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Roots provide basic functions to plants such as water and nutrient uptake and anchoring in soil. The growth
and development of root systems contribute to colonizing the surrounding soil and optimizing the access to
resources. It is generally known that the variability of plant root architecture results from the combination of
genetic, physiological, and environmental factors, in particular soil mechanical resistance. However, this last
factor has never been investigated at the soil grain scale for roots. In this paper, we are interested in the effect of
the disordered texture of granular soils on the evolution of forces experienced by the root cap during its growth.
We introduce a numerical model in which the root is modeled as a flexible self-elongating tube that probes a
soil composed of solid particles. By means of extensive simulations, we show that the forces exerted on the root
cap reflect interparticle force chains. Our simulations also show that the mean force declines exponentially with
root flexibility, the highest force corresponding to the soil hardness. Furthermore, we find that this functional
dependence is characterized by a single dimensionless parameter that combines granular structure and root
bending stiffness. This finding will be useful to further address the biological issues of mechanosensing and
thigmomorphogenesis in plant roots.

DOI: 10.1103/PhysRevE.99.042903

I. INTRODUCTION

The plant-root system displays two main functions essen-
tial for plant growth, which are mechanical anchoring and
water and nutrient uptake [1,2]. Root growth and develop-
ment, including branching, allow the plant to explore and
colonize the surrounding soil and optimizing the access to
resources. These processes are driven by genetic, biotic, and
abiotic factors. The observed variability of root architecture,
defined as the evolution of the root system geometry and
topology, can consequently result from the combination of en-
dogenous instabilities [3] and environmental heterogeneities.
Gravitropism, i.e., the growth response of plants to gravity, is
also an important aspect of a root’s design [4]. The local effect
of water and nutrient content on root growth and branching
has been investigated by several authors [5–8]. Some of them
used numerical process-based models to analyze and quantify
water flows within a root-soil domain at the root and plant
scales [9–11].

It is well known that the soil mechanical impedance (in
the sense of resistance to penetration) is also an important
factor that can affect root growth and hence crop productivity
[12]. Experimental studies have been carried out in order to
characterize and quantify this mechanical impact in different
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soil types at the level of a single root [13–15] or at the plant
scale [16,17], sometimes considering the combined effects of
soil strength and water content on the development and an-
chorage of roots [18,19]. Some of these studies [20,21] were
supported by numerical simulations using the finite-element
method where the soil was simplified as a continuous domain
[22]. Such simulation approaches are, however, not able to
capture grain-scale effects that can have significant effects
on root growth trajectory and root physiological responses.
The integration of such small-scale phenomena at the level of
the whole root system can partly explain their architectural
variability.

Representing the complex interactions between a single
growing root and soil deformation requires a grain-scale ap-
proach where the inhomogeneous texture of the soil can be
explicitly described. The packing fraction (volume fraction
of particles) and interstitial pore distribution may influence
the root growth via their effects on force transmission, soil
strength, aeration, and hydraulic permeability [5,6,23,24]. The
packing texture determines the maximum pressure exerted on
the root [25]. This value should be compared with threshold
pressures associated to particular physiological responses,
e.g., trajectory deviation due to an active movement of the root
(tropism) or full arrest of the root elongation [25–28].

In the same way, the frictional resistance to sliding in-
creases the overall resistance of the soil to penetration, mak-
ing the root-soil friction angle an important parameter [20].
Conversely, depending on the root flexibility and diameter,
the growth of a root inside a granular soil tends to modify
the soil texture. Bengough et al. [29] studied the effect of a
growing root on the particle displacements within a sandbox
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by means of the particle image velocimetry technique. They
found that the displacements decrease with distance from the
root over a long distance. Hence, the presence of growing
roots or dead roots inside a soil affects the growth conditions
of each root via their footprint on the packing fraction and
pore distributions.

The force that a root must exert to penetrate the soil can
be measured at the radicle initiation by measuring the force
exerted on the seed [30,31]. Once the root has penetrated a
distance about 3 times its diameter into soil, it gets anchored
and therefore the force transmitted back from the tip along
the root to the seed is no longer equal to the force required
to penetrate the soil [32,33]. Attempts to measure the force
acting at the root tip have been made in the laboratory in order
to evaluate the maximum growth pressure for different root
species [28,34,35]. The radial growth pressure has also been
investigated by means of photoelastic grains [14]. However,
such measurements are difficult or even impossible to perform
in larger-scale experiments or natural conditions.

