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Environmental factors such as chemicals, stress and pathogens are now widely believed
to play important roles in the onset of some brain diseases, as they are associated
with neuronal impairment and acute or chronic inflammation. Alzheimer’s disease
(AD) is characterized by progressive synaptic dysfunction and neurodegeneration that
ultimately lead to dementia. Neuroinflammation also plays a prominent role in AD and
possible links to viruses have been proposed. In particular, the human immunodeficiency
virus (HIV) can pass the blood-brain barrier and cause neuronal dysfunction leading
to cognitive dysfunctions called HIV-associated neurocognitive disorders (HAND).
Similarities between HAND and HIV exist as numerous factors involved in AD such as
members of the amyloid and Tau pathways, as well as stress-related pathways or blood
brain barrier (BBB) regulators, seem to be modulated by HIV brain infection, leading to
the accumulation of amyloid plaques or neurofibrillary tangles (NFT) in some patients.
Here, we summarize findings regarding how HIV and some of its proteins such as Tat
and gp120 modulate signaling and cellular pathways also impaired in AD, suggesting
similarities and convergences of these two pathologies.

Keywords: HIV-associated neurocognitive disorders, neuroinflammation, viral neuroinfection, Alzheimer’s
disease, hypothalamo-pituitary-adrenal axis

Abbreviations: AD, Alzheimer’s disease; AIDS, acquired immunodeficiency syndrome; ALCAM, activated leukocyte cell
adhesion molecule; ALS, amyotrophic lateral sclerosis; ANI, asymptomatic neurocognitive impairment; APP, amyloid
precursor protein; Aβ, amyloid-β peptides; BACE1, β-secretase converting enzyme 1; BBB, blood brain barrier; BCRP, breast
cancer resistance protein; cART, combination antiretroviral therapy; CMV, cytomegalovirus; CNS, central nervous system;
CSF, cerebrospinal fluid; GC, glucocorticoids; gp120, glycoprotein 120; GR, glucocorticoid receptors; HAD, HIV-associated
dementia; HAND, HIV-associated neurocognitive disorders; HD, Huntington disease; HIV, human immunodeficiency
virus; HPA axis, hypothalamo-pituitary-adrenal axis; HSV, Herpes simplex virus; JAM-A, junctional adhesion molecule A;
LPR, low-density lipoprotein receptor-related protein; MND, mild neurocognitive disorder; MND, motor neuron diseases;
MR, mineralocorticoid receptors; MS, multiple sclerosis; Nef, negative regulatory factor; NFT, neurofibrillary tangles;
NVU, neurovascular unit; P-gp, P-glycoprotein; PD, Parkinson’s disease; RAGE, receptor for advanced glycation end
products; ROS, reactive oxygen species; Tat, transactivator of transcription; TJ, tight junctions; TNF-α, tumor necrosis
factor-α; Vpr, viral protein R.
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INTRODUCTION

Neurodegenerative disorders, whether they are sporadic, genetic
or due to pathogens, are caused by the specific impairment
(cell death or cell dysfunction) of different neural cell types
and represent a major health issue in developed and developing
countries. Central nervous system (CNS) impairment can have
tremendous effects on day-to-day activities, inducing a loss of
autonomy and the need for continuous care and support. Indeed,
cognitive processes, as well as locomotor and sensory functions
can be severely affected. In this context, the World Health
Organization estimated that close to 2 million persons died in
2012 from a neurological disorder (WHO, 2014) and Alzheimer’s
disease (AD) International reported that more than 46 millions
of people suffered from AD dementia worldwide in 2015 (Prince
et al., 2015).

