
HAL Id: hal-02134202
https://hal.umontpellier.fr/hal-02134202

Submitted on 26 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient algorithms for Longest Common Subsequence
of two bucket orders to speed up pairwise genetic map

comparison
Lisa de Mattéo, Yan Holtz, Vincent Ranwez, Sèverine Bérard

To cite this version:
Lisa de Mattéo, Yan Holtz, Vincent Ranwez, Sèverine Bérard. Efficient algorithms for Longest Com-
mon Subsequence of two bucket orders to speed up pairwise genetic map comparison. PLoS ONE,
2018, 13 (12), pp.e0208838. �10.1371/journal.pone.0208838�. �hal-02134202�

https://hal.umontpellier.fr/hal-02134202
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

RESEARCH ARTICLE

Efficient algorithms for Longest Common

Subsequence of two bucket orders to speed

up pairwise genetic map comparison

Lisa De Mattéo1, Yan Holtz2, Vincent RanwezID
3☯, Sèverine Bérard1☯*

1 ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France, 2 Queensland Brain Institute,

University of Queensland, Brisbane, Australia, 3 AGAP, Univ Montpellier, CIRAD, INRA, Montpellier

SupAgro, Montpellier, France

☯ These authors contributed equally to this work.

* Severine.Berard@umontpellier.fr

Abstract

Genetic maps order genetic markers along chromosomes. They are, for instance, exten-

sively used in marker-assisted selection to accelerate breeding programs. Even for the

same species, people often have to deal with several alternative maps obtained using differ-

ent ordering methods or different datasets, e.g. resulting from different segregating popula-

tions. Having efficient tools to identify the consistency and discrepancy of alternative maps

is thus essential to facilitate genetic map comparisons. We propose to encode genetic maps

by bucket order, a kind of order, which takes into account the blurred parts of the marker

order while being an efficient data structure to achieve low complexity algorithms. The main

result of this paper is an O(n log(n)) procedure to identify the largest agreements between

two bucket orders of n elements, their Longest Common Subsequence (LCS), providing an

efficient solution to highlight discrepancies between two genetic maps. The LCS of two

maps, being the largest set of their collinear markers, is used as a building block to compute

pairwise map congruence, to visually emphasize maker collinearity and in some scaffolding

methods relying on genetic maps to improve genome assembly. As the LCS computation is

a key subroutine of all these genetic map related tools, replacing the current LCS subroutine

of those methods by ours –to do the exact same work but faster– could significantly speed

up those methods without changing their accuracy. To ease such transition we provide all

required algorithmic details in this self contained paper as well as an R package implement-

ing them, named LCSLCIS, which is freely available at: https://github.com/holtzy/LCSLCIS.

Introduction

Genetic maps represent the positioning of markers –e.g. genes, single nucleotide polymor-

phisms (SNPs), microsatellites– along chromosomes. The first genetic maps were produced as

early as 1913 with the first insight in Drosophila chromosome organization proposed by A. H.

Sturtevant [1]. The uses of genetic maps are diverse: from crop or livestock improvement, as

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: De Mattéo L, Holtz Y, Ranwez V, Bérard S

(2018) Efficient algorithms for Longest Common

Subsequence of two bucket orders to speed up

pairwise genetic map comparison. PLoS ONE

13(12): e0208838. https://doi.org/10.1371/journal.

pone.0208838

Editor: Dragan Perovic, Julius Kuhn-Institut,

GERMANY

Received: July 25, 2018

Accepted: November 25, 2018

Published: December 27, 2018

Copyright: © 2018 De Mattéo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available via

GitHub: (https://github.com/holtzy/LCSLCIS).

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-9308-7541
https://github.com/holtzy/LCSLCIS
https://doi.org/10.1371/journal.pone.0208838
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208838&domain=pdf&date_stamp=2018-12-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208838&domain=pdf&date_stamp=2018-12-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208838&domain=pdf&date_stamp=2018-12-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208838&domain=pdf&date_stamp=2018-12-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208838&domain=pdf&date_stamp=2018-12-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208838&domain=pdf&date_stamp=2018-12-27
https://doi.org/10.1371/journal.pone.0208838
https://doi.org/10.1371/journal.pone.0208838
http://creativecommons.org/licenses/by/4.0/
https://github.com/holtzy/LCSLCIS

they provide a way to link a genetic region to a trait of interest, to genome assembly, as they

are used as a backbone for anchoring the contigs whose orientation and order on the chromo-

somes are unknown [2].

Considering a linear chromosome, the corresponding genetic map should be a total order
on all its markers. However, due to imprecisions, errors or inaccuracies of the techniques, it is

usually a partial order on a subset of the markers. This is the case when the relative position of

some markers cannot be inferred and they are put at the same position on the map, as illus-

trated on the left of Fig 1. We propose to model by a binary relation of order, namely a bucket
order, maps where several markers are at the same position (Fig 1). A bucket order is a total

order on buckets, each bucket containing elements which are incomparable [3]. Consequently,

bucket orders are suitable structures for coding the genetic maps: they allow markers with an

uncertain relative order to be gathered in a bucket while preserving the global order informa-

tion, namely the bucket sequence. Moreover, even for a single species, we are often faced with

several different maps obtained using different input data (e.g. different segregating popula-

tion, sequencing techniques etc.) and different techniques or softwares to build a map from

those data. The differences come from the subsets of markers positioned on the map or from

their order. Recent works [4–6] show that it is possible, by comparing these different maps, to

propose a richer and more reliable synthesis than what is obtained by a single approach.

This article focuses on identifying the largest subset of congruent information shared by

two maps by identifying their Longest Common Subsequence (LCS). In the genetic map frame-

work, the LCS corresponds to the largest set of collinear markers, i.e. the largest set of markers

that appears in the same order in the two compared maps. The LCS hence plays a key role in

map comparison, as emphasized by ALLMAP authors: “Collinearity, defined as the arrange-

ment of one sequence in the same linear order as another sequence, is one of the most impor-

tant criteria in evaluating map concordance and evolutionary relatedness” [6]. Individual

maps can be compared based on their correlation coefficients, for marker interval distance

and for marker order, based on their LCS using the qualV package [7] as done for comparing

switchgrass maps across studies [8, 9]. A visual representation of pairwise map collinearity is

very helpful and several tools, such as MCScanX [10], VGSC [11] and the genetic map

Fig 1. Simplified genetic map (left) and two different representations: A Directed Acyclic Graph (DAG) (middle)

and a bucket order (right). In linkage maps, some markers may have the exact same position on a given map due to

the absence of recombination events between them. In physical maps, this can happen when different genetic markers

match at the same place.

https://doi.org/10.1371/journal.pone.0208838.g001

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 2 / 19

https://doi.org/10.1371/journal.pone.0208838.g001
https://doi.org/10.1371/journal.pone.0208838

comparator [12], provide the so called “dual synteny plot representation”. This representation

draws the two maps side by side and traces a line between their common markers. Identifying

the LCS allows to highlight map collinearity by using different colors for linking markers that

are part of the LCS and those that are not.

The LCS problem is encountered in many contexts, such as file comparison (e.g. unix diff

command), computational linguistic analysis (e.g. [13]) or bioinformatics (e.g. sequence com-

parison and genome compression [14]) and has thus been extensively studied in computer

science [15–17]. Finding a LCS for multiple input sequences has been proved NP-hard [18],

while its pairwise counterpart is polynomial and often used in comparative genomics [19–21].

But as far as we know, the LCS problem has never been defined on bucket orders. From here

on, we always refer to the pairwise LCS problem. The first step is to precisely define the notion

of common subsequence on bucket orders. The adaptation is not so obvious and we propose

two definitions relying on the linear extensions of bucket orders; one, called Longest Common
Induced Subsequence (LCIS), being stricter than the other, that is simply called Longest Com-
mon Subsequence (LCS). The aim is that LC(I)S captures as much as possible of the consensual

information contained in the input maps.

