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PREMISE OF THE STUDY: Phenological annotation models computed on large- scale herbarium 
data sets were developed and tested in this study.

METHODS: Herbarium specimens represent a significant resource with which to study 
plant phenology. Nevertheless, phenological annotation of herbarium specimens is time- 
consuming, requires substantial human investment, and is difficult to mobilize at large tax-
onomic scales. We created and evaluated new methods based on deep learning techniques 
to automate annotation of phenological stages and tested these methods on four herbarium 
data sets representing temperate, tropical, and equatorial American floras.

RESULTS: Deep learning allowed correct detection of fertile material with an accuracy of 
96.3%. Accuracy was slightly decreased for finer- scale information (84.3% for flower and 
80.5% for fruit detection).

DISCUSSION: The method described has the potential to allow fine- grained phenological 
annotation of herbarium specimens at large ecological scales. Deeper investigation regarding 
the taxonomic scalability of this approach is needed.
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Global changes that threaten biodiversity are numerous and rap-
idly increasing. To reduce the human impact on biodiversity loss, 
the scientific community must develop new, multi- disciplinary ap-
proaches that incorporate the most recent advances in biodiversity 
informatics, large occurrence and trait data sets, and large- scale 
taxonomic and ecological analyses. The development of the Open 
Science movement, citizen science initiatives, global digitization of 
natural history collections, and online cyberinfrastructure provide 
new opportunities for mobilizing and integrating massive amounts 
of biological data, driving the discovery of complex patterns and 
new hypotheses for further study (Soltis and Soltis, 2016; Allen 
et  al., 2018). This large- scale data integration across disciplines, 
continents, and infrastructures allows new investigations in ecol-
ogy, systematics, and evolution that offer the capacity to make bio-
diversity projections and provide crucial information for scientists 
and other stakeholders (e.g., land use managers, policy makers, ag-
ricultural producers, mining contractors). In this study, we inves-
tigate means to enable such data integration within the context of 
phenological studies using digitized herbarium specimens.

Herbarium specimens are dried and pressed plants or parts of 
plants that have been mounted on archival paper; labeled with data 
about, e.g., the identification of the plant, collection locality, collec-
tion date, and collector; and stored in natural history collections 
called herbaria. These plant specimens provide crucial data for the 
study of plant diversity, ecology, evolution, genetics, and biodiver-
sity, to name only a few (Graham et  al., 2004). When herbarium 
specimens are “digitized”—converted into a digital format by im-
aging and transcription of label data—they have even greater po-
tential for answering major research questions related to the recent 
impact of humanity on biodiversity (Davis et al., 2015; Soltis, 2017; 
James et al., 2018; Meineke et al., 2018; Soltis et  al., 2018). These 
millions of herbarium records have accumulated a valuable heri-
tage and knowledge of plants over centuries, across all continents. 
Recent ambitious initiatives in the United States, Australia, Brazil, 
and Europe are digitizing this information and making it available 
online to the scientific community and general public. Herbarium- 
based phenological research offers the potential to provide novel 
insights into plant diversity and ecosystem processes under future 
climate change (Zalamea et al., 2011; Willis et al., 2017; Yost et al., 
2018).

Rapid human- induced climate change has affected plant phe-
nology over the past century, with likely impacts on reproductive 
success, plant– pollinator interactions, and even carbon and nutri-
ent cycling (Menzel et al., 2006; Gordo and Sanz, 2010; Bartomeus 
et  al., 2011; Ellwood et  al., 2013; Primack et  al., 2015). However, 
the study of phenological shifts is only possible with historical and 
long- term data sets that can establish the phenological patterns of 
plants before human- induced climate change. Herbarium data sets 
are therefore essential as unique, verifiable sources of historic in-
formation on species localities and phenological states. Most phe-
nological studies are based on individual and manual phenological 
evaluation conducted by researchers or a small number of profes-
sionals, which is a laborious and resource- intensive process.

Annotating the tens of millions of existing digitized specimens 
for phenology requires an unrealistic amount of work for profes-
sional botanists to carry out in a reasonable time. Citizen scientists 
are capable of making substantial contributions to digital biodiver-
sity data (Ellwood et al., 2018); however, using citizen science data 
for ecological studies often requires complementary annotations to 
ensure data quality. A remarkable example of the complementary 

contributions provided by automated and volunteer classifications 
is provided by Jones et  al. (2018) who have used them jointly to 
automatically identify wild animals from camera traps.

Automated approaches, such as computer vision and machine 
learning methods, can complement valuable citizen science data 
and may help bridge the “annotation gap” (Unger et al., 2016) be-
tween existing data and research- ready data sets. Deep learning 
approaches, in particular, have been recently shown to achieve im-
pressive performance on a variety of predictive tasks such as species 
identification (Joly et al., 2017; Wäldchen et al., 2018), plant trait 
recognition (Younis et al., 2018), plant species distribution model-
ing (Botella et al., 2018), and weed detection (Milioto et al., 2018). 
Carranza- Rojas et  al. (2017, 2018a) reported the first attempts to 
use deep learning to tackle the difficult task of identifying species 
in large natural history collections and showed that convolutional 
neural networks trained on thousands of digitized herbarium sheets 
are able to learn highly discriminative patterns from pressed and 
dried specimens. These results are very promising for extracting a 
broad range of other expert annotations in a fully automated way. 
However, as with any statistical learning method, convolutional 
neural networks are sensitive to bias issues, including the way in 
which the training data sets are built (Carranza- Rojas et al., 2018b), 
necessitating methodological considerations to avoid bias and mis-
leading conclusions. Moreover, as good as the prediction might be 
on average, the quality of the produced annotations can be very 
heterogeneous from one sample to another, depending on various 
factors such as, e.g., the morphology of the species, the storage con-
ditions in which the specimen was preserved, the age of the speci-
men, or the skill of the annotator.

The goal of this study is to evaluate the capacity of deep learning 
technologies for large- scale phenological annotation of herbarium 
data. We test new methods and algorithms to automate the scor-
ing of reproductive phenological stages within a huge amount of 
digitized material, to provide significant resources for the ecolog-
ical and organismal scientific communities. Specifically, we aim to 
answer three questions: (1) Can fertility, i.e., presence of reproduc-
tive structures, be automatically detected from digitized specimens 
using deep learning? (2) Are the detection models generalizable to 
different herbarium data sets? and (3) Is it possible to finely auto-
matically record stages (i.e., phenophases) within longer phenolog-
ical events on herbarium specimens? To our knowledge, this is the 
first time that such an analysis has been conducted at this scale, on 
such a large number of herbarium specimens and species. A study 
at this taxonomic scale reveals the opportunities and limits of such 
an approach for large ecological studies, which are discussed in the 
following sections.