At the grain scale, the root cap interacts with the highly
inhomogeneous texture of the soil. A flexible and narrow
root may easily explore the pore space without being able to
dislodge the grains equilibrated by the normal and frictional
forces exerted by their neighboring grains. But there is always
a large number of grains that are subjected to weak forces and
belong to what has come to be known as the “weak force
network” [36,37]. As the root rigidity increases, the force
necessary to bend a root during its growth may overcome
large interparticle forces and the strong force chains observed
in granular materials [38–42]. Hence, for understanding the
effect of soil inhomogeneity on the root growth and architec-
ture, a key issue is to determine how the interparticle forces
and force chains are reflected in the forces experienced by the
root cap.

In this paper, we investigate the distribution and evolution
of forces exerted by soil grains on a root modeled as a
self-elongating elastic tube of constant thickness. Active apex
movements such as gravitropism or other deviations due to
anisotropic cell growth are not considered here, i.e., the root
path is only driven by external forces exerted by the surround-
ing grains. This choice was made in order to dissociate the
external mechanical component from the biological compo-
nent of root trajectory. The modeling framework is the discrete
element method (DEM) in which the soil is represented by a
granular material composed of rigid grains [43–46]. The root
is characterized by its longitudinal, tangential, and bending
stiffnesses, as well as its diameter and growth rate. We con-
sider different values of the root bending stiffness and granular
samples of different values of packing fraction and particle
size distribution. As we shall see, the root-particle interaction
force has a well-defined probability density, and the mean
force normalized by the hardness of the granular material is
governed by a robust scaling as a function of the root bending
stiffness.

In the following, we first describe the root model and
numerical procedures in Sec. II. In Sec. III, we analyze the
probability density function of the forces exerted on the root
cap. Section IV presents the evolution of the mean force with
root flexibility. Then, in Sec. V, we consider the effects of soil
properties such as packing fraction and cohesive stresses on

the mean force. We conclude in Sec. VI with a summary of
the main findings of this work and a brief discussion of its
possible extensions.

II. NUMERICAL MODEL AND PROCEDURES

The general modeling framework for particle dynamics
applied to a collection of solid particles is the DEM [43,44].
In this method, the particle motions are computed by stepwise
integration of the equations of motion for all particles by
accounting for their frictional contact interactions and the
gravity and boundary forces. We use the same framework
to model the root, defined as a flexible tube represented by
an array of segments interconnected by linear springs and
growing as a result of its continuous elongation. The general
numerical model and simulations are in two dimensions as the
root growth requires long-time simulations and we need to
perform a large number of independent simulations in order
to be able to assess the variability of the results and the effect
of system parameters. We present below in more detail the
particle interactions and our root model.

The soil particles are two-dimensional (2D) disks inter-
acting via a reaction force �f defined by its two components
fn and ft along and perpendicular to the contact normal �n,
respectively:

f = fn �n + ft �t, (1)

where�t is the unit vector perpendicular to �n. The normal force
is the sum of three different forces:

fn = f e
n + f d

n + f c
n , (2)

where f e
n is the repulsive elastic force, f d

n is a viscous damping
force, and f c

n is a cohesion force induced by solid or liquid
bonding between the particles. The elastic normal force is
assumed to be a function of the contact deflection δn, assumed
to be equal to the overlap between the disks for small contact
deformations. We use a linear elastic law as far as there is
an overlap between the particles, whereas the force vanishes
when there is no contact:

f e
n =

{−Knδn if δn < 0

0 otherwise
, (3)

where Kn is the contact stiffness.
In the DEM particle dynamics simulations, it is necessary

to introduce also viscous damping to account for energy
dissipation due to inelastic collisions between particles. To
make the energy restitution coefficient independent of the
particle mass, the damping force is assumed to depend also
on the spring stiffness and particle mass as follows:

f d
n =

{−2αn
√

mKnδ̇n if δ̇n < 0

0 otherwise
, (4)

where m = mimj/(mi + mj ) is the reduced mass of the two
touching particles i and j and αn is the damping constant
varying between 0 and 1. The cohesion force f c

n can have
different expressions depending on the source of cohesion
[47].
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FIG. 1. A granular sample at the end of relaxation to equilibrium.
Color intensity is proportional to average normal force supported by
each particle.

