation impaired dopamine uptake but did
not show any nigral DA cell loss and striatal dopamine
contents in aged rats (Zhou et al., 2011). Interestingly,
transgene expression in adult animals using viral vectors can
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induce pronounced phenotypes in rodents, presumably by
circumventing developmental compensatory effects, and by
producing high level of transgene expression. In particular,
vector-mediated expression of native or mutant SNCA can
lead to DA neuron cell death and motor symptoms. Cognitive
symptoms such as spatial learning and memory deficits (Hall
et al., 2013), depression (Caudal et al., 2015) and emotional
memory impairment, are influenced by VTA neurons (Alvarsson
et al., 2016) in rats. In conclusion, animalmodels that recapitulate
the early and late, motor and non-motor symptoms, within a
time frame suitable to evaluate PD-modifying treatments, are still
needed.

VIRAL VECTOR-MEDIATED PD EFFECTS
IN NONHUMAN PRIMATES

Nonhuman primates (NHPs) are particularly relevant in
preclinical research because they share several genetic,
physiological and anatomical similarities with humans. NHPs
display complex cognitive functions, complex motor skills
and a highly developed cerebral cortex (Verdier et al., 2015).
Equally important, NHPs can be studied under controlled and
humane experimental conditions. Interestingly, aged rhesus
monkeys can naturally display a significant loss of tyrosine-
hydroxylase and dopamine-transporter immunoreactivity
correlated with motor impairments (Emborg et al., 1998).
Furthermore, aged-related SNCA increase in rhesus monkeys
has been observed in the nigral pathway (Chu and Kordower,
2007). These observations led to the idea that aged NHPs
are at the threshold to develop a PD and, as a consequence,
constitute a model of choice. Several viral vectors have been
used to drive the development of PD in NHPs. Vector-mediated
transgenesis is also versatile and transposable between species.
Taking nothing away from the ground-breaking work performed
in rodents, we believe that NHPs are needed to unravel PD
induction, progression, therapeutic strategies (Emborg, 2007),
and understand long-term pathophysiological, biochemical and
behavioral anomalies. To develop these models, intracerebral
injection of viral vectors bearing mutated SNCA or LRRK2 have
been tested for modeling ‘‘genetic’’ PD. Monkeys overexpressing
simian or human SNCA coding for a protein with the A53T
change via adeno-associated virus (AAV) vectors exhibit
motor impairment and neuropathological features of PD
including but not limited to: head position bias, loss of TH-
and VMAT2-positive innervation throughout caudate nucleus
and putamen, dystrophic neurites and swollen axons, SNCA-
positive inclusions (Kirik et al., 2003). AAV vectors have
been successfully used for expression of human SNCAA53T in
cynomolgus macaque SN, and led to a 50% loss of nigral DA
neurons (Koprich et al., 2016). Lentivirus vectors expression
of SNCAA53T into the SN of rhesus monkeys resulted in more
neuronal pathology and chronicity in monkey brains than
in mouse brains (Yang et al., 2015). Of note, NHPs are also
responsive to dopamine replacement therapies, and show
complications resulting from long-term use such as dyskinesia
and motor fluctuations when the medication is not working
well.

In contrast to the small (∼16 kDa) SNCA protein, the LRRK2
protein is ∼250 kDa with at least seven different functional
domains (Taymans and Greggio, 2016). The G2019S change
located in the kinase domain, leads to a hyperkinase activity.
LRRK2 was recently shown to be involved in the endoplasmic
reticulum to Golgi export. Interestingly, this function is altered
in the PD-related LRRK2R1441C mutation located in the GTPase
domain (Cho et al., 2014).

HELPER-DEPENDENT CANINE
ADENOVIRUS FOR DEVELOPING NEW PD
MODELS

The LRRK2 cDNA is about 8 kb and therefore a vector with an
appropriately large cloning capacity is needed, and precludes its
efficient expression in AAV and lentivirus vectors. A handful of
attempts have been made to develop animal models expressing
LRRK2G2019S via viral vectors. To date, three vector platforms
have been used to deliver the LRRK2G2019S cDNA: human
adenovirus type 5 (HAd5; Dusonchet et al., 2011; Tsika et al.,
2014) were used in rats, herpes simplex virus (HSV) were used
in mice. The HAd5-LRRK2G2019S vector was injected into the
striatum of rodents and due to its preferential transduction of
glia cells and poor retrograde transport, the direct effect of
LRRK2G2019S on DA neurons in the nigra could not be addressed.
Using a HSV vectors expressing LRRK2 or LRRK2G2019S, Lee
et al. (2010) showed that the hyperkinase activity of LRRK2G2019S

was responsible for the PD phenotype, and that LRRK2 kinase
inhibitors provide a potential neuroprotective treatment for PD.
Interestingly, they also showed that overexpression of wild type
LRRK2 caused neurite shortening in vitro.