METHODS

Data sets

To evaluate our approach at different levels (in terms of information 
precision) and on different floras (from temperate to equatorial), 
four data sets of specimens from American herbaria were used in 
this study.

Three data sets consist of selected specimens from herbaria 
located in different geographic and environmental regions. Each 
specimen of these three data sets was annotated with the following 
fields: family, genus, species name, fertile/non- fertile, presence/
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absence of flower(s), and presence/absence of fruit(s). Based on 
a data curation pipeline, our resulting data set was composed of 
163,233 herbarium specimens belonging to 7782 species, 1906 
genera, and 236 families. Specimens were annotated as “fertile” 
if any reproductive structures were present, such as sporangia 
(ferns), cones (gymnosperms), flowers, or fruits (angiosperms). 
Non- fertile specimens were those that lacked any reproductive 
structures. Most herbarium specimens in this study were anno-
tated by herbarium assistants, curators, technicians, or other per-
sonnel responsible for digitizing specimen label data (e.g., trained 
undergraduate student workers), often long after the collection 
event. Collectors may have included the phenological status of 
the sampled plant or population on the specimen label or in the 
field notes used to create the label, in which case the digitization 
technician may have annotated the specimen record accordingly. 
More often than not, however, the digitization technician must de-
termine from the specimen whether reproductive structures are 
present. Occasionally, specimens are annotated after digitization, 
e.g., for specific research projects, in subsequent data quality steps, 
or with further identifications of the specimen. A detailed descrip-
tion of the herbarium specimen annotation process is provided in 
Appendix 1.

The fourth data set consists of 20,371 herbarium specimens from 
11 genera in the sunflower family (Asteraceae). These specimens 
were annotated by one co- author (K.D.P.) for a study of phenolog-
ical trends in the southeastern United States (Pearson, 2019a). The 
distinction of this data set from the other three data sets is that (1) it 
is annotated with fine- grained phenophase scores rather than pres-
ence/absence attributes (see description below), (2) it is annotated 
by one person only and not a diversity of persons distributed in 
different herbaria, and (3) all specimens were annotated from im-
ages of digitized specimens rather than from physical herbarium 
specimens or the wild plant.

Each of these data sets is described below and presented in 
Table 1:

• NEVP: This data set of specimens from the New England 
Vascular Plant (NEVP) project was produced by members of 
the Consortium of Northeastern Herbaria (http://neherbaria.
org/). The data set comprises 42,658 digitized specimens that 
belong to 1375 species and come from several North American 
institutions (listed in Appendix 2). Most of the specimens in this 
data set are from the north-temperate region of the northeastern 

United States. Figure 1 provides an illustration of the different 
phenological stages recorded for Tilia americana L. in this data 
set.

• FSU: This data set was produced by the Florida State 
University’s Robert K. Godfrey Herbarium (FSU; http://her-
barium.bio.fsu.edu/), a collection that focuses on northern 
Florida and the U.S. southeast coastal plain, one of North 
America’s biodiversity hotspots (Noss et al., 2015). This data 
set contains 54,263 digitized herbarium specimen records that 
belong to 3870 species, making it the taxonomically richest 
data set in this study. Most species in this data set grow under 
subtropical or warm temperate conditions in the southeastern 
United States.

• CAY: This data set comes from the Institut de Recherche pour le 
Développement’s (IRD) Herbarium of French Guiana (CAY; http://
herbier-guyane.ird.fr/). CAY is dedicated to the Guayana Shield 
flora, with a strong focus on tropical tree species. This data set is 
composed of 66,312 herbarium specimens that belong to 3024 spe-
cies. All digitized specimens of this herbarium are accessible online 
(http://publish.plantnet-project.org/project/caypub). Most speci-
mens were collected in the tropical rainforests of French Guiana, 
with the remaining specimens coming mostly from Suriname and 
Guyana.

• PHENO: This data set includes 20,371 herbarium specimens 
of 139 species in the Asteraceae produced in a study of pheno-
logical trends in the U.S. southeast coastal plain. The data set is 
composed of specimen records from 57 herbaria (Appendix 3). 
Each recorded specimen was annotated by K.D.P. for quartile 
percentages (0%, 25%, 50%, 75%, or 100%) of (1) closed buds, 
(2) buds transformed into flowers, and (3) fruits. According to 
the distribution of these three categories for each specimen, a 
phenophase code was computed. The method used to compute 
this code is provided in Table 2. Figure 2 provides an illustration 
of the nine phenophases recorded for Coreopsis gladiata Walter 
in this data set.

Evaluated deep learning framework

We considered each of our experiments as a classification task, 
and we focused on the use of convolutional neural networks 
(CNNs), which have been shown to considerably improve the 

TABLE 1. Description of data sets used on EXP1- Fertility, EXP2- Fl.Fr, and EXP3- Pheno.a

Full data set 
names

Data set 
acronyms

No. of herbarium 
specimens

Fertile 
proportion

Flower 
proportion

Fruit 
proportion

No. of 
families

No. of 
genera

No. of 
species

New England 
Vascular Plant 
specimens

NEVP 42,658 90.9% 64.9% 34.9% 16 340 1375

Florida State 
University’s 
Robert K. Godfrey 
Herbarium

FSU 54,263 92.7% 73.9% 55.2% 202 1189 3870

IRD Herbarium of 
Cayenne

CAY 66,312 79.4% 46.6% 35.1% 126 764 3024

Asteraceae 
phenophase 
data set

PHENO 20,994 100% NA NA 1 16 139

Note: IRD = Institut de Recherche pour le Développement; NA = not available.
aSee Appendices 2 and 3 for the lists of institutions contributing data to the NEVP and PHENO data sets.

http://neherbaria.org/
http://neherbaria.org/
http://herbarium.bio.fsu.edu/
http://herbarium.bio.fsu.edu/
http://herbier-guyane.ird.fr/
http://herbier-guyane.ird.fr/
http://publish.plantnet-project.org/project/caypub
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accuracy of automated visual classification of botanical data com-
pared to previous methods (Wäldchen and Mäder, 2018). The 
main strength of this technology is the ability to learn discrim-
inant visual features directly from the raw pixels of the images 
without being negatively impacted by the high dimensionality of 
the input data. Because the sizes of our data sets are relatively 
small for training these types of models (tens of thousands and 
hundreds of thousands compared to tens of millions usually re-
quired), we used transfer learning techniques (Shin et al., 2016) 
to improve our models.