For the friction force ft , we use an elastic-regularized
Coulomb law [48,49]:

ft =
{

−sgn(δ̇t )μ fn if | f̂t | � μ fn

Ktδt + γt δ̇t otherwise
, (5)

where Kt is the stiffness of the tangential spring, γt is the
tangential damping constant, δt is tangential spring elongation
since the contact between two particles was established, δ̇t is
relative tangential velocity, and μ is the friction coefficient.

The granular samples are prepared by sedimentation: The
particles are placed on the nodes of a triangular lattice without
overlap and allowed to fall into a box under the action their
own weights. The final state after sufficient relaxation of
the particles is a dense packing in which all forces on all
particles are balanced. A weak size polydispersity of particles
is introduced to avoid long-range ordering of the disks in
2D. The particle radii Rp are distributed between Rmin =
1 mm and Rmax = 2 mm with a uniform distribution of their
volumes. This distribution ensures that the total volumes of
the particles in all particle size classes are equal, and it leads
to dense packings [50]. The total number N of particles is
1500. An example of a sample used for simulations with a
representation of particle pressures is displayed in Fig. 1.

The root is modeled as a self-elongating spheroline that
can change its direction under the action of the forces exerted
by soil particles. A spheroline is the locus of all points at
a given distance from a segment and shrinks to a sphere
when the length of the segment tends to zero. It can also be
described as a rounded-cap rectangle. We begin with a seed
defined by an immobile disk of radius Rr placed on top of the
sample. The initial direction of growth α1 is assumed to be
vertical. We make the root grow from this seed by replacing
the disk by a spheroline of radius Rr defined by a segment
A1A, where A is a new point added vertically below A1; see
Fig. 2. The root keeps growing by incremental displacement
of the point A at a constant rate ug. As long as the growth
distance A1A is below a maximum length �g, the spheroline

A1

A2

A3

A4

ug

i1

i2

i3

α12

α23

FIG. 2. Root particle geometry and connection between consec-
utive root elements.

keeps its direction α1. When A1A = �g, the end point A ≡ A2

of the spheroline becomes the seed for the growth of a new
spheroline in a new direction α2 determined by the forces
acting on it; see Fig. 2. The same process is repeated with
the new spheroline until the length of the new root element
reaches �g. By iterating this process, we obtain a sequence
of points A1A2A3 . . . along successive directions α1α2α3 . . .

which describes the geometry of a root of thickness droot =
2Rr grown from the seed A1. Figure 3 shows an example of
a root obtained by this procedure. The ratio �g/Rmin controls
the precision with which the shape of the root is defined. In
the following, we refer to the spherolines as “root elements.”

The flexibility of the root depends on the bending (or
torsional) resistance between consecutive root elements. The
endpoint of each root element i is connected to the initial
point of the next root element i + 1 by two linear springs.
The elongational spring connecting the two points exerts a
force �fi(i+1) proportional to their separation distance with a
longitudinal stiffness Ke. In the absence of all other forces,
�fi(i+1) vanishes when the two points coincide. The stiffness
Ke defines the axial stiffness of the root. The two elements

FIG. 3. A root grown from a seed placed at the top of a granular
sample.
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are also connected by a linear torsional spring with a torque
Mi(i+1) proportional to the difference αi − αi+1 between their
directions:

Mi(i+1) = Kbαi(i+1) = Kb(αi − αi+1), (6)

where Kb is the bending stiffness of the root.
The motion of the center of mass �ri of each root element or

soil particle i along the x and y directions is governed by the
equations of motion:

mi �̈r i =
∑
j∈�i

�f i j, (7)

where mi is the mass and the summation runs over the set �i

of all neighboring particles or root elements j exerting a force
�fi j on the particle or root element i. The angular motion of
each root element i is governed by the moment equation

Iiα̈i = Mi(i−1) + Mi(i+1) +
∑
j∈�i

�c i j × �f i j, (8)

where Ii is the moment of inertia of the root element with
respect to its center of mass, the torques Mi(i−1) and Mi(i+1)

are given by Eq. (6), and �ci j is the contact vector joining the
center of mass of element i to its contact point with particle or
element j. The angular motions of the particles are governed
by the same equation without the torque terms.