We demonstrate in this paper that we can compute LC(I)S on bucket orders with algo-

rithms similar to the classical ones, once an adequate pre-treatment, that we called homogeni-
zation, has been performed. The consequence is that the search of the LCS then depends on

the number of (homogenized) buckets rather than on the number of markers they contain.

This could result in a significant performance improvement for genetic maps where several

hundreds of markers can be in total linkage disequilibrium, hence in the same bucket. Homog-

enization is a kind of partition refinement technique largely used in efficient algorithms on

finite automata, string sorting or graphs [22]. Usually, such algorithms run iteratively by split-

ting the current partition according to a subset of elements called the pivot. In our case, we

homogenize one order/partition by the other order/partition using at the same time all its

buckets as pivots. Our procedure leads to a simpler algorithm than [22] while achieving the

same time complexity. Fagin et al. [23] defined a procedure similar to homogenization on

bucket orders but to our knowledge they don’t provide algorithmic detail to produce it nor

study its properties.

You will see that the organization of our paper does not follow the standard IMRaD format

(Introduction, Methods, Results, and Discussion) as this is not well adapted for a methodologi-

cal paper such as this one. In the next section, we present bucket orders and propose two defi-

nitions of longest common subsequence for bucket orders (LCS and LCIS). Then, we give

details of procedure of homogenization used to allow bucket orders to behave like total orders

in terms of time complexity. In the following section, we prove that searching for the LC(I)S of

two bucket orders gives the same results as searching for the LC(I)S of their homogenized

counterparts. Afterwards, we describe the algorithm which solves the problem, and give a vari-

ant to achieve the O(n log(n)) time complexity. Finally, in the last section, we briefly show an

application of this work in the framework of dual synteny plots and we use simulated map

datasets of various sizes to demonstrate the gain in speed thanks to our optimized LCS

routine.

Definitions and notations

In agronomy, marker-assisted selection strongly relies on genetic maps to accelerate breeding

programs, see for instance [24]. Genetic maps provide an organization of marker along (frag-

ment of) chromosomes. Each marker (SNPs, microsat etc.) is present at most once per genome

to be useful for breeding programs. The ordering of those markers can, for instance, be

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 3 / 19

https://doi.org/10.1371/journal.pone.0208838

deduced via the study of their linkage disequilibrium in a segregating population. Linkage dis-

equilibrium basically reflects the fact that the value of two markers are not independent. When

there is a complete linkage disequilibrium among a set of markers their dependence is total

(for any individual of the population, knowing the value of one of those marker is enough to

know the value of all other marker of this set). More generally, the higher the dependence

between marker values, the closer the markers—since this dependence is related to the number

of recombination events that have taken place in the population between those markers (e.g.

[24]). Each (fragment) of chromosome of such a map can conveniently be represented by a

sequence of bucket of markers, precedence in the sequence reflects precedence on the map

while being in the same bucket reflects the fact that we have no clue about the relative position

of those markers along this map. As marker are unique, each element/marker appears only

once in this bucket sequence. Comparing the marker ordering of one (fragment of) chromo-

some proposed by two distinct genetic maps can thus be done by comparing the two equiva-

lent bucket orders. Note that though this representation can be extended to store the distance

between consecutive buckets of the sequence, we ignore here this information as it is irrelevant

for the identification of the LC(I)S.

This section provides a more formal definition of bucket orders introduced above as well as

an explicit definition of the LC(I)S on bucket orders. These definitions follow the order classi-

fication and notations used in [3].

A binary relation R on a domain D is a subset of D�D; here we denote x�R y the fact that

(x, y) 2 R.

A binary relation σ is a strict partial order on D if, and only if, σ is:

- irreflexive: 8x 2 Dx⊀s x;

- asymmetric: 8x; y 2 Dx�s y) y⊀s x;

- transitive: 8x; y; z 2 D (x�σ y and y�σ z)) x�σ z.

Two elements x; y 2 D of a partial order σ are incomparable (x ≹σ y) when neither x�σ y
nor y�σ x.

Definition 1 (Bucket order). A strict partial order π on D is a bucket order if, and only if, π
is negatively transitive, i.e. 8x; y; z 2 D (x⊀π z and z⊀π y)) x⊀π y. It follows that D is parti-

tioned into a sequence of buckets B1, . . ., Bt so that x�π y, (x 2 Bi, y 2 Bj and i< j). In a

bucket order, elements are incomparable if, and only if, they belong to the same bucket. We

denote by |Bi| the number of elements in bucket Bi.

For example, π1 = ({k}, {a, b}, {l, c}, {d, e, f}, {i, j}, {g, h}) is a bucket order on the domain

D1 ¼ fa; b; c; d; e; f ; g; h; i; j; k; lg, which contains 6 buckets (for instance B1 = {k}, |B4| = 3),

and where a ≹p1
b while a�p1

c. A genetic map can easily be modelled by bucket orders on D,

where D is the set of its markers.

Do not confuse bucket orders with indeterminate strings (also known as degenerate string)

which are strings involving uncertainty and consist of nonempty subsets of letters over an

alphabet S [25, 26]. In such strings the same character may appear in several subsets while it is

not the case in bucket orders.

A total order τ is a complete partial order, that is 8x; y 2 D and x 6¼ y, either x�τ y or

y�τ x. In other words, all τ elements are comparable and τ is a permutation of the elements of

D. Note that a total order can hence be seen as a bucket order B1; . . . ;BjDj with all its buckets

of size 1 or, alternatively, as a sequence of elements of D.

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 4 / 19

https://doi.org/10.1371/journal.pone.0208838

The definition of Common Subsequences of bucket orders relies obviously on the defini-

tion of a Subsequence of a bucket order π. We choose to define the latter as a subsequence of

any total order compatible with π, more formally:

Definition 2 (Bucket order subsequence). A subsequence of a bucket order σ on D is a

sequence s = (e1, e2, . . ., el) so that, 81< i< j< l, ei 2 D and either ei�σ ej or ei ≹s ej. We

denote by subsequence(σ) the set of those subsequences.

Definition 3 (Bucket order Common Subsequence and LCS). A common subsequence
of two bucket orders σ1 on D1 and σ2 on D2 is a sequence s = (e1, e2, . . ., el) of elements

of D ¼ D1 \D2 so that: 81< i< j< l

1. ei�s1
ej or ei ≹s1

ej i.e., s 2 subsequence(σ1)

2. and ei�s2
ej or ei ≹s2

ej i.e., s 2 subsequence(σ2)

The length of s is its number of elements, that is to say l. A common subsequence of maxi-

mum length is called a Longest Common Subsequence (LCS).
Given two bucket orders σ1 and σ2 we denote subsequence(σ1, σ2) the set of their com-

mon subsequences. Let π1 = ({k}, {a, b}, {l, c}, {d, e, f}, {i, j}, {g, h}) and π2 = ({g, h}, {c, d, e, f},
{m, q}, {r, a}, {b, n}, {o, p, l}) be two bucket orders. The set of the LCS of π1 and π2 is {(c, d, e, f),
(c, d, f, e), (c, e, d, f), (c, e, f, d), (c, f, d, e), (c, f, e, d)} and the length of their LCS is 4.

A common subsequence of two bucket orders σ1 and σ2 may arbitrarily arrange elements

that are incomparable in both orders (i.e., such that ei ≹s1
ej and ei ≹s2

ej), e.g. elements d, e
and f in LCS of π1 and π2. In the context of genetic map comparison, one consequence is that

an LCS of two maps may order two elements while no input map does. This is the motivation

for the following definition, which is stricter than the previous one.