We took a ResNet50 network (He et  al., 2016) pre- trained on 
tens of millions of images from the ImageNet data set (Deng et al., 
2009) and fine- tuned it on our data sets. ResNet50 was chosen be-
cause it is a state- of- the- art model, and it is widely used in image 
classification tasks. Moreover, pre- trained parameters can be eas-
ily found for most Deep Learning frameworks, in particular, for 
PyTorch (https://pytorch.org/), which we used for the experiments. 
Although the input image size of the original ResNet50 model was 
fixed to 224 × 224 pixels, herbarium specimens are usually digitized 
at high resolution to record fine visual information. To cope with 
the rectangular shape of these specimens and to preserve as much 
detail as possible, we adapted the ResNet50 model to use higher- 
resolution images. This is possible because the convolutional layers 
of the model are not constrained by the input image size; we can 
thus retain them while only modifying the final pooling layer to 
operate on all spatial dimensions and retraining the final classifi-
cation layer from scratch. Although the dimension of the images is 
increased, this modification does not change the number of param-
eters in the network. Details on this model adaptation are provided 
in Appendix 4.

We tested two resolutions: 400 × 250 pixels and 850 × 550 pix-
els, which are both significantly larger than the usual resolution of 
CNNs (in most cases less than 300 × 300 pixels). In the following 

TABLE  2. Phenophases assigned to specimens in the PHENO data set with 
percentages of reproductive structures on a specimen that are closed buds, 
flowers, and fruits.

Phenophase 
code

Phenophase 
description Distributiona

1 Specimen with 
unopened flowers

100% closed buds

2 Specimen mainly in 
buds

75% closed buds, 25% flowers, 
0% fruits

75% closed buds, 0% flowers, 
25% fruits

3 Specimen essentially in 
buds and flowers

50% closed buds, 50% flowers, 
0% fruits

4 Specimen mainly in 
buds and flowers

50% closed buds, 25% flowers, 
25% fruits

25% closed buds, 75% flowers, 
0% fruits

5 Specimen mainly in 
flowers

0% closed buds, 100% flowers, 
0% fruits

25% closed buds, 50% flowers, 
25% fruits

6 Specimen mainly in 
flowers and fruits

0% closed buds, 75% flowers, 
25% fruits

25% closed buds, 25% flowers, 
50% fruits

50% closed buds, 0% flowers, 
50% fruits

7 Specimen essentially in 
flowers and fruits

0% closed buds, 50% flowers, 
50% fruits

8 Specimen mainly in 
fruits

0% closed buds, 25% flowers, 
75% fruits

25% closed buds, 0% flowers, 
75% fruits

9 Specimen essentially 
in fruits

 0% closed buds, 0% flowers, 
100% fruits

aDistribution of closed buds, flowers, and fruit on the specimen.

FIGURE 1. Illustration of the different phenological stages of Tilia americana on the NEVP herbarium data set. (A) Non- fertile specimen, (B) specimen 
with open flowers, (C) specimen with ripe fruits.

A B C

https://pytorch.org/
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sections, we denote these resolutions as, respectively, ResNet50- 
Large and ResNet50- VeryLarge. To increase the volume and visual 
diversity of the training data set, we also performed data augmen-
tation by performing random horizontal and vertical flips and 
random rotations of ±45 degrees on the input images. Data aug-
mentation is a well- known strategy to improve the invariance of 
neural networks to acquisition conditions and improve their per-
formances. To choose the hyperparameters, we retained 10% of the 
training set for validation purposes only. A complete description of 
the fine- tuning procedure with all hyperparameters is provided in 
Appendix 5.

Description of experiments

Assessing performance of deep learning models—Three experi-
ments were conducted in this study to evaluate the performances 
of four different models for automated annotation of phenology on 
herbarium specimens. The first two experiments used the three her-
barium data sets (NEVP, FSU, CAY), and the last used the PHENO 
data set.

1. The first experiment (EXP1-Fertility) aimed to evaluate the 
capacity of the CNN to detect fertile material (i.e., specimens 
with reproductive structures present), based on the analy-
sis of three test sets (A, B, C). Test set A (Random-split) was 
a random set of herbarium specimens that were not used as 
training data of the CNN model but that belonged to species 
and collections represented in the training data. This test set 
of 13,415 specimens allowed us to evaluate a scenario in which 

one herbarium collection uses its annotated specimens to train 
a model that automatically annotates the un-annotated spec-
imens. Test set B (Species-split) was a selection of herbarium 
specimens belonging to species that were not present in the 
training data. For species selection, we first ordered species by 
decreasing number of herbarium specimens. We then selected 
from the full species list, one species out of 10, starting at the 
tenth. All specimens belonging to the species selected were 
used as test data. This test set of 14,539 specimens allowed us 
to evaluate a scenario in which the trained model must anno-
tate specimens belonging to species that were never used for 
the training phase. This is important to evaluate as herbarium 
collections regularly receive specimens of species that were not 
previously in their collections. Test set C (Herbarium-split) 
was a selection of herbarium specimens from nine herbaria 
(Boston University, Central Connecticut State University, 
Keene State College, New York Botanical Garden, University 
of Maine, University of Massachusetts, University of Rhode 
Island, University of Vermont, and Western Connecticut State 
University) of the NEVP data set that were not present in the 
training data. For herbaria selection, we first ordered them by 
decreasing number of herbarium specimens. We then selected 
one herbarium out of every two from the full herbaria list, 
starting at the second. All specimens belonging to the herbaria 
selected were used as test data. This test set of 14,540 speci-
mens enabled evaluation of trained model performance for en-
tirely new herbarium collections. Each collection has its own 
methodology for mounting plants (e.g., with particular glue 
or thread), as well as unique labels, annotations, imaging scale 

FIGURE 2. Illustration of the nine different phenophases of Coreopsis gladiata recorded in the PHENO data set.
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bars, and stamps, that can potentially influence annotation per-
formance. Test set size and percentage of fertile specimens are 
provided in Table 3.