The above model of a “discrete” growing root implies
that a root emanating from a seed will grow along a straight
vertical line in the absence of soil particles and gravity.
In the presence of soil particles, the root will frequently meet
the particles on which it can exert a force, leading either to
the displacement of the particles or elastic deformation of the
root itself. Because of elasticity, however, the root resumes
its reference shape as a straight line if the soil particles are
removed. This is not what one observes in real roots, which,
unless damaged, keep practically their shape when removed
from a soil. This is due to the remodeling of the root during
its growth as a result of the accretion of new wood material
at the surface and/or a change in material internal properties
[51] and leads to two different effects: (1) stiffening of the root
and (2) transformation of elastic reorientations of the root into
permanent deflections. To account for these evolutions of the
root, we assume that the bending stiffness Kb between the last
growing root element, which represents the meristem, and the
element to which it is attached is much lower than the stiffness
K ′

b of the preceding elements. In this way, the tip of the root
can more easily probe the pore space between soil particles
than the upstream parts of the root.

Moreover, we allow the reference equilibrium angle
α0i(i + 1) between consecutive root elements to evolve. The
initial reference angle is zero according to Eq. (6), correspond-
ing to a zero torque when the two root elements are colinear.
As the root grows, at the same time as a new root element is
created, we set all reference angles between all root elements,
except for that between the new element and its preceding
element, to their current values. As a result, the elastic torque
acting between all those elements is reset to zero, and the
torque in the following steps of computation is given by

Mi j = K ′
b

(
αi j − α0

i j

)
. (9)

F
FIG. 4. A growing root and the interparticle gaps seen by the root.

It should be noted that, although the reorientations of the
meristem are much easier than other parts of the root, this
evolution of parameters does not prevent later variations of the
angles as they still can change by elastic deflections depending
on the forces exerted by the soil particles.

Another aspect that needs to be considered in 2D simula-
tions is that, in contrast to 3D packings, all pores in a dense 2D
packing are closed, implying that the root cannot grow without
dislodging the particles. In order to relax this 2D pathology,
we use two different radii for the particles: one radius Rp for
particle-particle contacts and a slightly smaller radius R′

p =
Rp − 0.5dgap for the particle-root contacts. Hence, when two
particles are in contact, the root “sees” a gap of width dgap

between the two particles through which it can pass without
touching the particles if the root diameter droot is smaller
than dgap, as shown in Fig. 4. The ratio s = droot/dgap is a
model parameter that plays the same role as the ratio of the
root diameter to the pore size in 3D and, as we shall see, it
will influence the force required for the root to dislodge the
particles.

As to the friction coefficients between root elements and
particles, we consider the plausible assumption that the fric-
tion coefficient of soil particles with the meristem is smaller
than with other root elements because the sloughing of cells
from the root cap produces a low-friction disposable sleeve
[52]. In the simulations reported in this paper, we set the
friction coefficient between the root cap and particle to zero.
The friction coefficient between particles and with other root
elements was set to μ = 0.4.

We used the velocity-Verlet stepping scheme to solve the
equations of motion for all particles and root elements [53].
The solver was also optimized by using the cell method for
the book-keeping of close neighbors [54]. We set Kn = Kt =
10−6 N/m and performed a large number of simulations with
different values of bending stiffness Kb, elementary growth
length �g, particle sizes Rmin and Rmax, gap parameter s, and
packing fraction � of the soil. With each set of parameter
values, we performed five independent simulations by chang-
ing the position of the seed on top of the sample in order to
evaluate the variability due to granular disorder.
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FIG. 5. Evolution of the force F experienced by the root cap
during its growth as a function of normalized time. The force is
normalized by the mean particle weight.

In all simulations, the growth rate ug was set to a small
value in order to avoid inertial effects that are basically absent
from the very slow growth process of roots. The typical
growth time τ is the time necessary for the root tip to
grow over a distance of the order of an average soil particle
diameter:

τ = 〈d〉
ug

. (10)

This time should be compared with the time necessary for a
particle dislodged from its equilibrium state to relax back to
equilibrium. The typical distance being of the order of one
particle diameter, the characteristic relaxation time is

tg =
( 〈d〉

g

)1/2

, (11)

where g is the gravity. Hence, for a quasistatic growth and
high time resolution we imposed δt � tg � τ , where δt is the
simulation time step.