Definition 4 (Bucket order Common Induced Subsequence and LCIS). A common induced
subsequence of two bucket orders σ1 on D1 and σ2 on D2 is a sequence s = (e1, e2, . . ., el) of ele-

ments of D ¼ D1 \D2 so that:

1. s 2 subsequence(σ1, σ2) and

2. 81< i< j< l:

(a) either ei�s1
ej and ej ⊀s2

ei or (b) ei�s2
ej and ej⊀s1

ei
The length of s is its number of elements, that is to say l. A common induced subsequence

of maximum length is called a Longest Common Induced Subsequence (LCIS).
Note that the ‘and’ parts of the 2nd condition are implied by the fact that s 2 subsequence

(σ1, σ2) and are just useful reminders. Note also that an LCIS cannot contain several elements

located in the same bucket in σ1 and in the same bucket in σ2 as they are incomparable in the

two orders.

Given two bucket orders σ1 and σ2 we will denote as indSubsequence(σ1, σ2) the set of

their induced subsequences. There is only one LCIS of π1 and π2: (a, b, l) and it is of length 3.

As far as we know, it is the first time that bucket orders, precise mathematical objects, are

used to model genetic maps –including their blurred part. Moreover, we propose a rigorous

extension of the classical problem of the LCS on these bucket orders, along with an alternative

problem: the LCIS.

Bucket order homogenization

This section introduces a preprocessing step, that we named homogenization, which refines

two bucket orders so that those refined orders have only buckets that are either identical or

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 5 / 19

https://doi.org/10.1371/journal.pone.0208838

with no common element. This preprocessing is the cornerstone of our efficient solution to

find a LC(I)S of two bucket orders.

Definition 5 (Homogenization of two bucket orders). Let s1 ¼ ðB1
1
; . . . ;B1

k1
Þ be a bucket

order on D1 and s2 ¼ ðB2
1
; . . . ;B2

k2
Þ be a bucket order on D2. Let D be D1 \D2, for each ele-

ment e 2 D. Let pos1(e) and pos2(e) denote the positions of the bucket containing e in the

bucket sequence σ1 and σ2 respectively.

The homogenization of σ1 and σ2 associates to those orders the homogenized bucket orders

sh
1

and sh
2

respectively, which are both defined on D and so that 8e; e0 2 D:

• e and e0 belong to the same bucket of sh
1

(resp. sh
2
) if, and only if, they are in the same bucket

in both σ1 and σ2, i.e., if, and only if, pos1(e) = pos1(e0) and pos2(e) = pos2(e0);

• the bucket of sh
1

(resp. sh
2
) containing e precedes the bucket of sh

1
(resp. sh

2
) containing e0 if,

and only if, pos1(e)< pos1(e0) or (pos1(e) = pos1(e0) and pos2(e)< pos2(e0)) (resp. pos2(e)<
pos2(e0) or (pos2(e) = pos2(e0) and pos1(e) < pos1(e0))).

For example, let

π1 = ({k}, {a, b}, {l, c}, {d, e, f}, {i, j}, {g, h}) and

π2 = ({g, h}, {c, d, e, f}, {m, q}, {r, a}, {b, n}, {o, p, l}).
Their homogenized counterparts are

ph
1
¼ ðfag; fbg; fcg; flg; fd; e; f g; fg; hgÞ and

ph
2
¼ ðfg; hg; fcg; fd; e; f g; fag; {b}, {l}).

Property 1. Let σ1 be a bucket order on D1, σ2 be a bucket order on D2 and sh
1

and sh
2

be

their respective homogenized bucket orders, then sh
1

and sh
2

have exactly the same buckets but

not necessarily in the same order.

Proof. By contradiction. Let us assume that there are two elements e1; e2 2 D ¼ D1 \D2

which are in the same bucket of sh
1

but in different buckets of sh
2
. Since e1 and e2 belong to the

same sh
1

bucket it follows, by definition, that pos1(e1) = pos1(e2) and pos2(e1) = pos2(e2). Hence,

e1 and e2 are also in the same sh
2
bucket, which contradicts the initial hypothesis and concludes

the proof.

Algorithm 1: HOMOGENIZATION

Data: Two bucket orders π1 and π2 on domains D1 and D2 respectively.
Result: ph

1
, the homogenized bucket order of π1 with respect to π2.

1 if D1 \D2 ¼ ; then return an empty bucket order;
2 Let B1

¼ ðB1
1
; . . . ;B1

jB1 j
Þ and B2

¼ ðB2
1
; . . . ;B2

jB2 j
Þ be the ordered sequences of

buckets of π1 and π2 respectively.
// 8e 2 D2, get the position of the bucket containing e in B2

3 e_to_pos2 an empty hash table;
4 for i from 1 to jB2

j do
5 foreach e in B2

i do e_to_pos2.insert(key = e, value = i);
// homogenize sequentially all buckets of B1 to build up ph

1

6 ph
1
 an empty bucket order;

7 for i from 1 to jB1
j do

// harvest the position of B1
i elements in π2.

8 Ltemp an empty list;
9 foreach e in B1

i do
10 if e 2 e_to_pos2 then Ltemp.push(e,e_to_pos2.getValue(e));

// sort Ltemp elements (e, pos2) by increasing pos2.
11 LtempSort sort_increasing(Ltemp);

// create a new bucket per set of (now consecutive) elements of B1
i

which are in a same bucket in π2.
12 buck_pos2 LtempSort[1].second;

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 6 / 19

https://doi.org/10.1371/journal.pone.0208838

13 Buck a new empty bucket;
14 for (e, pos2) from LtempSort[1] to LtempSort[|LtempSort|] do
15 if buck_pos2 = pos2 then
16 Buck.add(e);
17 else // new bucket
18 ph

1
.push_back(Buck);

19 Buck new Buck(e);
20 buck_pos2 pos2;

// handle last bucket
21 ph

1
.push_back(Buck);

22 return ph
1
;

Before presenting our homogenization algorithm (Algorithm 1), we first give a lemma

(proof in S1 Proof) that provides a simple way to homogenize a bucket order π1 with respect to

π2, when elements in π1 buckets are ordered according to their bucket positions in π2.

Lemma 1. Let p1 ¼ ðB1
1
; . . . ;B1

k1
Þ and p2 ¼ ðB2

1
; . . . ;B2

k2
Þ be two bucket orders on D1 and

D2 respectively. Let B01i be an ordered restriction of B1
i containing only elements of B1

i \D2

organized in increasing order according to their position in π2, then ph
1
, the homogenized ver-

sion of π1 with respect to π2, is obtained from π1 by splitting each of its B01i ¼ ðei1 ; . . . ; ei
jB01i j
Þ

buckets between two consecutive elements eis and eisþ1
if and only if eis and eisþ1

are in different

buckets in π2 81 � s � jB01i j � 1.

The Algorithm 1 homogenizes one bucket order considering a second bucket order. To get

both ph
1

and ph
2

it suffices to use the algorithm twice.

Proposition 1 (Algorithm 1 correction). When called with parameters π1 and π2, the Algo-

rithm 1 returns the homogenization ph
1

of π1 with respect to π2.

(Proof in S2 Proof)

Proposition 2 (Time complexity of Algorithm 1). The overall complexity of Algorithm 1 is

O(n log(n)) with n ¼ max ðjD1j; jD2jÞ

Proof. The most time consuming operations are:

1. Initialization of e_to_pos2 dictionary: OjD2j � log ðjD2jÞ (L. 4-5);

2. Creation of the Ltemp lists: OðjD1j � log ðjD2jÞÞ as each element of D1 is added only once

to a Ltemp list and this addition is made in Oð log jD2jÞ due to the interrogation of the

e_to_pos2 dictionary (L. 9-10);

3. Sorting of the Ltemp lists: at the ith iteration the list contains jB1
i j elements that can be sorted

using Smoothsort [27] in OðjB1
i j log ðjB

1
i jÞÞ ¼ OðjB1

i j log ðjD1jÞÞ. The total time complexity

of this loop is thus OðjD1j log ðjD1jÞÞ (L. 11).