2. The second experiment (EXP2-Fl.Fr) evaluated the automated 
detection of flowers and fruits on herbarium specimens of an-
giosperms for our three test sets (A, B, C). Gymnosperms and 
ferns have been excluded from this experiment. This experiment 
extends one step beyond the previous one in terms of informa-
tion precision, as it evaluated whether fertility is related to the 
presence of flower and/or fruit.

3. The third experiment (EXP3-Pheno) dealt with the automated 
phenophase evaluation, which involved a higher number of vi-
sual classes. The test set of this experiment consisted of a random 
sampling of 20% of the original PHENO data set (the remaining 
80% being used for training).

Data and models used and produced for this study are accessible 
on Zenodo (Lorieul, 2019; Lorieul et al., 2019), a free and open plat-
form for preserving and sharing research output.

Comparing model results to secondary manual annotation—To 
compare results obtained by our four trained models (i.e., two mod-
els for the first experiment, one model for the second experiment, 
and a last model for the third experiment) to human expertise, the 
co- author P.B., who had not previously been involved in annotat-
ing these data sets, manually annotated 100 herbarium specimens of 
each test set (a first subset of test set A used in EXP1- Fertility and in 
EXP2- Fl.Fr, a second subset from the test set used in EXP3- Pheno). 
For the first (EXP1- Fertility) and second (EXP2- Fl.Fr)  experiments, 
100 herbarium specimens were randomly selected from test set A 
with a proportion of 25% of specimens from the four different cate-
gories: (a) true positives (i.e., with flower and/or fruit and correctly 
annotated by our model), (b) true negatives (i.e., without flower 
and/or fruit and correctly annotated by our model), (c) false pos-
itives (i.e., without flower and/or fruit and wrongly annotated by 
our model), and (d) false negatives (i.e., with flower and/or fruit and 
wrongly annotated by our model). The subset of specimens chosen 
for secondary manual annotation was potentially highly difficult to 
annotate by visual analysis of digitized specimens for a human, as it 
contains 50% wrongly annotated specimens by our model (catego-
ries c and d), and it was designed with such proportions in order to 
particularly inspect cases of automated annotation errors. For the 
third experiment (EXP3- Pheno), 100 specimens randomly sampled 

from the test set were annotated by P.B., who did not use external 
resources to code phenophases.

RESULTS

Assessing performance of deep learning models

Results from the three experiments are provided in Tables 3, 4, 5, 
6, and 7. Results of EXP1- Fertility, presented in Table 3, show high 
performance for the correct detection of fertile material. Regardless 
of the strategy used to produce the three test sets, all achieved at least 
92% correct detection. Performance of the models decreased from 
test set A (Random- split) to test set B (Species- split) and test set C 
(Herbarium- split), but the performance gap between the three test 
sets is small, with, respectively, 1.7% and 4.3% difference between 
the best and worst performing ResNet50- Large and ResNet50- 
VeryLarge models. In addition, use of the ResNet50- VeryLarge 
model slightly increased the number of correct detections for test 
sets A and B compared to ResNet50- Large.

The two models (i.e., ResNet50- Large and ResNet50- VeryLarge) 
showed distinct performances with each of the three test sets. 
Figure 3 shows the receiver operating characteristic (ROC) curves 
obtained for ResNet50- Large (Fig.  3A) and ResNet50- VeryLarge 
(Fig. 3B). At a false positive rate of 5%, the ResNet50- Large model 
achieved a true positive rate of 80.3%, and the ResNet50- VeryLarge 
model a true positive rate of 89.6%. At a false positive rate of 1%, 
the true positive rates of these models were 45.7% and 64.0%, re-
spectively. These results highlight the importance of using higher- 
resolution images for such tasks. Due to better performance of the 
ResNet50- VeryLarge model, results provided in the remainder of 
this article (EXP2- Fl.Fr and EXP3- Pheno) are based on this model 
architecture.

Results from test set A for angiosperms, gymnosperms, and 
ferns are provided in Table 4. Despite a low number of training im-
ages, the model achieved high performance with gymnosperms and 
ferns, with 100% and 95.7% correct detection, respectively. Figure 4 
shows results from test set A for the NEVP, FSU, and CAY data sets. 
Detection of reproductive structures was more effective on speci-
mens from the CAY data set than on specimens from NEVP and 
FSU. This can probably be explained by a combination of com-
plementary factors such as: (1) a higher number of specimens per 
species in the CAY data set than the FSU data set (with a mean of 
21 specimens per species in CAY and 14 specimens per species in 
FSU), and (2) highly visible reproductive structures of tropical and 
equatorial species compared to flowers and fruits of temperate spe-
cies in the NEVP data set.

Regardless of the test set used, results of EXP2- Fl.Fr (Table 5) 
show correct detection of the presence of flowers and fruits in more 
than 81.0% of cases for flowers and 76.6% for fruits. Flower detec-
tion was more efficient than fruit detection in the three test sets as 
shown in the ROC curves of Figure 5. It must be noted that there 
is a higher proportion of specimens with flowers than fruits in the 
training data as shown in Table 5. The model had more data to cap-
ture the concept of flower than fruit, resulting in lower fruit detec-
tion accuracy.

Results from the fine- grained phenology annotation (Table 6) 
conducted in EXP3- Pheno show that correct fine- grained classi-
fication accuracy is obtained in 43.4% of cases. This capacity in-
creases to 69% for coarse classification accuracy. It is interesting 

TABLE  3. Data distribution and results of the fertility detection accuracy 
obtained in EXP1- Fertility.a

Evaluated 
modelsb Training set Test set A Test set B Test set C

Data set size 120,739 13,415 14,539 14,540
Percentage of 

fertile specimens
86.4% 86.2% 87.4% 91.1%

ResNet50- Large 
(400 × 250 pixels)

— 94.9% 93.6% 93.2%

ResNet50- 
VeryLarge (800 × 
550 pixels)

— 96.3% 95.2% 92.0%

aTest set A = Random- split, test set B = Species- split (747 species), test set C = Herbarium- 
split (nine NEVP herbaria).