III. ROOT-PARTICLE FORCE DISTRIBUTIONS

During the root growth, the positions x and y of the root tip
define its trajectory. We consider here the total force exerted
by the soil particles on the root cap, i.e., the force acting on the
growing root element. Its projection along this root element
is the “axial force” F that resists root growth; see Fig. 4.
Figure 5 displays the evolution of F with time for a root of
bending stiffness Kb = 1 Nm and s = 1.54 in a dense sample
of 1500 particles. The force is normalized by the mean weight
〈m〉g of a single particle, whereas the time is normalized by
the growth time tg. We see that the force signal undergoes
large variations between zero and values as high as 700 times
the mean particle weight nearly independently of its depth in-
side the soil. The zero force values correspond to the passage
of the root in the pores without contact with particles, whereas
high values occur when the root meets the particles balanced
by strong force chains. The strong forces in granular materials
can be much larger than the mean force [36]. Although the
mean force increases with depth, this increase is negligible

10−4

10−3

10−2

0 1 2 3 4 5

p
df

F/ F

s = 1.54, Kb = 6 Nm
s = 1.54, Kb = 2 Nm
s = 0.86, Kb = 2 Nm
s = 1.54, Kb = 1 Nm
s = 0.86, Kb = 1 Nm

s = 1.54, Kb = 0.55 Nm
s = 0.86, Kb = 0.55 Nm

(a)

(b)

FIG. 6. Probability density function of forces experienced by a
growing root in a granular packing in log-log and log-linear scales
for different values of the gap parameter s and bending stiffness Kb

of the root.

compared to the large force fluctuations arising from root-
particle interactions.

Figure 6 shows the probability density function (pdf) of
root-particle forces on log-log and log-linear scales for two
different values of s (above and below 1) and for a set of
values of Kb ranging from 0.55 to 6 Nm. We see that, despite
the broad range of the values of Kb, all the data points collapse
nicely on the same curve when the forces are normalized by
the mean force 〈F 〉. The small deviations reflect the packing
disorder and finite system size. The distribution of forces
below the mean force (weak forces) is a power law F−α

with exponent α 	 0.5 over one decade. The distribution of
forces above the mean force (strong forces) is well fitted by
an exponential falloff e−βF/〈F 〉 with parameter β 	 0.85.

This distribution with its transition from a decreasing
power-law behavior to an exponential falloff around the mean
force is reminiscent of the pdf of contact forces in granular
materials [37–39,55]. This “bimodal” distribution can be ap-
proximated by [40,41,56]

P(F ) =
{

k
(

F
〈F 〉

)−α
N/〈F 〉 < 1

k eβ(1−F/〈F 〉) F/〈F 〉 > 1
, (12)

where k is the normalization factor given by

1

k
= 1

1 − α
+ 1

β
. (13)
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Moreover, considering the mean force 〈F 〉 as the point of
crossover between the two parts of the distribution, we get
the following relation between the exponents:

β2 = (1 − α)(2 − α). (14)

This relation is in excellent agreement with the values of
the exponents α and β measured from Fig. 5. Although
the values of these exponents for contact force distributions
in granular materials are different (lower values of α and
larger values of β depending on the soil properties such as
size polydispersity [40]), the similarity between their pdf’s
is a strong indication that a growing root probes the weak
and strong force networks. Their independence from the root
bending stiffness is consistent with this assumption.

IV. EFFECT OF THE ROOT BENDING STIFFNESS

Although the force pdf is independent of the root and soil
characteristics, the mean force 〈F 〉 exerted on the root cap
during its growth is sensitive to the root bending stiffness Kb

and soil parameters such as packing fraction �, mean particle
diameter 〈d〉, and cohesive forces fc between particles. Herein
we consider the effect of Kb as a major root parameter that
controls the ability of the root to change its direction and
explore the pore space. With low bending stiffness the root
is more flexible and tends to follow the tortuous space of the
pores and gaps between particles, whereas for large bending
stiffness the root will be able to dislodge the particles and will
therefore follow a path close to a straight line.

Figure 7 shows 〈F 〉 as a function of Kb for s = 0.86. We
see that the mean force increases from a weak value F0 at very
low values of Kb and levels off to a constant value H at large
values of Kb. For each value of Kb, the data point represents
the average force obtained from five independent simulations
in which only the position of the seed is changed on top
of the sample. The error bars represent the corresponding
values of the standard deviation. Within statistical precision,
the evolution of 〈F 〉 with Kb is well fitted by an exponential
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FIG. 7. The mean force 〈F 〉 experienced by the root cap as
a function of bending stiffness Kb for s = 0.86. The error bars
represent standard deviation for five independent simulations. The
circular insets display a portion of the root for several values of Kb.

function

〈F 〉 = F0 + (H − F0)(1 − e−a′Kb ), (15)

where the parameter a′ has the dimension N−1m−1. In the
two limits of very high and low values of Kb, the force is
independent of H . At high values, 〈F 〉 = H coincides with
the resistance of the granular medium to the penetration of
a rigid bar, whereas at low values the force 〈F 〉 = F0 results
from the collisions of the root with the soil particles and its
reorientations are not prohibited by the root bending stiffness.
As we shall see below, we find F0 	 0.1H . In Fig. 7 we also
have displayed a portion of the root at different steps of its
growth with a shape that evolves gradually from a random
walk in the pore space to a straight line as Kb increases.