Clearly, the ability to efficiently and simultaneously deliver
expression cassettes to multiple regions of the brain could be a
notable plus for PD. Taking nothing away from the encouraging
results when using HSV vectors (Goverdhana et al., 2005; Lee
et al., 2010), we believe that we can improve PD modeling
by using helper-dependent (HD) canine adenovirus (CAV-2;
Junyent and Kremer, 2015; Figure 2). HD CAV-2 vectors have
a unique combination of characteristics that make it ideally
suited for PD modeling: CAV-2 vectors preferentially transduce
neurons in rodent and NHPs, have no long-term impact on
adult of newborn neuron homeostasis, have a 30 kb cloning
capacity. Following injection in the rodent and NHP striatum,
CAV-2 efficiently transits into afferent (axonal projections into
the striatum) structures and is ≥100-fold more efficient than
HAd5 vectors. This is particularly pertinent for PD modeling
because efficient and stable gene transfer to DA neurons via
injections into the SN is pernicious because DA neurons are
particularly sensitive to stress (Albert et al., 2017). Due to the
efficient retrograde transport of CAV-2 vectors in DA neurons
(Soudais et al., 2001b; Schwarz et al., 2015), HD-LRRK2 vector
can be delivered in the striatum, thus bypassing the potential
damage incurred by SN injections.

HD CAV-2 vectors lead to long-term expression in the brain:
transgene expression was stable for >1 year post-transduction
(Soudais et al., 2001b) and cellular protein expression showed
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FIGURE 2 | Schematic representation of the helper-dependent (HD) canine adenovirus-2 (CAV-2) vector expressing leucine-rich repeat kinase 2 (LRRK2)G2019S.
While the HD genome is devoid of all viral coding sequences, it still retains the 200 bp inverted terminal repeat (ITR) at each end and the 150 bp packaging signal (ψ)
at the left end of the genome. To create a stable capsid the genome must fill the interior of the capsid which therefore requires it to be 95%-105% of the 32 kbp wild
type genome. Depending on the size of the expression cassette [here it contains the 600 bp Rous sarcoma virus early promoter (RSV), an internal ribosome entry
signal (IRES), a green fluorescent protein cDNa 5GF] the LRRK2 cDNA and a 250 polyA signal (pA), the remaining sequence is made up of noncoding intronic
sequence from the human genome.

no change. These data demonstrate the low immunogenicity
of HD CAV-2. Finally, scalable high titre production is
also possible (Junyent and Kremer, 2015). We have invested
significantly in optimizing CAV-2 vector cloning, creation and
production parameters (Kremer et al., 2000; Soudais et al., 2001a;
Fernandes et al., 2013, 2015a,b; Ibanes and Kremer, 2013),
understanding CAV-2 uptake and trafficking (Soudais et al.,
2000, 2001b; Chillon and Kremer, 2001; Martin-Touaux et al.,
2002; Salinas et al., 2009), the physiological role of CAV-2’s
receptor (Seiradake et al., 2006; Schoehn et al., 2008; Salinas et al.,
2010; Rademacher et al., 2012; Piersanti et al., 2013; Kremer and
Nemerow, 2015; Loustalot et al., 2015), and the in vivo use of
the vectors [Junyent and Kremer, 2015 and del Rio et al. (in this
Research Topics issue)]. HD CAV-2 vectors are therefore ideal
for LRRK2 cDNA delivery.

NEW NHP MODELS OF PD

LRRK2G2019S Expression in the Lemurian
Primate Microcebus murinus
By complementing and extending the work performed in
rodents, NHPs can help unravel PD induction, progression,
therapeutic strategies (Emborg, 2007), and understand
long-term pathophysiological, biochemical and behavioral
anomalies. Although several type of NHPs are used to study
neurodegenerative diseases (Verdier et al., 2015) the use of
NHPs is time demanding, expensive, and the number of
available animals for research is limited. To circumvent these
issues, the Microcebus murinus (or gray mouse lemur) has the
notable advantages to be small and efficiently bred in captivity.
M.murinus are ideally for cerebral ageing and neurodegenerative
studies because they develops complex behavioral (emotional),
cognitive, and motor tests [(Joly et al., 2004, 2006, 2014; Picq,
2007; Trouche et al., 2010; Picq et al., 2012); for a review article,
see also (Languille et al., 2012)], and also through transcriptomic
studies (Abdel Rassoul et al., 2010) and transmissibility of
neurodegenerative diseases (Mestre-Francés et al., 2012) or for

gene transfer (Alba et al., 2012). In addition, its brain structure is
similar to that of the humans, with a relative proportion of each
region.

Recently, we generated HD CAV-2 vectors containing a
LRRK2G2019S expression cassette (HD-LRRK2G2019S) that we
injected unilaterally into the putamen of M. murinus. We found
preferential transduction of neurons at the injection site, and
in numerous areas harboring neurons that project into the
striatum. The long-term expression leads to the progressive
unilateral loss of DA cells in the SNpc accounting for up to
30%–40% a decreased of the DA fibers, dystrophic neurites
and swollen axons, characteristic of neurodegeneration. This
neurodegeneration was accompanied by dopamine loss in the
striatum, and PD-like motor symptoms (bradykinesia, rigidity,
and difficulty in prehension; Mestre-Francés et al., 2018).