Aging is certainly the primary risk factor for
neurodegenerative disorders such as AD and Parkinson’s
disease (PD). In AD, the risk doubles every 5 years after the
age of 65, and reaches 50% after 85. Genetic factors, often
involved in the regulation of neuronal activity or glial function,
are also found associated with several types of pathologies such
as motor neuron diseases (MND), AD, PD or Huntington’s
disease (HD). However, many of these disorders can be sporadic
and emphasize the role of the environment in their etiology.
For example, in AD, familial forms due to genetic mutations
represent less than 5% of cases, whereas sporadic forms are
predominant (Selkoe, 2001; Fratiglioni et al., 1993). In these
forms multifactorial factors have been identified such as
environmental agents that may increase the probability of
developing AD (Hayden et al., 2010; Yan et al., 2016). Among
such environmental factors, neurotropic infectious agents such
as bacteria, parasites or viruses can cause neuronal dysfunction:
some pathogens have been selected throughout evolution for
their ability to reach the CNS using different strategies such as
crossing the blood brain barrier (BBB) or by axonal transport
(Smith et al., 2001; Samuel et al., 2007; Salinas et al., 2010; Roe
et al., 2014). Once in the CNS, they can trigger a cascade of events
directly or indirectly due to their replication cycle, which will
lead to neuronal defects, and in some cases, host death. Because
some pathophysiological mechanisms involved in neuronal
infection and neurodegenerative diseases are relatively similar,
and sometimes overlapping, links have been proposed between
the onset of certain brain diseases and prior encounters with
neurotropic pathogens (Mattson, 2004; De Chiara et al., 2012).
For example, some studies proposed potential links between
herpes simplex virus (HSV) and/or cytomegalovirus (CMV)
infection and the etiology of AD (Itzhaki et al., 1997; Lurain
et al., 2013; Itzhaki, 2014). In particular, the presence of HSV
in patients carrying susceptibility genes (e.g., APOE-e4 allele)
is associated with the disease (Itzhaki et al., 1997). In the same
light, CMV infection has been proposed to have a role in AD by
modulating inflammatory responses (Lurain et al., 2013). In this
context, accumulating evidence show that neuroinflammation
and cerebrovascular permeability are key mechanisms in the
etiology of many of these diseases including AD, MND and
multiple sclerosis (MS; Hong H. et al., 2016). In the brain,

the resident cells involved in inflammation are the glial cells,
namely astrocytes and microglia. Interestingly, links between
glial-mediated immune response and regulation of cognitive
processes are emerging. For example, the pro-inflammatory
cytokine tumor necrosis factor tumor necrosis factor-α (TNF-α)
can trigger an astrocyte-dependent response that will ultimately
lead to excitatory synapses impairment (Habbas et al., 2015).
Along the same line, microglia cells are also key regulators of
synaptic function and could be responsible for some cognitive
deficits after synaptic impairment following activation by viral
infections (Vasek et al., 2016), in some brain diseases such
as Oculoleptomeningeal amyloidosis (Azevedo et al., 2013)
or in AD (Hong S. et al., 2016; Rajendran and Paolicelli,
2018).

One physiological system regulating inflammation is
the hypothalamo-pituitary-adrenal (HPA) axis, a major
neuroendocrine system. This axis is highly involved in
stress responses and triggers the adrenal cortex to release
glucocorticoids (GC; cortisol in humans and corticosterone
in rodents). These steroid hormones readily cross the BBB
and bind to low affinity glucocorticoid receptors (GR) and
high affinity mineralocorticoid receptors (MR; Reul and de
Kloet, 1985). These receptors are necessary for normal cellular
activity, inflammatory and stress responses, and crucial for many
CNS functions, including learning and memory (Roozendaal,
2000; Chen et al., 2012). GC via their receptors, increase the
transcription of anti-inflammatory genes but also inhibit the
expression of multiple inflammatory genes (cytokines, enzymes,
receptors and adhesion molecules; Coutinho and Chapman,
2011; Van Bogaert et al., 2011). Interestingly, pathogens can
activate the HPA axis and induce subsequent secretion of
GC, directly by their structural and genetic components and
indirectly by the immune response involving cytokines and
inflammatory mediators secreted from activated immune cells
and infected tissues (Givalois et al., 1994; Kino, 2000). However,
in case of excessive secretion due to chronic stress, GC become
unable to exert their effects on target tissues, and trigger the
syndrome of GC resistance (Chrousos et al., 1993; Charmandari
et al., 2005). Thus, prolonged stimulation of GC secretion can
induce or potentiate neuroinflammation, but also excitotoxicity
and oxidative stress via synergistic effects with excitatory amino
acids such as glutamate (Takahashi et al., 2002; McEwen, 2008).

As yet, there is no definitive and conclusive data showing
a causative link between the human immunodeficiency
virus (HIV) neuroinfection and the onset of AD. However,
accumulating evidence suggests that common pathways
and factors are modulated in the brains of HIV+ and AD
patients, thus pointing out similarities and convergence in these
two pathologies. In particular, neuroinflammation is strongly
associated with both diseases and is emerging as a major player in
the onset and progression of neuropathologies. Understanding
the potential link between molecular mechanisms such as
neuroinflammation, viral CNS infection, HPA axis deregulation
and neurodegenerative disorders is therefore more than
pertinent. Here, we summarize existing data, drawing parallels
between HIV-associated neurocognitive disorders (HAND) and
AD where similar cellular pathways are impaired, and propose
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potential new links between HIV, HPA pathways and AD that
were not previously reported or addressed.