Equation (15) is interesting as it describes in a simple and
quantitative way the effect of root flexibility on the mean force
involved in root growth. This relation makes it possible to
predict the mean force exerted on the root cap during it growth
from the knowledge of the root stiffness and the soil hardness
H defined as the resistance of the soil to the penetration of
a rigid bar as in penetrometer experiments [57,58]. Equation
(15) shows clearly that the mean force experienced by the root
cap can actually be much lower than H as measured from the
ground by a penetrometer depending on the root flexibility.
It should be noted here that the longitudinal and tangential
stiffnesses of the root are set to a high value, and we checked
that their values are not significant for the results presented
below.

Equation (15) with its values of H and F0 was obtained
for specific values of soil parameters such as particle size
distribution, gap size, and packing fraction without cohesive
forces acting between soil particles. In order to examine the
robustness of Eq. (15) under more general conditions and
investigate the influence of relevant parameters, we performed
extensive simulations of root growth with a range of the
parameter values.

V. INFLUENCE OF SOIL PARAMETERS

We first consider here the effect of the packing fraction �,
which is an important soil property that depends on material
parameters such as friction coefficient μ between particles but
also on the history of soil deformations. As we would like to
single out the effect of the packing fraction, we fix all material
parameters but apply a preparation method to obtain different
values of �.

To prepare samples with different values of the packing
fraction, we first prepare a dense packing of 2000 particles
by setting μ to zero and allowing the particles fall into the
simulation box from their initially random positions in space.
The zero value of μ reduces the probability of arching and
leads to a dense packing with � = 0.835. Then we set μ =
0.4 and remove one particle at a time randomly selected from
the packing. After each removal, we allow the packing to relax
toward equilibrium over several time steps. The equilibrium
criterion is chosen according to the particle velocities and in
order to make the process numerically efficient. Thus, a new
particle is removed when the mean particle velocity in the
sample is much lower than

√
g〈d〉, which is the falling time of

a particle of average diameter 〈d〉 over a distance equal to its
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FIG. 8. Variation of packing fraction � as a function of the
number N∗ of particles removed.

diameter. Removing a particle creates a local imbalance and
therefore entails a rearrangement of the particles. But this re-
arrangement is not necessarily local. As a result, � decreases
by removal but increases again by relaxation. Since we begin
with high packing fraction, the removal-relaxation process
leads to a gradual decrease of � until a statistical balance is
achieved between the phases of decrease and increase of �, as
shown in Fig. 8. The average packing fraction in this steady
state is 	0.78 after the removal of 350 particles.

We selected three samples of packing fractions 0.77, 0.8,
and 0.83, displayed in Fig. 9. Despite locally large variations
of porosity, we checked that there is no porosity gradient by
dividing each sample to eight horizontal layers. Then we car-
ried out root growth simulations for increasing values of Kb in
each sample. Figure 10(a) shows the mean force as a function
of Kb for the three samples. The asymptotic force H increases
considerably with �. But, within statistical precision, the data
are well fit by the exponential form of Eq. (15), and thus
for each value of Kb the mean force increases with packing
fraction.

The exponential fit of Eq. (15) clearly suggests that the
mean force should be scaled by H but this normalization of
the forces does not ensure that they will collapse on the same
curve as the values of the prefactor a′ in the exponent are
different in the three exponential fits. Hence, we also need
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FIG. 10. (a) The mean force as a function of the root bending
stiffness for three samples of different packing fractions. (b) The
same data points with the mean force normalized by soil hardness H
and bending stiffness normalized by H times the mean particle size
〈d〉. The lines are exponential fits according to Eq. (15) in (a) and
Eq. (16) in (b).

to scale Kb by an appropriate material parameter. Kb has the
dimension of a force multiplied by a length. �g being a model
discretization parameter, the only characteristic length of the
packing is the average particle size 〈d〉. We also have two
characteristic forces: (1) the mean particle weight 〈m〉g and
(2) the hardness H . As previously discussed, the root-particle
forces are considerably larger than 〈m〉g and they result from