LRRK2G2019S Expression in Macaques
The promising outcomes obtained in the M. murinus model,
prompted us to determine if CAV-2 vectors were also effective
gene transfer tools in the Macaca fascicularis brain, and if
CAV-2–mediated expression of LRRK2G2019S in the SN neurons
could induce pathological features associated with PD in a more
complex NHP model. Our study demonstrated the neuronal
tropism, retrograde transport, biodistribution, and efficacy of
CAV-2 vectors expressing GFP in the M. fascicularis brain (Di
Caudo et al., in preparation). Furthermore, we also demonstrated
that CAV-2-mediated HD-LRRK2G2019S expression in the SN
leads to the loss of DA cells, neurite dystrophy, axon swelling and
mitochondrial abnormalities. Unfortunately, animals injected
with HD-LRRK2G2019S into the striatum did not develop clear
parkinsonian features, but they exhibited a significant reduction
of striatal F-dopa uptake, indicating that they represent an early
stage of the disease.

Together, these data demonstrate that robust PDNHPmodels
can be generated using HD CAV-2 vectors and in turn could
allow detailed evaluation of the therapeutic options for PD
motor, emotional, and cognitive deficits.
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VIRAL VECTORS FOR DEVELOPING
DISEASE-MODIFYING TREATMENTS

While currently available treatments can temporarily relieve the
symptoms, they have little influence on the neurodegenerative
process.

Neurotropic factors (NFs), which mediate pro-survival effects
on neurons, potentially constitute a disease-modifying option.
However, the results obtained with NFs are controversial,
and largely depend on the model. For instance, in an AAV-
SNCA-injected rat, the delivery of AAV-GDNF (glial cell
line-derived neurotrophic factor), 2–3 weeks before AAV-
SNCA injection, failed to demonstrate a neuroprotective effect
(Decressac et al., 2012). In this case, SNCA overexpression
resulted in Ret downregulation and disruption of GDNF
signaling. However, a recent study demonstrated that Ret is
not downregulated in PD patients (Su et al., 2017). In other
studies, the therapeutic potential of NFs was demonstrated
in toxin injected (6-OHDA and MPTP) rodents and NHPs,
in which NFs reduced motor symptoms (Bilang-Bleuel et al.,
1997; Kirik et al., 2000; Kordower et al., 2000, 2006; Eslamboli
et al., 2003; Su et al., 2009). Following these encouraging
results, clinical trials were conducted using AAV2-GDNF (still
ongoing) or AAV2-neurturin (NRTN; Marks et al., 2010;
Warren Olanow et al., 2015). Although the AAV2-NRTN trials
demonstrated acceptable tolerance, after a 1-year follow-up,
no significant improvement was observed in the ‘‘Unified PD
Rating Scale’’ (UPDRS). However, post hoc analyses suggested
that a subgroup of patients had beneficial effects (Marks
et al., 2010). Post-mortem analysis of four patients showed
that although surviving DA neurons were still present in
the SN, very few co-stained with NRTN. These observations
suggested that retrograde transport was inefficient (Bartus
et al., 2011, 2015). Strikingly, these results were not predicted
by the pre-clinical animal models used to establish the
clinical protocol (MPTP-treated NHPs and 6-OHDA-injected
rats) in which the surviving nigro-striatal DA neurons still
had functional projections proficient for retrograde transport
and could be efficiently rescued. In a subsequent study
(Kordower et al., 2013), analysis of brains from untreated
PD patients at different stages, showed that the putamen
innervation had almost totally disappeared at 4 years post-
diagnosis, whereas numerous DA neurons cell bodies were still
present in the SNpc. Because most of the patients enrolled
in the AAV2-NRTN trial were more than 5 years post-
diagnosis, it is likely that their putaminal DA innervation had
been lost or was dysfunctional. Although unsuccessful, the
AAV2-NTRN trial was informative since it allowed: (i) to identify
the limitations of the toxin-induced models; (ii) to suggest
that disease-interfering treatments should be administered
before disappearance the DA fibers; and (iii) supported

enrolment of patients at earlier disease stages in gene therapy
trials.

Therefore, disease-modifying treatments will need animal
models that more faithfully recapitulate the mechanisms
underlying the progression of PD, and should be administered
at the earliest possible stage.

CONCLUDING REMARKS

No animal model manifests all the characteristics of PD in
humans, i.e., SNCA aggregation, DA reduction, progressive
DA cell death, motor and non-motor symptoms. If transgenic
models offer tremendous advantages over toxin-induced models,
the overexpression of human disease causing mutated genes
should be kept within the range of physiological levels. Viral
vector-mediated local transgenesis offers the advantage to allow
adjusting the transgene copy number to avoid confounding
effects of a non-physiological overdosage. Clearly though it is
difficult, if not impossible, to argue that NHPwill not be the most
informative path towards testing PD therapies. As underlined by
Blesa and Przedborski (2014),models are just models, and should
answer the question asked, not all the questions. Because NHPs
have their own personality each animal can produce different
emotional, motor, or cognitive behavior (that is why they are
their own control). In addition, NHPs allow us to monitor early
phases of the disease and follow-up. The combination of gene
therapy and the use of NHPs should open new route to a disease-
modifying treatment of PD.
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