All other instructions are in O(1), thus the overall complexity of Algorithm 1

is: OðjD2j � log ðjD2jÞ þ jD1j � log ðjD2jÞ þ jD1 j � log ðjD1jÞÞ ¼ Oðmax ðjD1j; jD2jÞ�

log ðmax ðjD1j; jD2jÞÞ ¼ Oðn log ðnÞÞ.
It is easy to see that Algorithm 1 performs two distinct tasks: sorting elements in π1 buckets

according to their bucket positions in π2 and then splitting the buckets of π1. The former is

done in O(n log(n)) while the latter is done in O(n), for two bucket orders of n elements. To

achieve a linear time complexity for the overall procedure, it is therefore sufficient to provide

sorted buckets to Algorithm 1 or to reduce the complexity of the first task. We give in S1 Algo

a linear time variant of Algorithm 1, assuming that bucket orders are composed of pointers to

elements of the domain as assumed in [28].

It is already known that bucket order comparisons algorithmically behave like total order

comparisons [29] once each bucket order has been refined with respect to the other [23]. Our

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 7 / 19

https://doi.org/10.1371/journal.pone.0208838

contribution is to propose straightforward algorithms to do this refinement. The two versions

of our homogenization procedure are easy to implement, rigorously proven and shown to

achieve low time complexity: O(n log(n)) and O(n) respectively. For the latter, we were

inspired by the first two steps of the preprocessing used for computing distances between par-

tial orders [28].

Homogenization preserves the LC(I)S of two bucket orders

Below we show that we can search for the LC(I)S of bucket orders using their homogenized

counterparts without losing any solutions.

Theorem 1. Given π1 a bucket order on D1 and π2 a bucket order on D2, the set of the com-

mon subsequences of π1 and π2 is identical to the set of the common subsequences of their

homogenized counterpart ph
1

and ph
2
.

Proof. subsequence (π1, π2)� subsequence (ph
1
; ph

2
)

Let s 2 subsequence(ph
1
,ph

2
). Suppose that s =2 subsequence(π1), as a consequence

there are successive elements s[i] and s[i + 1] so that s½iþ 1� �p1
s½i�. Hence there exists a

bucket Bk 3 s[i + 1] preceding a bucket Bl 3 s[i] and pos1(s[i + 1])< pos1(s[i]) and, by con-

struction, s½iþ 1� �ph
1
s½i�, hence a contradiction and s 2 subsequence(π1). We can show in

the same way that s 2 subsequence(π2), therefore s 2 subsequence(π1, π2).

subsequence(π1, π2)� subsequence (ph
1
; ph

2
)

By contradiction. Let s 2 subsequence(π1, π2). Since all elements of s are present in both

π1 and π2 they also are in D ¼ D1 \D2 hence in ph
1
. Suppose that s is not a subsequence of ph

1
,

it follows that there are two successive elements of s, s[i] and s[i + 1], so that s½iþ 1� �ph
1
s½i�. As

a consequence there should exist in ph
1

a bucket Bk 3 s[i + 1] preceding a bucket Bl 3 s[i] and

either:

• s[i] and s[i + 1] are in the same bucket in both π1 and π2. However in such a case, by con-

struction s[i] and s[i + 1] are in the same ph
1

bucket, hence a contradiction.

• s[i] and s[i + 1] are in different π1 buckets and since s is a subsequence of π1, it follows that

pos1(s[i]) < pos1(s[i + 1]). As a consequence, s[i] belongs, by construction, to a bucket of ph
1

preceding the one containing s[i + 1], hence a contradiction.

• s[i] and s[i + 1] are in the same bucket in π1 but not in π2. Since s is a subsequence of π2,

pos2(s[i]) < pos2(s[i + 1]). As a consequence, s[i] belongs, by construction, to a bucket of ph
1

preceding the one containing s[i + 1], hence a contradiction.

As all possible cases lead to a contradiction, the initial hypothesis is impossible and s 2
subsequence(ph

1
). We can show in the same way that s 2 subsequence(ph

2
) and therefore

that s is a subsequence of ph
1

and ph
2
.

Theorem 2. Given π1 a bucket order on D1 and π2 a bucket order on D2, the set of the com-

mon induced subsequences of π1 and π2 is identical to the set of the common induced subse-

quences of their homogenized counterpart ph
1

and ph
2
.

Proof. indSubsequence (π1, π2)� indSubsequence (ph
1
; ph

2
)

Let s 2indSubsequence(π1, π2). First s 2 subsequence(ph
1
; ph

2
) (Def. 4 and Theorem

1). Second, by Definition 4, 81< i< j< l: either i) s½i� �p1
s½j� or ii) s½i� �p2

s½j�. In case i) s[i] is

in a bucket preceding s[j] in ph
1
. Hence s[i] and s[j] satisfy the 2(a) condition required for s to

be in indSubsequence(ph
1
; ph

2
). Similarly, in case ii) s[i] is in a bucket preceding s[j] in ph

2
.

Hence s[i] and s[j] satisfy the 2(b) condition required for s to be in indSubsequence
(ph

1
; ph

2
)

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 8 / 19

https://doi.org/10.1371/journal.pone.0208838

indSubsequence (π1, π2)� indSubsequence (ph
1
; ph

2
)

Let s 2 indSubsequence(ph
1
; ph

2
). First s 2 subsequence(π1, π2) (Def. 4 and Theorem

1). Second, by Definition 4, 81< i< j< l: either i) s½i� �ph
1
s½j� or ii) s½i� �ph

2
s½j�. In case i) s[i]

being in a bucket preceding s[j] in ph
1

implies that either s½i� �p1
s½j� or (s½i�≹p1

s½j� and

s½i� �p2
s½j�). In both cases s[i] and s[j] satisfy the 2nd condition required for s to be in

indSubsequence(π1, π2). Similarly in case ii) s[i] being in a bucket preceding s[j] in ph
2

implies that either s½i� �p2
s½j� or (s½i�≹p2

s½j� and s½i� �p1
s½j�). In both cases s[i] and s[j] satisfy

the 2nd condition required for s to be in indSubsequence(π1, π2).

Theorems 1 and 2 provide a formal proof that searching for the LC(I)S of two bucket orders

π1 and π2 gives the same result as searching for the LC(I)S of their two homogenized counter-

parts ph
1

and ph
2
.

Algorithm for LC(I)S of two bucket orders

Note that the number of markers is potentially decreased by the homogenization procedure

and that ph
1

and ph
2

have the same (number of) markers and buckets (Property 1). In this sec-

tion we denote by jD1j and jD2j the number of elements of π1 and π2 respectively; by n the

maximum of those two values; and by nb and nh the number of buckets and markers contained

in the homogenized orders ph
1

and ph
2
. It follows nb� nh� n.

Lemma 2. After homogenization, buckets are either fully identical or share no common ele-

ment (Proof. Direct consequence of Property 1).

Lemma 3. The LCIS of ph
1

and ph
2

contain only one element per homogenized bucket (Proof.
Direct consequence of Definition 4).

It follows from these two lemmas 2 properties:

Property 2. Finding a LCIS of π1 and π2 is finding a LCS of the bucket sequences of ph
1

and ph
2
.

Property 3. Finding a LCS of π1 and π2 is finding a Heaviest Common Subsequence (HCS)

of the bucket sequences of ph
1

and ph
2

where each bucket is weighted by its number of elements.

Fig 2 (left) illustrates the comparison of genetic maps π1 and π2, as well as the comparison

of genetic maps from ph
1

and ph
2

(middle and right) in terms of LC(I)S results (in blue). A subset

of non conflicting markers can be seen as a set of non-intersecting edges.