FIG. 9. Samples of different packing fractions obtained by a removal-relaxation process. Line thickness is proportional to normal force
between particles.
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both the interparticle force chains and the root-particle inter-
actions. The only force reflecting both these aspects is H . This
suggests that we should normalize the bending stiffness by
H〈d〉. As observed in Fig. 10(b), with this scaling all the data
points from the three samples nicely collapse on a single curve
well fit by

〈F 〉
H

= 1 −
(

1 − F0

H

)
e−aKb/(H〈d〉), (16)

where a 	 0.15 and F0/H 	 0.1. This scaling means that
the effect of the packing fraction � is fully captured by the
dependence of H on �, and from its value the mean force
exerted on the root cap can readily be deduced by means of
Eq. (16).

In the data represented in Fig. 10, H takes three different
values but 〈d〉 is the same in all samples. In order to further
validate the scaling proposed in (16), we performed root
growth simulations for several values of Rmin and Rmax. In the
simulations presented in the previous section, we had 〈d〉 =
3.1 mm for 1500 grains with radii varying between Rmin =
1 mm and Rmax = 2 mm. We prepared two more samples of
mean particle diameters 1.6 and 4.2 mm. In the first case we
reduced Rmin and increased the number of particles to 2000 to
keep the same volume as the reference sample. In the second
case, we increased Rmax and reduced the number of particles
to 1000. The ratio λ = Rmax/Rmin is 2 in the reference sample
and, respectively, 2.5 and 5 in the two new samples.

Figure 11(a) shows the mean root-particle force 〈F 〉 as
a function of Kb for the three samples. Here again, we see
that the functional form (15) provides a nice fit to the data
with hardness H increasing considerably with 〈d〉. This is
not surprising as for high bending stiffness the root dislodges
nearly all particles on its path and thus the force H directly
reflects the contact forces, which for the stress induced by
particle weights is proportional to 〈d〉 in 2D. The increase
of 〈F 〉 is also related to the value of λ, which describes
here the polydispersity of the samples. However, H is not
an increasing function of λ. This dependence needs to be
determined by more simulations. Figure 11(b) displays the
same data with normalized values of 〈F 〉 and Kb. All the data
collapse well and can again be fitted by the form (16) with
the same value a 	 0.15 as before and shows once more that
the scaling proposed here is robust with respect to the soil and
root parameters.

We also checked by systematic simulations the influence
of the gap parameter s and the growth length �g. The latter
has little effect on the mean force 〈F 〉 as far as its value
is below 〈d〉. We find that the same scaling applies and the
effect of s is captured by the increase of H with s. As for
other parameters, more simulations are needed to determine
the functional dependence of H with respect to s.

Finally, we investigated the influence of cohesion on the
root-particle force by assuming that the adhesion force f c

n
in Eq. (2) is constant and localized at the contact point
between the particles whereas the root-particle contacts are
cohesionless. In the presence of cohesion, the root will have
to overcome an additional tensile force − f c

n between the
soil particles to advance [59]. For the simulations we used
the sample of 1500 grains with particle diameter distribution
between 2 and 4 mm and a mean diameter 〈d〉 = 3.1 mm
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FIG. 11. (a) The mean force as a function of the root bending
stiffness for three samples with different values 〈d〉 and size ratio
λ. (b) The same data points with the mean force normalized by soil
hardness H and bending stiffness normalized by H〈d〉. The lines are
exponential fits according to Eq. (15) in (a) and Eq. (16) in (b).

with a root diameter larger than the gap between the particles
(s = 1.54). We used three values of f c

n : 0, 2〈m〉g, and 25〈m〉g.
Figure 12(a) shows 〈F 〉 as a function of Kb for the three
samples. The data follow an increasing exponential function
as in cohesionless samples. The hardness H has nearly the
same value for f c

n = 0 and f c
n = 2〈m〉g but increases for f c

n =
25〈m〉g as expected. The same data in normalized coordinates
shown in Fig. 12(b) collapse on a curve well fit by Eq. (16).

As the cohesion due to capillary and clayey forces is a
major ingredient of soils, this result considerably extends
the relevance of Eq. (16) with its scaling parameters for the
analysis of root-particle forces. In practice, the effects of
cohesion and packing fraction can not be easily separated. In
the simulations we considered the same sample and changed
the value of adhesion force. But when a cohesive granular
material is prepared by pouring the particles into a box,
the packing fraction decreases as the cohesion increases, so
that the combined effect of these parameters may cancel
out. Such effects need to be investigated in order to deter-
mine how the hardness parameter H depends on various soil
parameters.