bDefault image size 900 × 600 pixels.
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to see that the best classification accuracy is provided for classes 
1, 5, and 9, which correspond to all buds, peak flowering, and all 
fruit phenophases, respectively (Table 7). When we examine error 
distributions of these classifications (Fig. 6), we see that consis-
tent classifications are obtained in 67.1% of cases with one class of 
error and in 81.7% of cases with two classes of error. The confu-
sion matrix (Fig. 7) shows the most common confusions between 
phenophases. Phenophases 4 and 6 are the least well predicted. 
This is most likely related to the fact that they are the least com-
mon in the training data set, and they are visually very similar to 
phenophase 5. Indeed, these two phenophases have a potentially 
high percentage of flowering structures (more than 75%), whereas 
specimens of phenophase 5 have between 50% and 100% of their 
buds in flower. These three phenophases (i.e., phenophases 4, 5, 6) 
are also the only ones to combine (at different percentages) pres-
ence of buds, flowers, and fruits on the same specimens. All other 
categories involve specimens with a combination of two different 
reproductive attributes only (buds and flowers, buds and fruits, or 
flowers and fruits). For these reasons, most specimens of pheno-
phases 4 and 6 could be easily mistaken as phenophase 5 by the 
model.

Comparing model results to secondary manual annotation

The re- annotation of 100 herbarium specimens of test set A from 
images of specimens resulted in 80% accuracy with original phe-
nological annotations. We emphasize that this test subset is focused 

on some of the most difficult specimens to annotate, as 50% of them 
were wrongly annotated by our ResNet50- VeryLarge model. The 
global accuracy of P.B. on the whole test set (87.8%) is computed 
using the average of the accuracy on each subset (categories a, b, 
c, d) weighted by their proportion in the whole test set. Accuracies 
for each category, overall accuracies on the test subset, and whole 
accuracies obtained by P.B. and the ResNet50- VeryLarge model are 
provided in Table 8. Based on these results, we see that: (1) the re-
production of the original annotations was difficult for a human ob-
server, and (2) the computation of the whole accuracy of the human 

TABLE 4. Distribution of angiosperms, ferns, and gymnosperms in the data sets used for experiment EXP1- Fertility and results of the fertility detection accuracy 
obtained in that experiment for test set A (Random- split).

Evaluated clades

Data distribution
Fertility detection 

accuracy

Whole data set Training set Test set A Test set B Test set C Test set A

Angiosperms 91.47% 90.99% 90.49% 87.8% 100% 96.3%
Ferns and allies 8.51% 8.98% 9.47% 12.2% 0 95.7%
Gymnosperms 0.02% 0.03% 0.04% 0 0 100%

TABLE 5. Data distribution and results of the flower and fruit detection accuracy obtained in EXP2- Fl.Fr.

Evaluated models Training set Test set A (Random- split) Test set B (Species- split) Test set C (Herbarium- split)

Data set size 109,467 12,095 12,723 14,066
Percentage of specimens in 

flower
60.9% 60.6% 62.5% 68.5%

Percentage of specimens in fruit 43.3% 43.4% 44.9% 32.5%
ResNet50- flowers — 84.3% 81.0% 87.0%
ResNet50- fruits — 80.5% 76.6% 79.6%

TABLE 6. Data distribution and results of the phenophase detection accuracy obtained in EXP3- Pheno. Coarse classification accuracy is computed based on grouping 
phenophase categories by 3.

Evaluated 
model

Training set 
size (No. of 

images)

Test set 
size (No. of 

images)

Fine- grained 
classification 

accuracy

Coarse 
classification 

accuracy

Accuracy 
when 

tolerating 
a [±1] error 

range

Accuracy 
when 

tolerating 
a [±2] error 

range
Fine- grained 

mean L1 error
Coarse mean 

L1 error

ResNet50- 
Pheno

16,298 4073 43.4% 69.0% 67.1% 82.8% 1.35 0.37

TABLE 7. Data distribution and results of the phenophase detection accuracy 
obtained in EXP3- Pheno, per phenophase categories.

Phenophase

Data 
distribution 

in the training 
data seta

Data distribution 
in the test data 

seta
Classification 

accuracy

1 10.4% 10.4% 74.8%
2 7.6% 7.5% 24.4%
3 9.5% 9.5% 27.9%
4 7.1% 7.2% 8.6%
5 17.3% 17.2% 60.8%
6 7.2% 7.2% 6.8%
7 10.5% 10.6% 18.8%
8 10.5% 10.5% 18.0%
9 19.9% 19.9% 78.9%

aHuman annotated.
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observer (87%) shows a lower accuracy than that of the ResNet50- 
VeryLarge model (96.3%).

The fact that the human observer (co- author P.B.) did not 
achieve 100% accuracy on the subset of the 100 specimens of test 
set A can be explained by one of the following cases:

Case 1: Some specimens (6%) annotated as “fertile” in the original 
annotation were annotated as “non-fertile” by P.B. because no repro-
ductive structures were visible on the digitized specimen. This could 
be because (a) the original annotation was based on label text, which 
may indicate a state different from the specimen duplicate (e.g., the 
population or some of the specimen duplicates had reproductive 
material, but the particular duplicate examined did not), or (b) the 
flowers or fruits had disappeared during specimen manipulation/
preparation (e.g., fallen off, been hidden from view in a fragment 
folder glued to the specimen, or been obscured by large leaves).
Case 2: Some specimens (6%) with closed reproductive buds were 
annotated “fertile” by P.B. but were annotated as “non-fertile” by the 
original annotator.
Case 3: Some specimens (5%) described as “non-fertile” by the 
original annotator were correctly detected as fertile by P.B.
Case 4: Some specimens (2%) were described as “fertile” on the 
label of the herbarium sheet and annotated as “fertile” by P.B., but 
they were annotated as “non-fertile” by the original observer.
Case 5: One fertile specimen was not detected by P.B., due to the 
small size of the reproductive structures.

Cases 1 and 2 particularly highlight the fact that original an-
notations produced by the collectors, herbarium assistants, or 
digitization technicians can be different from annotations pro-
duced by the visual analysis of digitized specimens, even if all of 
them correctly followed a strict procedure. Case 1 is intrinsically 
related to herbarium management practices (that try to protect 
reproductive structures as much as possible, sometimes by hiding 
them in a folder), while case 2 is more related to definition and 
perception of the “fertile stage” on a plant specimen, which is 
sometimes hard to define, as reproductive structures are a contin-
uum from tiny, closed buds to large, obvious fruits.