To compute the LC(I)S of two bucket orders π1 and π2, we can use the classical quadratic

dynamic programming scheme for LCS/HCS [30] on the two sequences of buckets of the

homogenized orders ph
1

and ph
2
. This is what is done in Algorithm 2. The only subtlety is to

manage to recognize identical buckets in constant time. For this, it is sufficient to note that

even if the elements of a bucket are incomparable, they are represented in memory by a linear

structure. It is then sufficient to choose a total order on D ¼ D1 \D2 (e.g., the lexicographic

order) and to represent all the buckets of π1 and π2 in this order. Testing the equality of two

buckets is then equivalent to testing the equality of their first elements (cf. Line 9 of

Algorithm 2).

Algorithm 2 begins with the homogenization of π1 and π2, assuming their buckets are

ordered using the same total order, and then classically fills the dynamic programming matrix

with the lengths of the LCS or LCIS of ph
1

and ph
2

prefixes, depending on whether the boolean

induced is false or not. Note that the homogenization (Algorithm 1) does not modify the order

of bucket elements if they are already ordered in the same way, so buckets of ph
1

and ph
2

are also

ordered according to the same total order as those of π1 and π2. It then follows the backtrack-

ing procedure that retrieves a LC(I)S.

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 9 / 19

https://doi.org/10.1371/journal.pone.0208838

Proposition 3. (Algorithm 2 correction). Given two bucket orders π1 and π2 and a boolean

induced, Algorithm 2 returns a LCS of π1 and π2 if induced is false, and an LCIS of π1 and π2

otherwise.

Algorithm 2: LC(I)S
Data: Two bucket orders π1 and π2 with bucket elements ordered

according to a same total order and a boolean induced
Result: One of the LC(I)S of input orders.
// homogenizing the two bucket orders

1 ph
1
 Homogenization(π1,π2); ph

2
 Homogenization(π2,π1);

2 Let Bh1 ¼ ðBh1
1 ; . . . ;Bh1

jBh1 j
Þ and Bh2 ¼ ðBh2

1 ; . . . ;Bh2

jBh2 j
Þ be the ordered sequences of

buckets of ph
1
and ph

2
respectively

3 nb jB
h1 j; //jBh1 j ¼ jBh2 j by Property 1

// filling the matrix L with the LC(I)S lengths of ph
1
and ph

2
prefixes

4 L a new matrix of size (nb + 1) × (nb + 1);
5 for i from 0 to nb do
6 L[i, 0] 0; L[0, i] 0;
7 for i from 1 to nb do
8 for j from 1 to nb do
9 if Bh1

i ½1� ¼ Bh2
j ½1� then

10 if induced then
11 L[i, j] L[i − 1, j − 1] + 1;
12 else
13 L½i; j� L½i � 1; j � 1� þ jBh1

i j;
14 else
15 L[i, j] max(L[i − 1, j], L[i, j − 1]);

// building a LC(I)S of π1 and π2 by backtracking L
16 τ an empty sequence; i nb; j nb;
17 while i > 0 et j > 0 do
18 if Bh1

i ½1� ¼ Bh2
j ½1� then

19 if induced then
20 t:push frontðBh1

i ½1�Þ

21 else
22 foreach e in Bh1 do

Fig 2. Comparison of two genetic maps before (left) and after (middle and right) homogenization. The blue

elements of the scheme in the middle proposes a consensus without conflict corresponding to an LCS, while on the

right they show a consensus without conflict corresponding to the LCIS of π1 = ({k}, {a, b}, {l, c}, {d, e, f}, {i, j}, {g, h})

and π2 = ({g, h}, {c, d, e, f}, {m, q}, {r, a}, {b, n}, {o, p, l}).

https://doi.org/10.1371/journal.pone.0208838.g002

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 10 / 19

https://doi.org/10.1371/journal.pone.0208838.g002
https://doi.org/10.1371/journal.pone.0208838

23 τ.push_front(e)
24 i − −; j − −;
25 else if L[i, j − 1] > L[i − 1, j] then
26 j − −;
27 else
28 i − −;
29 return τ;

Proof. The proof is straightforward as Algorithm 2 uses the classical methods [31] to

retrieve an HCS of ph
1

and ph
2
, giving an LCS of π1 and π2 (Property 3), when induced is false

and an HCS of ph
1

and ph
2
, giving an LCIS of π1 and π2 (Property 2), otherwise.

Time complexity of Algorithm 2 depends on 3 points:

1. Homogenization is O(n) or O(n log(n)) depending whether the linear version of the

homogenization algorithm is used or not (Line 1);

2. The filling of the matrix is Oðn2
bÞ, with nb the number of buckets (Lines 4-15);

3. The backtracking procedure is O(nb) for retrieving a LCIS or O(nh) to retrieve a LCS

(Lines 16-28).

The overall time complexity of Algorithm 2, dominated by points 1 and 2, is thus at most

Oðn logðnÞ þ n2
bÞ. In the worst case scenario, where all buckets contain only one marker and

all markers are present in both π1 and π2, nb equals n and the complexity is O(n2) –just as for

the naive solution. In all other cases our solution has a lower time complexity and is faster. The

gain in performance increases with the size of the buckets and the number of markers appear-

ing in a single input order.

We give in S2 Algo an alternative version of Algorithm 2 that does not need to assume a

total order on D nor similar bucket orderings as it includes bucket order preprocessing (done

by Algorithm 1 presented in the following section).

The use of the classical dynamic programming approach has several advantages. Building

and storing the full dynamic matrix of intermediary common subsequence lengths allows

Algorithm 2 not only to get the length of LC(I)S (stored in the last matrix cell), but also to build

a LC(I)S using the backtrack procedure. This also allows, with slight adaptation of the back-

tracking procedure, to count all the LC(I)S or to return several of them instead of a single one.

To improve time complexity, we can benefit from the LCS algorithmic improvements such

as the one of Masek and Paterson [16] that, assuming that the sizes of subsequences are

bounded, avoids having to fill the whole dynamic matrix and gives a faster algorithm with

O(n log(n) + nb log(nb)) time. Moreover, if one is only interested in getting the length of the

LC(I)S, or getting a sole LC(I)S representative among the possibly numerous ones, a more effi-

cient solution to tackle this problem is to rely on the Longest Increasing Subsequence (LIS). A

problem that can be solved in O(n log(n)).

In this section we have shown that we can use the classical LCS approach on bucket orders

with the same quadratic time complexity. The advantage of considering bucket orders is that

the solution is quadratic on the number of homogenized buckets instead of being quadratic in

the number of markers within the input maps. When numerous markers are positioned on the

same location, or when the compared map have numerous specific markers, this leads to a

drastic improvement in speed.

Time complexity improvement using LIS

Once again, to be able to use classical algorithms for the LIS problem we have to carefully pre-

treat our bucket orders. We give in this section Algorithm 1 that constructs suitable data

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 11 / 19

https://doi.org/10.1371/journal.pone.0208838

structures to encode the necessary information for the LIS computation (see Fig 3 for an exam-

ple). Note that this preprocessing can also be used combined with Algorithm 1 to compute

LCS (see Fig 4). The necessary information elements are for each bucket of each order:

- An identifier (buckets with same identifier are fully identical)

- Its elements

- The number of elements it contains

To test in O(1) whether or not a bucket of ph
1

is identical (i.e. contains the same elements as)

a bucket of ph
2
, Algorithm 3 relies on a id(.) function that assigns an integer between 1 and

jD1 [D2j to each bucket so that id(Bi) = id(Bj), Bi = Bj.

Proposition 4. A unique identifier can be assigned to ph
1

and ph
2

buckets in Oðn log ðjD1jÞÞ

and this identifier can be chosen to reflect the bucket position in Bh1 .

Algorithm 3: LCS-PRE-PROCESS

Data: Two bucket orders π1 and π2 on domains D1 and D2 respectively.
Result: Two arrays info ph

1
and info ph

2
so that info ph

1
½i� (resp info ph

2
½i�)

contains: the ith bucket of ph
1
(resp ph

2
), the integer identifier of this

bucket and the number of elements it contains.
1 ph

1
 Homogenization(π1,π2); ph

2
 Homogenization(π2,π1);

2 Let Bh1 ¼ ðBh1
1 ; . . . ;Bh1

jBh1 j
Þ and Bh2 ¼ ðBh2

1 ; . . . ;Bh2

jBh2 j
Þ be the ordered sequences of

buckets of ph
1
and ph

2
respectively.