HIV NEUROINFECTION

HIV is a retrovirus that depletes CD4+ cells and strongly impairs
the immune response, thus opening up the way for opportunistic
infections that cause the acquired immunodeficiency syndrome
(AIDS). However, the immune system is not the only target.
HIV is sometimes classified as a neurotropic virus, even
though it cannot directly infect neurons, due to their lack
of expression of its main receptor CD4 (Peudenier et al.,
1991). Nonetheless, the virus can access the brain very early
on during primary infection (within the first 2 weeks) where
it can locally replicate and become compartmentalized, as
determined by recent phylogenetic analyses (Sturdevant et al.,
2015). The virus then leads to neurotoxicity that is associated
with motor, sensory and cognitive impairment in around
50% of HIV+ patients (Becker et al., 2009; Thakur et al.,
2018). These neuronal impairments are collectively named
HAND (González-Scarano and Martín-García, 2005; Clifford
and Ances, 2013; Thakur et al., 2018). Depending on the
severity of the symptoms, these conditions are classified
into three groups: asymptomatic neurocognitive impairment
(ANI), mild neurocognitive disorder (MND) andHIV-associated
dementia (HAD) (Antinori et al., 2007). Clinically, patients can
display a range of symptoms from cognitive deficits (memory,
attention, language, behavior), motor and sensory impairment,
mood changes to dementia. Even though asymptomatic, ANI
HIV+ patients present higher risk for developing cognitive
impairments compared to controls and have been proposed to
mirror early phases of AD (Ellis et al., 2007; McArthur et al.,
2010).

With the introduction of successful combination
antiretroviral therapy (cART), the incidence of HAND has
decreased (Maschke et al., 2000; González-Scarano and Martín-
García, 2005). However, its prevalence is increasing, mainly
due to the increased life expectancy of patients, cardiovascular
risks factors, exposure hazards, and ongoing nervous system
inflammation despite cART. Patients diagnosed with HAND,
with mild or severe cognitive impairments, have a lower
quality of life and shorter lifespan (Heaton et al., 2011). Before
the establishment of cART, HAD could be found in up to
15%–20% of HIV+ individuals and was one of the main risk
factor (McArthur et al., 1993, 2003). In the post-cART era, the
total proportion of patients with HAND did not vary but the
distribution of the classes changed with a decrease in HAD and
an increase in MND and ANI (González-Scarano and Martín-
García, 2005). Moreover, neuronal disorders are becoming more
frequent in the aging HIV+ population (Thakur et al., 2018).
Prospective trials have found poor prediction on the effect of
cART on the patient’s cognitive impairment as the BBB limits the
penetration of the drugs into the brain and some antiretrovirals
(ARV) can show neurotoxicity (Soontornniyomkij et al., 2018;
Thakur et al., 2018). In this context, HAD has also been proposed
as the most common form of dementia in people under 40 years
of age (Janssen, 1992).

HIV enters the CNS by a mechanism called ‘‘Trojan
horse’’ that consists of the migration of infected monocytes
through the BBB (Williams et al., 2015; Zhang et al., 2015).
Recent work showed that CD14+CD16+ monocytes are able
to efficiently transmigrate through the BBB and are found
in high numbers in HIV-infected individuals (Williams et al.,
2015). Once in the brain, HIV can infect various cell types
expressing the CD4 receptor including microglia (Cosenza et al.,
2002), perivascular macrophages and potentially adult neural
precursors (Rothenaigner et al., 2007). Viral replication is also
seen in a restrictive manner in astrocytes (Eugenin et al.,
2011). These observations have led to the classification of
the brain as a reservoir and a sanctuary for HIV (Hellmuth
et al., 2015). In the brain, direct and indirect effects of HIV
infection will lead to neuronal dysfunction (Figure 1): infected
astrocytes and microglia release factors inducing neurotoxicity
such as cytokines, chemokine and reactive oxygen species (ROS)
(González-Scarano and Martín-García, 2005). Later, this may
also contribute to the disruption of the BBB and result in
further entry/exit of virions and viral proteins (see below).
Some HIV proteins (glycoprotein120 (gp120), transactivator
of transcription (Tat), viral protein R (Vpr) and negative
regulatory factor (Nef)) can have direct effects on neurons
and trigger signaling cascades leading to neuronal impairment.
These proteins can be released from infected non-neuronal
cells or shed from virions (Nath, 2002; Churchill et al., 2015).
Consistently, some viral proteins such as Tat and Vpr are found
in the cerebrospinal fluid (CSF; Levy et al., 1994; Hudson et al.,
2000; Nath, 2002). Numerous studies using ex vivo and in vivo
models show a plethora of neurotoxic effects: the envelope
protein gp120 was shown to promote the release of IL-1β and
TNFα, as well as neurotoxic factors such as glutamate, which
in turn triggers neuronal apoptosis. (Garden et al., 2002; Bachis
et al., 2009). Tat potentiates glutamate overactivation of NMDA
receptors and release of cytokines through astrocytes (Haughey
et al., 2001; King et al., 2006) and triggers neuronal apoptosis
(Kruman et al., 1998). Tat and gp120-mediated apoptosis also
triggers an increase in intracellular calcium levels which is
classically associated with excitotoxicity processes and is induced
by glutamate accumulation in the extracellular space. HIV+