It is noteworthy that five of the six herbarium specimens anno-
tated as “non- fertile” by P.B. because no reproductive structures 

were visible (case 1) were similarly annotated by our trained model. 
Likewise, four of the five herbarium specimens annotated as “fer-
tile” by P.B. in contrast to the incorrect original annotation (case 3) 
were annotated similarly by the trained model. This illustrates the 
potential of this technology to potentially detect incorrect annota-
tions in herbarium databases. It should be noted that even if P.B. 
achieved 80% accuracy, the error rate in the original annotations 
of the very difficult subset of test set A is only 7% (cases 1, 2, and 5 
cannot be considered as errors).

Human annotations of 100 randomly selected specimens from 
the PHENO test set by P.B., a non- expert of that flora, offered com-
plementary results. This secondary annotator achieved 42% and 
68% accuracy with the original annotations with zero and one class 
of error, respectively. These results, very close to our trained model, 
highlight the difficulty of the task for a non- expert who has not 
been trained on a particular taxonomic group, as well as the high 
likelihood for error when annotating specimens for fine- scale phe-
nological stages. More than 70% of inconsistent annotations from 
our model were also wrongly annotated by the secondary annota-
tor. More than 25% of these errors were exactly the same and were 
mostly within one class of difference from the original annotation.

FIGURE 3. Fertility receiver operating characteristic (ROC) curves for EXP1- Fertility, with ResNet50- Large (A) and ResNet50- VeryLarge (B). Blue = test 
set A (Random- split); orange = test set B (Species- split); green = test set C (Herbarium- split); red stars = percentage of fertile specimens correctly de-
tected at a false positive rate of 5%; black stars = percentage of fertile specimens correctly detected at a false positive rate of 1%.

A B

FIGURE  4. Fertility receiver operating characteristic (ROC) curves for 
EXP1- Fertility, with ResNet50- VeryLarge.
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DISCUSSION

These experiments clearly demonstrate the potential of 
deep learning technologies for automating phenological 
annotation of herbarium specimens. These promising re-
sults obtained for 7782 species of plants representing angio-
sperms, gymnosperms, and ferns suggest that it is possible to  
consider large- scale phenological annotation across broad 
phylogenetic groups. Results obtained for the fertility detec-
tion experiment (EXP1- Fertility, 96.3% consistent annota-
tions) and for the flower and fruit experiments (EXP2- Fl.Fr,  
84.3% consistency for flower annotations and 80.9% for fruit an-
notations) are similar for the different test sets examined. This 
is encouraging, as it confirms that in the case of the results for 
test set B, trained CNNs are able to recognize visual features that 
illustrate fertility on plants, even if they are not learned on the 
same species in the training and testing data sets. As most herbar-
ium data sets present a long tail distribution of their data (with 
most species represented by a small number of specimens), it is 
important to confirm high capacity of correct annotations even 
for rare species for which training data are often not available.

It is interesting and perhaps surprising that the models were 
more successful at detecting specimens with flowers present than 
specimens with fruit present. This result may be explained by sev-
eral potential factors: (1) flowers can be more conspicuous because 
of their lighter colors, compared to dry fruits which are often 
darker than or a similar color to leaves or stems; (2) for a particu-
lar species, numbers of flowers on an inflorescence may be greater 
than the number of fruits, as several flowers can abort before de-
veloping into fruits; (3) mature fruits are often less well attached to 
the rest of the plant compared to flowers and can thus be easily lost 
during specimen preparation or handling; and (4) less data were 
available for the training phase of the fruit detection task than for 
the flower detection task.

Considering the difficulty of the task, the good performances 
achieved by models using data set C (Herbarium- split) indicate 
that new data sets coming from herbaria that were not in the train-
ing data set can still be correctly annotated for phenology. Because 
managing conditions, specimen preparations, digitization parame-
ters, and taxonomic annotations can vary considerably among dif-
ferent herbaria, this result is promising.

The similar results on the three different data sets (NEVP, FSU, 
and CAY) representing three distinct American floras demonstrate 
that our approach can be efficient for diverse plant groups from dif-
ferent environments and habitats and with highly distinct morphol-
ogies. The efficiency among the three studied clades (angiosperms, 
gymnosperms, and ferns) is also of great importance, demonstrat-
ing that this approach is effective on distant clades with highly dis-
similar reproductive structures.

The work with complementary annotations provided by P.B. 
on a subset of test set A has highlighted the difficulty of the task 
for some of the most difficult specimens. Indeed, fertility is ex-
pressed by a wide variety of reproductive structures in terms of 
size, shape, color, etc. Furthermore, these reproductive structures 
are in continuous development and can be very inconspicuous at 
some development stages, as illustrated in Figure 8. Detection of 
fertility, in these cases, can be very difficult without the real spec-
imen in hand. Because of the broad taxonomic coverage of the 
data analyzed, there are likely several taxa in the data set to which 
these circumstances apply.

The development of these technologies and their capacities to 
work on larger image sizes will undoubtedly benefit the herbar-
ium, taxonomic, and research communities, as herbarium images 

FIGURE 5. Flower detection (A) and fruit detection (B) receiver operating characteristic (ROC) curves for EXP2- Fl.Fr, with ResNet50- VeryLarge. Blue = 
test set A (Random- split); orange = test set B (Species- split); green = test set C (Herbarium- split).

A B

FIGURE 6. L1 error cumulative distribution for phenophase detection 
experiment (EXP3- Pheno) using the PHENO data set.
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are usually digitized and stored at very high resolution to per-
mit investigation of small botanical characters. One strategy that 
could be explored to improve model performances is taking into 
account several different windows on each herbarium specimen, 
as CNNs are actually far from able to function at the original 
size of herbarium images. A complementary strategy could be to 
train models using complementary large, annotated data sets of 
observations of living plants in the field, which are now largely 
produced by networks of field botanists and/or amateur natural-
ists (e.g., iNaturalist or Pl@ntNet [Joly et al., 2016] networks), to 
enrich CNNs with specific images of fertile material. This work 
could open the door to new avenues of citizen science initia-
tives, such as annotation of phenological stages of living plants. 
Furthermore, as multimedia data streams are now much more 
easily produced by, e.g., drones equipped with cameras, such au-
tomated tasks could offer new opportunities for production of 
large volumes of phenological data.