3 e_to_buck_id an empty hash table;
4 nb jB

h1 j; //jBh1 j ¼ jBh2 j by Property 1
// Assign bucket id based on their position in ph

1
, initiate info ph

1

5 info ph
1
 new info array of size nb + 1;

Fig 3. Example of computation of LCIS using LIS with π1 and π2. The LIS of the sequence of identifiers from

info ph
2
½1�, (6, 3, 5, 1, 2, 4), is (1, 2, 4) and gives the LCIS of π1 and π2: (a, b, l).

https://doi.org/10.1371/journal.pone.0208838.g003

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0208838.g003
https://doi.org/10.1371/journal.pone.0208838

6 info ph
1
½0�:id � 1;

7 for i from 1 to nb do
8 info ph

1
½i�:bucket Bh1

i ;
9 info ph

1
½i�:id i;

10 info ph
1
½i�:nbElt jBh1

i j;
11 foreach e in Bh1

i do
12 e_to_buck_id.add(key = e, value = buck_id);
13 info ph

2
 new info array of size nb + 1;

14 info ph
2
½0�:id � 2;

// Due to homogenization all elements of a bucket Bh2
i are in the

same Bh1 bucket, use its first element Bh2
i ½1� to get its id

15 for i from 1 to jBh2 j do
16 buck id e to buck id:getValueðBh2

i ½1�Þ;
17 info ph

2
½buck id�:bucket Bh2

i ;
18 info ph

2
½buck id�:id buck id;

19 info ph
2
½buck id�:nbElt jBh1

2 j;
20 return (info ph

1
, info ph

2
);

Proof. The procedure is described in Algorithm 3. The first loop iterates over all buckets of

Bh1 , initiates info ph
1

and saves, for each element, the identifier of the bucket it belongs to in a

hash table. This is done in time OðjD1j log ðjD1jÞÞ. The second loop iterates over all buckets of

Bh2 and for each bucket uses its first element to query the hash table containing the bucket

identifier associated to each element. This is done in time OðjD2j log ðjD1jÞÞ. Hence the overall

complexity of Oðmax ðjD1j; jD2jÞ log ðjD1jÞ, which is quite similar to O(n log(n)).

Once the two data structures info ph
1

and info ph
2

are computed by the application of Algo-

rithm 3 on π1 and π2, it follows the 2 properties:

Property 4. Finding a LCIS of π1 and π2 is finding a LIS of the sequence of bucket identifi-

ers stored in info ph
2
;

Property 5. Finding a LCS of π1 and π2 is finding, in info ph
2
, a Heaviest Increasing Subse-

quence (HIS) of the sequence of bucket identifiers where the elements are weighted by the cor-

responding bucket size.

Hence, we can obtain an LC(I)S of π1 and π2 in O(n log(n) time by using Algorithm 3 fol-

lowed by either the O(n log(log(n))) LIS algorithm by [15], as our homogenized orders can be

consider as permutations, (for LCIS) or by the O(n log(n)) Jacobson and Vo’s algorithm for

HIS [31] (for LCS).

We give in S3 Algo a linear time variant of Algorithm 3, assuming that bucket orders are

composed of pointers to elements of the domain.

To conclude the methodological part of this article, we present in Fig 4 a graph that sums

up our whole contribution in term of algorithms on bucket orders.

Application to genetic map visual comparison

Two high density durum wheat genetic maps, each made of thousands of markers, were

obtained thanks to high throughput genotyping of the offsprings of two pairs of progenitors:

Dic2xLoyd (map_DL) and Dic2xSilur (map_DS) using specific allelic capture and high

throughput sequencing [32]. A practical application of finding LC(I)S is illustrated in Fig 5,

which is a screenshot of the Genetic Map Comparator [12] (http://www.agap-sunshine.inra.fr/

genmapcomp/) when used to compare those two durum wheat maps together with their con-

sensus. This visual representation confirms that the maps are highly congruent. Their discrep-

ancies in chromosome 3A, highlighted by the red edges on Fig 5, are circumvent to few

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 13 / 19

http://www.agap-sunshine.inra.fr/genmapcomp/
http://www.agap-sunshine.inra.fr/genmapcomp/
https://doi.org/10.1371/journal.pone.0208838

regions that could result from small chromosomal rearrangements in those regions between

Loyd and Silur progenitors.

The Genetic Map Comparator is an R Shiny application made to facilitate genetic map

comparisons. One of the challenges for such a tool is to visually emphasize the collinear mark-

ers on the two adjacent maps, as well as the breakpoints. This can be done by identifying (a

minimal set of) crossing edges and coloring them differently; which can be done by identifying

the minimal subset of markers that should be removed to avoid crossing edges. When consid-

ering maps as partial orders, corresponding to Directed Acyclic Graph (DAG), the problem is

related to the Minimum Breakpoint Linearization problem, which is known to be NP-hard

[33]. The Genetic Map Comparator authors’ tackle this problem by using a brute force heuris-

tic to identify congruent markers using the following two-step approach: 1/ for each map a

total order is built by tie breaking markers using their position in the other map and, as a last

Fig 4. A graph summarizing algorithmic contributions on bucket orders. Each root to tip path of this graph

provides a pipeline that chains algorithms to obtain the LCS, the LCIS, or both the LCS and LCIS of 2 input bucket

orders π1 and π2. The framed nodes of this graph represent the computation steps while the other nodes are the input

and/or output of those steps. The algorithms that can be used at each computation step, together with its complexity

for this specific task are shown in grey. Note that we count only the time complexity of the specific part of each

algorithm. For example, Algorithm 2 calls an algorithm for the Homogenization part, which we don’t count here, as it

appears higher on the path. The overall time complexity of a pipeline to get a LCS/LCIS of π1 and π2 is the sum of the

complexities encountered along the corresponding root to tip path. For example, the time complexity of the pipeline

that returns a LCS(π1, π2) by chaining S1 and S3 Algo and HIS algo [31] (thick arrow path) is O(n) + O(nh) +

O(nh log(nh)) = O(n log(n)).

https://doi.org/10.1371/journal.pone.0208838.g004

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 14 / 19

https://doi.org/10.1371/journal.pone.0208838.g004
https://doi.org/10.1371/journal.pone.0208838

resort, the marker name (a procedure similar to the first step of our homogenization proce-

dure) 2/ the LCS of those two fully ordered sequences of markers is computed using the stan-

dard LCS algorithm implemented in the qualV R package [7]. Which turns out to be an exact

(but computationally non optimal) solution for the LCS problem of the input bucket orders

(this is now obvious thanks to the results provided in this paper). A much more efficient solu-

tion is to use the bucket map model and dedicated LC(I)S algorithms described in this paper.

As the two compared solutions are guaranteed to return an optimal LCS, the solutions pro-

posed by the two approaches are equally good and the only difference between these methods

is the time they need to return the searched LCS. To emphasize the speed up brought about by

our solution, we simulate pairs of bucket orders containing 100, 500, 1000, 5000, 10000, 50000,

75000 and 100000 markers. The first order of each pair is obtained by randomly assigning its

n markers to n/10 buckets, while the second order is obtained by swapping 10% of the buckets

and moving randomly 10% of the markers (the simulation script is available on LCSLCIS

github repository). On the laptop used to conduct the tests (intel i7-6600U, 16Gb RAM), our

LC(I)S solution can easily handle datasets of 100,000 markers in seconds whereas the qualV

LCS implementation is unable to handle datasets containing 50,000 markers. Both solutions

are extremely fast for very small datasets, but the speed difference rapidly increases with the

number of markers (Fig 6).