patients show elevated CSF glutamate levels that correlate with
dementia severity and the degree of brain atrophy (Ferrarese
et al., 2001). Similarly, the protein Nef can trigger cytotoxic
effects (Sami Saribas et al., 2017). Vpr has been proposed
to induce mitochondrial neuronal accumulation and impaired
axonal transport by modulating microtubule stability (Wang
et al., 2017).

Ultimately, if the viral load is not controlled, neuronal loss
will occur. Interestingly, similarly as during the early stages of
AD (Bateman et al., 2012; Marcello et al., 2012), HIV-induced
neurodegeneration does not correlate completely with cognitive
impairments. Cognitive deficits in patients with HAD have
been shown to better correlate with synaptic impairment
than neurodegeneration as cell death is also accompanied
by axonal degeneration, astrocytosis and synaptic loss (Adle-
Biassette et al., 1999; Avdoshina et al., 2013). Moreover, some
studies aimed to decipher whether neurocognitive deficits
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FIGURE 1 | Proposed mechanism for human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND). HIV-1, through infected monocytes, can
cross the blood brain barrier (BBB) by the Trojan horse mechanism. In the central nervous system (CNS), neuroinflammation triggered directly by viral replication or by
HIV-viral proteins (glycoprotein 120 (gp120), transactivator of transcription (Tat), viral protein R (Vpr), negative regulatory factor (Nef). . .) exert neurotoxic effects. They
impact neurons integrity and lead to Alzheimer’s disease (AD)-like characteristics such as A generation, abnormal Tau phosphorylation, oxidative stress and
excitotoxicity. The virus can induces neuroinflammation by several mechanisms: direct infection of astrocytes, BBB impairment and peripheral macrophages invasion,
or massive gliosis and cytokines release. Finally, HIV+ patients present high glucocorticoids (cortisol) levels, characteristic of a hypothalamic–pituitary–adrenal (HPA)
axis deregulation. Glucocorticoids and their receptors are highly involved in the etiology of AD. By these numerous pathways, HIV-1 induces synaptic deficits and
neurodegeneration, thus leads to cognitive and behavioral deficits, and could explain the establishment of HAND in HIV+ patients and potentially the onset of AD.

are still found in populations where the viral load is well
controlled. While some cohorts showed that cognitive functions
are generally not affected in individuals with no detectable
viremia (Lopardo et al., 2009), others suggest that there is still a
high prevalence of HAND in HIV+ aviremic patients (Cysique
et al., 2006; McArthur et al., 2010). This could be explained
by several non-exclusive mechanisms such as: (i) poor cART
regime penetration of the BBB; (ii) toxicity of anti-retrovirals;
(iii) prolonged lifespan of infected individuals; (iv) local
low-noise viral replication; and (v) chronic neuroinflammation.
Continuous inflammatory injuries could pave the way for some
neurodegenerative disorders. Potential links have therefore been
suggested between HIV and amyotrophic lateral sclerosis (ALS;
Alfahad and Nath, 2013) and AD (Chakradhar, 2018; see below).

KEY FEATURES OF AD

AD is a devastating neurodegenerative disorder and the
most common cause of neurodegenerative dementia in the
elderly. It is characterized by a progressive impairment of

cognitive functions, associated with synaptic and neuronal
loss, as well as senile plaques and neurofibrillary tangles (NFT)
in the brain (Selkoe, 2001; Cummings, 2004). Plaques are
composed of insoluble extracellular aggregates consisting mainly
of amyloid-β (Aβ) peptides, whereas NFT are the result of
hyper- and abnormal phosphorylation on the intracellular
microtubule-stabilizing protein Tau (Selkoe, 2001). Aβ