The adoption of these automated techniques by collection man-
agers, particularly within the framework of the established Plant 
Phenology Ontology (Brenskelle et al., 2019), could make it possible 

to (1) pre- annotate large volumes of herbarium 
specimens that have not yet been annotated, 
which could then be revised by collaborative 
approaches; (2) have a standardized method-
ology that avoids bias related to expertise and 
perception variability of annotators; (3) use 
pre- annotated herbarium specimens for pheno-
logical studies at large scales that would not be 
possible with human investment alone; and (4) 
identify and correct annotation mistakes made 
by human annotators.

The work on automated fine- scale pheno-
phase detection was carried out on species 
of Asteraceae, a group usually known for its 
small flowers and fruits, which cannot be 
easily detected on several specimens (as il-
lustrated in Fig. 2). Such work on other plant 
families with more typical flowers and/or 
fruits (such as Fabaceae, Rosaceae, Rutaceae, 
and Bignoniaceae) could be informative as 
we can presume a stronger capacity of this 
approach to correctly detect fine phenolog-
ical stages in these taxa. Other large herba-
ceous groups, such as Lamiaceae, Poaceae, 
or Cyperaceae, with completely different 
morphological attributes during their phe-
nological cycles would also be interesting to 
evaluate using our model. The evaluation of 
the robustness of this fine- grained phenolog-
ical classification model on tree species could 
also be informative, as it could significantly 

improve the capacity to study forest phenological cycles. Pearson 
(2019b) and Ellwood et al. (2019) demonstrate that fine- scale phe-
nophases result in models that are more robust, yet without the 
use of a CNN annotating specimens for fine- scale phenophases is a 
resource- intensive task that is not likely to be broadly embraced. A 
possible way to improve performances of the model that we trained 
for phenophase detection, especially with an eye to research that 
is dependent on fine- scale phenophases, could be to take into ac-
count the order of the phenophases and develop a potential count-
ing system in the trained models. These are some of the strategies 
that will be investigated in our future work.

The work presented here opens the door for the adaptation of 
similar approaches to other detection and annotation tasks on 
botanical material such as (1) counting reproductive structures 
(e.g., flowers, inflorescences, leaves, fruits), especially in agricul-
tural contexts for yield evaluation; (2) pathology detection (for 
plant pathologists interested in investigating disease on herbar-
ium specimens, e.g., Meineke et  al., 2018); and (3) annotation 
of morphological features of specimens, e.g., for rapid selection 
by professional taxonomists. New and enriched visual botanical 

FIGURE  7. Row- wise normalized confusion matrix of phenophase classification experiment 
(EXP3- Pheno) using the PHENO data set.

TABLE 8. Comparison of model accuracy with human annotations based on the re- annotation of 100 herbarium specimens of test set A of EXP1- Fertility.a

Annotation types
True positive 

subset accuracy
False positive 

subset accuracy
True negative 

subset accuracy
False negative 

subset accuracy
Overall accuracy on 

these subsets
Global accuracy 

on test set A

ResNet50- VeryLarge 100.0% 0.0% 100.0% 0.0% 50.0% 96.3%
Human annotationb 88.0% 68.0% 88.0% 76.0% 80.0% 87.8%

aThe global accuracy on the whole test set is computed using the average of the accuracy on each subset weighted by their proportion in the whole test set, i.e., 84.1%, 1.7%, 12.2%, and 
2.0%, respectively, for the true positive, false positive, true negative, and false negative subsets.

bAnnotations were made by co- author P.B.
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data sets will undoubtedly contribute to progress on these chal-
lenges and will stimulate stronger exchanges between biological 
and computational sciences.
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APPENDIX 1. Details of the herbarium specimen annotation process.

Data collected on herbarium specimens in this study were obtained 
according to the following method:

1. Plant specimens were collected in the field by a collector, who 
recorded information on the collecting location, date, and po-
tential scientific name of the specimen. Additionally, a collector 
may have recorded a description of the environment in which 
the plant was growing and possibly a description of the plant 
specimen itself, including details about the plant’s reproductive 
condition. In common botanical practice, a plant specimen is 
considered a gathering, or part of a gathering, of a single species 
or infraspecific taxon made at one time by a particular collector 
at a particular place. Thus, a specimen may consist of multiple 
individuals of the same taxon (each of these samples is called a 
“specimen duplicate”). In such cases, it is important to remember 
that the data provided by the collector are not necessarily a de-
scription of an individual specimen duplicate. This can result in a 
difference between the description on the specimen label and the 
visible information on the specimen duplicate in the herbarium.

2. Collector sends his specimens to one or several herbaria, accompa-
nied by a label with the collector-provided data mentioned above.
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3. Physical specimens are mounted on herbarium sheets with 
a herbarium label. Information from the herbarium label is 
then transcribed by herbarium personnel into an electronic 
 database. In some workflows, details about the reproduc-
tive condition reported on the label are recorded (e.g., into 
a specific field or into a field containing the entire plant 
description).

4. The specimen-level information recorded in the herbarium da-
tabase system can be updated when the herbarium specimen 
or image of the specimen is studied after its initial preparation. 
These updates can include annotations related to identification 
(based on opinions of experts who have analyzed the specimen). 
Annotations related to the reproductive condition of the spec-
imens can also be performed if, for example, that information 
was not provided on the label or was not recorded in the initial 
database transcription step. In some rare cases, an annotation 
may report that a herbarium specimen is without reproductive 
structures, while the label notes that plant was observed in the 
field with reproductive attributes. This second example can be 
understood by several possibilities: (1) the collector was not able 
to collect a fertile part of the plant (e.g., the fertile material was 
too high or too far from the collector, which can be often the 
case in tropical forests), (2) not all of the duplicates have fertile 
material, or (3) flowers and fruits can be fragile and become sep-
arated from the specimen when specimens are old or frequently 
manipulated.

5. Our data are based on the most recent annotations present in 
institutional herbarium data management systems or in collab-
orative data sharing portals (e.g., in the case of NEVP). These 
annotations are not necessarily produced by the collector, but by 
various trained herbarium personnel.

APPENDIX 2. List of institutions contributing data to the NEVP phenology 
data set. Institution abbreviations are according to Index Herbariorum 
(Thiers, 2016).