Fig 5. Screenshot of a comparison of three genetic maps of the 3A chromosome of durum wheat displayed by the Genetic Map Comparator. The

map_DS (right) and map_DL (left) were obtained using different durum wheat progenitors; map_consensus (middle) is the consensus of those two

maps as proposed by [32]. For this comparison, two LCS have been computed: the LCS of map_DS and map_consensus and the LCS of map_DL and

map_consensus. Markers present in two adjacent maps are then connected by black, or red, edges depending on whether they are, or not, part of their

LCS.

https://doi.org/10.1371/journal.pone.0208838.g005

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 15 / 19

https://doi.org/10.1371/journal.pone.0208838.g005
https://doi.org/10.1371/journal.pone.0208838

Moreover our formalization of the problem sheds light on the fact that two equally mean-

ingful formulations of this problem exist depending on whether we weight crossing edges by

the number of pairs of markers they link (LCS) or not (LCIS) and both problems can be solved

efficiently in the special case of bucket orders.

Fig 6. Comparison of computation times in seconds (Y axis) needed to compute LC(I)S for an increasing number of markers (X axis). Three methods

are compared: our bucket dedicated methods to compute 1/ LCS (dashed green line) or 2/ LCIS (plain red line) and 3/ a brute force solution ignoring

bucket order specificities and relying on the LCS function of the qualV package (blue dotted line). This latter solution is unable to handle large dataset, and

crashes the Rstudio environment when called with the 50000 marker dataset whereas our solutions easily handle much larger datasets in seconds.

https://doi.org/10.1371/journal.pone.0208838.g006

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 16 / 19

https://doi.org/10.1371/journal.pone.0208838.g006
https://doi.org/10.1371/journal.pone.0208838

Conclusion

In this article, we are interested in the problem of comparing two genetic maps by finding

their similarities and their differences. For that, we chose to use their LCS which is their largest

set of collinear markers. We proposed a new modeling for genetic maps: bucket orders, a pre-

cise mathematical object that is able to encode uncertainties about marker positions in maps,

while retaining relative position information. We have stated two simple problems: the classi-

cal LCS problem adapted to bucket orders and the LCIS problem that prevents the possible

random ordering of markers (non comparable in both input orders) observed in the LCS. For

each of these problems, we have proposed algorithms that are simple to program, efficient in

computation time and rigorously proven. These algorithmic improvements are especially rele-

vant for genetic maps built from SNPs observed in segregating populations where numerous

markers are often in total linkage disequilibrium and placed at the exact same position/

bucket along the genetic map. These algorithms are implemented in the R package, named

LCSLCIS, ready to replace an already existing slower routine used to accomplish the exact

same task. Finally, we have illustrated the effectiveness of our approach by applying it to the

visual comparison of genetic maps.

The main contribution of the present work is hence twofold. First it provides a theoretical

framework when considering genetic maps as bucket orders including a formal definition of i)

the LC(I)S for two bucket orders ii) the homogenization of two bucket orders and iii) proof

that the LC(I)S is unchanged by the homogenization procedure. Second, it provides a toolkit

of simple though efficient algorithms to compute LC(I)S that can be reused by various genetic

map related applications. For instance ALLMAPS [6] orient and order sequence scaffolds by

minimizing the sum of LCS distance between the considered scaffold organization and some

input genetic maps. The LC(I)S procedure introduced here can thus advantageously replace

the one used in ALLMAP to efficiently deal with markers located at the same position. The

Genetic Map Comparator also relies on an LCS routine to pinpoint incongruent marker posi-

tions in different genetic maps and could also benefit from the optimized solution we pro-

posed. Tools which search to build a consensus of several genetic maps, such as MergeMap

[34], DAGGER [4] could also benefit from this work. Any genetic map related tool relying on

LCS subroutine can safely replace its current LCS subroutine by ours –to do the exact same

work but faster– and could thus benefit from a significant speed up while preserving its accu-

racy. To widen the fields of application, it would be interesting to use these results to design an

efficient heuristic able to efficiently search for a genetic map that is the median of several input

maps in so far as the LC(I)S related measurements are concerned. Such a heuristic could be

used, for example, to construct the backbone of a consensus map efficiently.

Supporting information

S1 Proof. Proof of Lemma 1.

(PDF)

S2 Proof. Proof of Proposition 1.

(PDF)

S1 Algo. Linear homogenization. This algorithm is a linear version of Algorithm 1 assuming

that bucket orders are composed of pointers to elements of the domain. This version is

inspired by a trick found in [28] to preprocess bucket orders by relabeling the domain D by

the integers from 1 to jDj.
(PDF)

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208838.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208838.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208838.s003
https://doi.org/10.1371/journal.pone.0208838

S2 Algo. LC(I)S from LCS-pre-process. Algorithm S2 Algo is an alternative version of Algo-

rithm 1 that does not need to assume a total order on D nor similar bucket orderings as it relies

on the preprocess of Algorithm 1 (or its linear version Algorithm S3 Algo).

(PDF)

S3 Algo. Linear LCS-pre-process. Algorithm S3 Algo is a linear version of Algorithm 1

assuming that bucket orders are composed of pointers to elements of the domain, using the

same trick as Algorithm S1 Algo.

(PDF)

Author Contributions

Conceptualization: Lisa De Mattéo, Vincent Ranwez, Sèverine Bérard.

Formal analysis: Vincent Ranwez, Sèverine Bérard.

Funding acquisition: Sèverine Bérard.

Investigation: Lisa De Mattéo.

Methodology: Vincent Ranwez, Sèverine Bérard.

Software: Lisa De Mattéo, Yan Holtz, Vincent Ranwez.

Supervision: Vincent Ranwez, Sèverine Bérard.

Validation: Yan Holtz, Vincent Ranwez, Sèverine Bérard.

Visualization: Yan Holtz.

Writing – original draft: Lisa De Mattéo, Vincent Ranwez, Sèverine Bérard.

Writing – review & editing: Vincent Ranwez, Sèverine Bérard.

References
1. Sturtevant AH. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode

of association. Journal of Experimental Zoology. 1913; 14:43–59. https://doi.org/10.1002/jez.

1400140104

2. Cone KC, Coe EH. In: Genetic Mapping and Maps. New York, NY: Springer New York; 2009. p.

507–522.

3. Brandenburg F, Gleißner A, Hofmeier A. The nearest neighbor Spearman footrule distance for bucket,

interval, and partial orders. J Comb Optim. 2013; 26(2):310–332. https://doi.org/10.1007/s10878-012-

9467-x

4. Endelman JB. New algorithm improves fine structure of the barley consensus SNP map. BMC Geno-

mics. 2011; 12(1):407. https://doi.org/10.1186/1471-2164-12-407 PMID: 21831315

5. Endelman JB, Plomion C. LPmerge: an R package for merging genetic maps by linear programming.

Bioinformatics. 2014; 30(11):1623–1624. https://doi.org/10.1093/bioinformatics/btu091 PMID:

24532720

6. Tang H, Zhang X, Miao C, Zhang J, Ming R, Schnable JC, et al. ALLMAPS: robust scaffold ordering

based on multiple maps. Genome Biology. 2015; 16(1):3. https://doi.org/10.1186/s13059-014-0573-1

PMID: 25583564

7. Jachner S, van den Boogaart KG, Petzoldt T. Statistical Methods for the Qualitative Assessment of

Dynamic Models with Time Delay (R Package qualV). Journal of Statistical Software. 2007; 22(8):1–30.

https://doi.org/10.18637/jss.v022.i08

8. Li G, Serba D, Saha MC, Bouton J, Lanzatella CL, Tobias C. Genetic Linkage Mapping and Transmis-

sion Ratio Distortion in a Three-Generation Four-Founder Population of Panicum virgatum (L.). 2014;

4:5 913–5923.