VI. CONCLUSIONS

In this paper we introduced a simple discrete numerical
model of root growth inside a granular soil. This model
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FIG. 12. (a) The mean force as a function of the bending stiffness
for three samples with three values of the adhesion force: 0, 2〈m〉g,
and 25〈m〉g. The solid lines are exponential fits. (b) The same data
with normalized coordinates. The solid line is the functional form of
Eq. (16).

accounts for the root flexibility and its stiffening during its
growth. At constant growth rate, the root development is
guided by the disordered texture of the granular medium and
the reaction forces exerted by the particles on the meristem,
modeled here as the growing segment of the root. We found
that these forces are well above the mean particle weight al-
most independently of the depth, and their statistical distribu-
tion reflects that of interparticle forces with an exponentially
decaying number of strong forces. This feature is independent
of the soil characteristics and root flexibility once the forces
are normalized by the mean force.

By means of extensive simulations, we also showed that
the mean root-particle force F is an increasing exponential
function of the root bending stiffness Kb with an asymptotic
value F → H that is a function of the soil characteristics such
as packing fraction �, mean particle size 〈d〉, and cohesion
f c
n . With a low bending stiffness, the root can change its

direction in response to a weak contact force exerted by a
particle, whereas with high bending stiffness the reorientation
of the root requires larger contact forces that may dislodge the
particle before the reorientation can occur. Hence, the largest
force H corresponds to a very stiff root such that it advances
along a nearly straight line by dislodging all particles on
its pathway. More interestingly, our simulations suggest that

the functional dependence of F/H on Kb/(〈d〉H ) is almost
universal, the effect of soil characteristics being fully captured
by the value of H . A practical implication of this scaling is
that the mean force experienced by the root cap during its
growth can be estimated from the values of H (measurable
by means of penetrometric tests), mean particle size 〈d〉,
and root bending stiffness Kb. The effect of soil parameters
on the value of H can be further quantified by root growth
simulations using a fixed high value of Kb but many more soil
samples with varying packing fraction, size polydispersity,
and cohesion should be prepared.

In this work, we neglected the feedback of the root-particle
force on the growth rate, which was assumed to be constant.
This approximation was necessary to focus on the interaction
of the root tip with force network. But the growth rate varies
with the environmental stimuli. At large-enough values of the
mechanical force exerted by the particles on the root tip, the
root growth can even stop. This feedback is a consequence
of the internal mechanisms of the root growth based on the
variations of turgor pressure and continuous cellular division
at the root tip. However, the force experienced by the root
tip during its growth is independent of its growth rate and it
reflects only the path taken by the root through the soil. In
other words, it depends simply on whether the root can exert
the force necessary to dislodge the particles on its pathway.
But the feedback on the growth rate can certainly influence the
root shape, which results from the path taken by the root tip.
In all cases, in simulations it is possible to calculate the work
performed by the root on the soil particles and it would be
interesting to see how this work depends on the root flexibility
and soil characteristics. Our results on the root shape and work
of root growth will be published elsewhere.

The extensive parametric investigations presented in this
paper were made possible by the 2D geometry of the system,
which requires much less computation time and memory than
in 3D. The key point in the process of root growth is the
interactions of the root cap with the force network through
its action on the particles. The particles that fully or partially
belong to the weak force network are easily dislodged. For this
reason, the weak root-particle forces reflect weak interparticle
forces. Over a distance of the order of the size of a “cage”
of strong force chains (see Fig. 1), the root will have to
dislodge particles sustaining strong forces. Hence, the strong
root-particle forces arise from strong forces and larger length
scales in the root morphology. This picture suggests that,
as the distributions and morphologies of force networks are
quite similar in 2D and 3D, the root growth characteristics
and forces should be similar, too. But we presently work
on an equivalent 3D model of root growth for comparison
with 2D.

From the biological point of view, providing an analytical
formulation of the reaction forces experienced by a root
growing in a heterogenous medium is significant as this infor-
mation is almost impossible to measure in the field. Linking
this information to a model of root shape, which is easy to
characterize by image analyses, will also give an indirect way
to estimate the mechanical history of a growing root. This
work will finally lay the groundwork to address the issues
of mechanosensing and thigmomorphogenesis [60] in “the
hidden part” of plants.
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