Institution namesa Institution codes

Arnold Arboretum, Harvard University A
Bartlett Arboretum BART
Boston University BSN
Brown University BRU
Connecticut Botanical Society NCBS
Central Connecticut State University CCSU
Connecticut College CCNL
University of Connecticut CONN
Economic Herbarium of Oakes Ames, 

Harvard University
ECON

Farlow Herbarium, Harvard University FH
Gray Herbarium, Harvard University GH
Keene State College KESC
New York Botanical Garden NY
New England Botanical Club NEBC
Rutgers University CHRB
University of Maine MAINE
University of Massachusetts MASS
University of New Hampshire NHA
University of Rhode Island KIRI
University of Vermont VT

Institution namesa Institution codes

Western Connecticut State University WCSU
Westfield State University WSCH
Wilton Garden Club WGCH
Yale Peabody Museum of Natural History, 

Yale University
YU

aAll institutions are located in the United States.

APPENDIX 3. List of institutions contributing data to the PHENO data set. 
Institution abbreviations are according to Index Herbariorum (Thiers, 2016).

Institution namesa Institution codes

Archbold Biological Station ARCH
Arizona State University ASU
Ohio University BHO
Centre County Historical Society CCHS
The College of Idaho CIC
Central Michigan University CMC
University of Connecticut CONN
Converse College CONV
Denver Botanic Gardens DBG
Desert Botanical Garden DES
Eastern Illinois University EIU
The Ronald L. Jones Herbarium EKY
Eastern Michigan University EMC
Florida Museum of Natural History FLAS
Florida State University FSU
University of Georgia GA
Gray Herbarium, Harvard University GH
Georgia Southwestern State 

University
GSW

Hope College HCHM
Portland State University HPSU
University of Idaho ID
Idaho State University IDS
University of Illinois ILL
Illinois Natural History Survey, Illinois 

Dept. of Natural Resources
ILLS

Keene State College KESC
University of Rhode Island KIRI
Louisiana State University LSU
University of Michigan MICH
University of Minnesota MIN
University of Mississippi MISS
Mississippi State University MISSA
Missouri Botanical Garden MO
Morton Arboretum, Illinois MOR
Marshall University MUHW
North Carolina State University NCSC
University of North Carolina at Chapel 

Hill
NCU

Natural History Museum of United 
Kingdom

NHMUK

New York Botanical Garden NY
Marie Selby Botanical Gardens SEL
Boise State University SRP
Troy University  TROY
Tall Timbers Research Station TTRS
James F. Matthews Center for 

Biodiversity Studies
UNCC

(Continues)(Continues)
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Institution namesa Institution codes

University of New Mexico UNM
Smithsonian Institution US
University of South Carolina USCH
University of South Carolina Upstate USCS
University of South Florida USF
University of Southern Mississippi USMS
Intermountain Herbarium, Utah State 

University
USU

University of West Florida UWFP
University of Wisconsin–La Crosse UWL
University of Wisconsin–Milwaukee UWM
Valdosta State University VSC
Western Carolina University WCUH
Whitman College WCW
University of Wisconsin–Madison WIS

aAll institutions are located in the United States.

APPENDIX 4. Details of the ResNet50 adaptation to larger image size.

Like most image classification architectures, the original ResNet50 
model consists mainly of a succession of convolution layers followed 
by a spatial pooling and a final fully connected layer. The convolu-
tion layers act as visual feature extractors, the pooling layer removes 
the residual spatial information, and the fully connected layer per-
forms the final classification in the new feature space. Unlike this 
final layer, the convolution layers are agnostic to the spatial extent of 
their inputs. However, in transfer learning, the final fully connected 
layer is learned from scratch because it is specific to each task. Thus, 
to adapt the ResNet50 architecture to larger image size, we modified 
the spatial pooling layer in order to perform this pooling operation 
in the total spatial extent, which has increased due to the new im-
age size. By doing so, we kept the input size of the fully connected 
layer the same as the original model while being able to exploit finer 
details in the images. Such a modification can be applied to many 
other architectures and is not limited to ResNet50.

APPENDIX 5. Details of the fine- tuning procedure.

Instead of initializing the parameters with random values, we 
used the pre- trained weights available from PyTorch’s model zoo. 
We then fine- tuned this model on our data sets by optimizing the 

binary cross- entropy for EXP1- Fertility and EXP2- Fl.Fr and the 
multinomial cross- entropy for EXP3- Pheno. As optimizer, we used 
stochastic gradient descent (SGD) with momentum. We kept 10% 
of the training data to build a validation set that was then used to 
choose the values of the hyperparameters of SGD. We detail these 
values in the next paragraph.

For every experiment, we used a fixed learning rate decay: 
the initial learning rate value was divided by 10 at one- third and 
two- thirds of the training. Nesterov’s momentum was used with 
a value of 0.9. No weight decay was performed. The values of the 
initial learning rate, the batch size, and the number of epochs were 
different depending on the experiment. Details of these values are 
provided in Table A5-1.

The gap in batch size between ResNet50- Large and ResNet50-
VeryLarge was mainly due to memory restrictions of the graphics 
processing units (GPUs). Indeed, although using higher- resolution 
images does not impact the number of parameters in the model, it 
did result in more activations being computed during training: four 
times more memory was needed for ResNet50- VeryLarge than for 
ResNet50- Large. The difference in number of epochs was explained 
by the fact that EXP3- Pheno has fewer images than EXP1- Fertility and 
EXP2- Fl.Fr.

Before being fed to the model, for ResNet50- Large, the images 
were resized to 450 × 300 pixels (approximately, because their ratio 
was preserved), and they were cropped according to a centered 
rectangle of 400 × 250 pixels. Similarly, for ResNet50- VeryLarge, 
they were approximately resized to 900 × 600 pixels and cropped 
down to 850 × 550 pixels. Moreover, data augmentation was used 
by performing random horizontal and vertical flips and random 
rotations of ±45 degrees on the input images during training.

TABLE A5-1. Values of the initial learning rate, the batch size, and the number 
of epochs for each experiment.

Experiment
Initial learning 

rate Batch size No. of epochs

EXP1- Fertility 
ResNet50- Large

0.001 48 45

EXP1- Fertility 
ResNet50- VeryLarge

0.001 12 45

EXP2- Fl.Fr 
ResNet50- VeryLarge

0.01 12 45

EXP3- Pheno 
ResNet50- VeryLarge

0.001 8 30
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