9. Fiedler J, Lanzatella C, Okada M, Jenkins J, Schmutz J, Tobias C. High-Density Single Nucleotide Poly-

morphism Linkage Maps of Lowland Switchgrass using Genotyping-by-Sequencing. 2015; 8.

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 18 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208838.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208838.s005
https://doi.org/10.1002/jez.1400140104
https://doi.org/10.1002/jez.1400140104
https://doi.org/10.1007/s10878-012-9467-x
https://doi.org/10.1007/s10878-012-9467-x
https://doi.org/10.1186/1471-2164-12-407
http://www.ncbi.nlm.nih.gov/pubmed/21831315
https://doi.org/10.1093/bioinformatics/btu091
http://www.ncbi.nlm.nih.gov/pubmed/24532720
https://doi.org/10.1186/s13059-014-0573-1
http://www.ncbi.nlm.nih.gov/pubmed/25583564
https://doi.org/10.18637/jss.v022.i08
https://doi.org/10.1371/journal.pone.0208838

10. Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, et al. MCScanX: A toolkit for detection and evolu-

tionary analysis of gene synteny and collinearity. 2012; 40:e49.

11. Xu Y, Bi C, G, S, Dai X, Yin T, et al. VGSC: A Web-Based Vector Graph Toolkit of Genome Synteny

and Collinearity. 2016; 2016:8.

12. Holtz Y, David J, Ranwez V. The genetic map comparator: a user-friendly application to display and

compare genetic maps. Bioinformatics. 2017; 33(9):1387–1388. https://doi.org/10.1093/bioinformatics/

btw816 PMID: 28453680

13. Silfverberg M, Liu L, Hulden M. A Computational Model for the Linguistic Notion of Morphological Para-

digm. In: COLING; 2018. p. 1615–1626.

14. Beal R, Afrin T, Farheen A, Adjeroh D. A new algorithm for “the LCS problem” with application in com-

pressing genome resequencing data. In: 2015 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM); 2015. p. 69–74.

15. Hunt JW, Szymanski TG. A Fast Algorithm for Computing Longest Subsequences. Commun ACM.

1977; 20(5):350–353. https://doi.org/10.1145/359581.359603

16. Masek WJ, Paterson M. A Faster Algorithm Computing String Edit Distances. J Comput Syst Sci. 1980;

20(1):18–31. https://doi.org/10.1016/0022-0000(80)90002-1

17. Apostolico A. Improving the Worst-Case Performance of the Hunt-Szymanski Strategy for the Longest

Common Subsequence of Two Strings. Inf Process Lett. 1986; 23(2):63–69. https://doi.org/10.1016/

0020-0190(86)90044-X

18. Maier D. The Complexity of Some Problems on Subsequences and Supersequences. J ACM. 1978;

25(2):322–336. https://doi.org/10.1145/322063.322075

19. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL. Alignment of whole genomes.

Nucleic Acids Research. 1999; 27(11):2369. https://doi.org/10.1093/nar/27.11.2369 PMID: 10325427

20. Vialette S, Bonizzoni P, Dondi R, Della Vedova G, Fertin G, Rizzi R. Exemplar Longest Common Sub-

sequence. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2007; 4:535–543.

https://doi.org/10.1109/TCBB.2007.1066 PMID: 17975265

21. Beal R, Afrin T, Farheen A, Adjeroh D. A new algorithm for “the LCS problem” with application in com-

pressing genome resequencing data. BMC Genomics. 2016; 17(4):544. https://doi.org/10.1186/

s12864-016-2793-0 PMID: 27556803

22. Habib M, Paul C, Viennot L. Partition Refinement Techniques: An Interesting Algorithmic Tool Kit. Int J

Found Comput Sci. 1999; 10(2):147–170. https://doi.org/10.1142/S0129054199000125

23. Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E. Comparing Partial Rankings. SIAM J Discrete

Math. 2006; 20(3):628–648. https://doi.org/10.1137/05063088X

24. Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, et al. A High-Density Consensus Map of Common Wheat Inte-

grating Four Mapping Populations Scanned by the 90K SNP Array. Front Plant Sci. 2017; 8:1389.

https://doi.org/10.3389/fpls.2017.01389 PMID: 28848588

25. Holub J, Smyth WF. Algorithms on indeterminate strings. 2003; p. 36–45.

26. Daykin JW, Watson B. Indeterminate String Factorizations and Degenerate Text Transformations.

Mathematics in Computer Science. 2017; 11(2):209–218. https://doi.org/10.1007/s11786-016-0285-x

27. Dijkstra EW. Smoothsort, an Alternative for Sorting In Situ. Sci Comput Program. 1982; 1(3):223–233.

https://doi.org/10.1016/0167-6423(82)90016-8

28. Bansal MS, Fernández-Baca D. Computing distances between partial rankings. Inf Process Lett. 2009;

109(4):238–241. https://doi.org/10.1016/j.ipl.2008.10.010

29. Brandenburg FJ, Gleißner A. Ranking chain sum orders. Theor Comput Sci. 2016; 636:66–76. https://

doi.org/10.1016/j.tcs.2016.05.026

30. Wagner RA, Fischer MJ. The String-to-String Correction Problem. J ACM. 1974; 21(1):168–173.

https://doi.org/10.1145/321796.321811

31. Jacobson G, Vo K. Heaviest Increasing/Common Subsequence Problems. In: Combinatorial Pattern

Matching, Third Annual Symposium, CPM 92, Tucson, Arizona, USA, April 29—May 1, 1992, Proceed-

ings; 1992. p. 52–66.

32. Holtz Y, Ardisson M, Ranwez V, Besnard A, Leroy P, Poux G, et al. Genotyping by Sequencing Using

Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat. Plos One. 2016; 11(5).

https://doi.org/10.1371/journal.pone.0154609

33. Bulteau L, Fertin G, Rusu I. Revisiting the Minimum Breakpoint Linearization Problem. Theor Comput

Sci. 2013; 494:122–133. https://doi.org/10.1016/j.tcs.2012.12.026

34. Wu Y, Close TJ, Lonardi S. Accurate Construction of Consensus Genetic Maps via Integer Linear Pro-

gramming. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2011; 8(2):381–394.

https://doi.org/10.1109/TCBB.2010.35 PMID: 20479505

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up genetic map comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0208838 December 27, 2018 19 / 19

https://doi.org/10.1093/bioinformatics/btw816
https://doi.org/10.1093/bioinformatics/btw816
http://www.ncbi.nlm.nih.gov/pubmed/28453680
https://doi.org/10.1145/359581.359603
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0020-0190(86)90044-X
https://doi.org/10.1016/0020-0190(86)90044-X
https://doi.org/10.1145/322063.322075
https://doi.org/10.1093/nar/27.11.2369
http://www.ncbi.nlm.nih.gov/pubmed/10325427
https://doi.org/10.1109/TCBB.2007.1066
http://www.ncbi.nlm.nih.gov/pubmed/17975265
https://doi.org/10.1186/s12864-016-2793-0
https://doi.org/10.1186/s12864-016-2793-0
http://www.ncbi.nlm.nih.gov/pubmed/27556803
https://doi.org/10.1142/S0129054199000125
https://doi.org/10.1137/05063088X
https://doi.org/10.3389/fpls.2017.01389
http://www.ncbi.nlm.nih.gov/pubmed/28848588
https://doi.org/10.1007/s11786-016-0285-x
https://doi.org/10.1016/0167-6423(82)90016-8
https://doi.org/10.1016/j.ipl.2008.10.010
https://doi.org/10.1016/j.tcs.2016.05.026
https://doi.org/10.1016/j.tcs.2016.05.026
https://doi.org/10.1145/321796.321811
https://doi.org/10.1371/journal.pone.0154609
https://doi.org/10.1016/j.tcs.2012.12.026
https://doi.org/10.1109/TCBB.2010.35
http://www.ncbi.nlm.nih.gov/pubmed/20479505
https://doi.org/10.1371/journal.pone.0208838