production is dependent of the amyloidogenic pathway
induction, and results from a pathological cleavage of the
amyloid precursor protein (APP) by β-secretase (BACE1), which
releases the C99 fragment, and a second cleavage by γ-secretase
releasing Aβ into the extracellular medium (Cummings, 2004;
Flammang et al., 2012). This generation of Aβ, in synergy
with Tau, induces a cascade of neurodegenerative mechanisms
such as cholinergic neurons degeneration, synaptic deficit,
neuroinflammation, oxidative stress, apoptosis and autophagy,
in part responsible for cognitive and behavioral deficits (Selkoe,
2001; Cummings, 2004). Moreover, neurotoxicity in AD is
correlated with the total level of brain circulating oligomeric
Aβ peptides, mainly consisting of Aβ1–40 and Aβ1–42 peptides
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(Selkoe, 2001; Cummings, 2004; Cleary et al., 2005; Blennow
et al., 2010).

COMMON MECHANISMS BETWEEN HIV
NEUROINFECTION AND AD

Because AIDS became a chronic disease with the advent of
cART, an important proportion of HIV+ patient population is
now over 50 years of age and also facing age-related disorders
(Milanini and Valcour, 2017). In addition, accelerated ageing,
including immunosenescence, is a constitutive part of the
natural history of HIV infection. In particular, HAND is
weakening an already age-targeted organ and could favor
the occurrence of neurodegenerative diseases. Regarding
AD, questions have risen about potential links with HIV
CNS infection from observations and studies demonstrating
modulation of common pathways/mechanism (such as the
amyloid and Tau pathways). In this context, several symptoms
associated with AD physiopathology were reported in HIV+

patients and murine in vivo and in vitro models of neuroAIDS
(Table 1).

HIV+ patients presenting HAND show CSF features very
similar to early and late stages of AD (Table 1). For instance,
biomarkers such as Aβ1–42 are found to be dysregulated in the
CSF of HAND patients (Clifford et al., 2009). When comparing
CSF from age-matched controls, HAND and late-stage AD
patients, a similar trend for decreased Aβ1–42 levels was found in
HIV+ individuals suffering from neuronal disorders (522 pg/ml
for HAND and 421 pg/ml for AD, compared to 722 pg/ml for
controls; Clifford et al., 2009). Notably, HIV+ patients without
neurological symptoms had levels of Aβ1–42 in the same range
as non-dementia controls (Clifford et al., 2009). Consequently,
plaques caused by extracellular amyloid peptide accumulation
can be seen in patients, particularly before the cART era (Esiri
et al., 1998; Green et al., 2005).

Emerging evidence suggests that brain exposure to HIV
particles and HIV proteins can directly or indirectly modulate
the amyloid and Tau pathways (Chen et al., 2013; Ortega and
Ances, 2014; Cho et al., 2017; Hategan et al., 2017). In HIV
murine models (HIV-1 transgenic rats and gp120 transgenic
mice) neurodegeneration is observed and associated with
apoptosis, gliosis, oxidative stress, Aβ synthesis and increases
in Tau phosphorylation (Table 1). Tat can affect Aβ synthesis
through several mechanisms. It can increases Aβ production by
modulating endolysosomal structure and function (Chen et al.,
2013). Conversely, Tat leads to an increase of Aβ accumulation
by inhibiting its degradation by neprilysin (Daily et al., 2006),
and increasing BACE1 activity and synthesis of the C99 fragment
(Chen et al., 2013; Cho et al., 2017). This increase in BACE1,
which is also found elevated in AD, was recently confirmed in
HIV+ patients (Stern et al., 2018). Similarly, treatment of primary
hippocampal cell cultures with recombinant gp120 promotes
Aβ1–42 secretion (Aksenov et al., 2010). In addition, when
lentiviral vector-derived Tat is expressed in the hippocampus of
APP/PS1 transgenic mice (a widely used mouse model of AD),
it potentiates Aβ1–42 synthesis and increases the size of amyloid
plaques (Kim et al., 2013). More recently, it was demonstrated

that in primary hippocampal neurons, Tat interacts with Aβ

peptides and forms complexes that increase damage likely
through membrane pore formation (Hategan et al., 2017). In
HIV-1 transgenic rats (which express seven of the nine HIV-1
viral proteins including gp120, Nef and Tat), the number and
size of amyloid plaques were significantly elevated in the cerebral
cortex compared to wild type (WT) animals (Cho et al., 2017).
This was accompanied by an increase of amyloid C-terminal
fragment C99 levels (>5-fold) in brains of HIV-1 transgenic
rats (Cho et al., 2017). Similarly, The HIV-1 matrix protein
p17 released from HIV-1 infected cells, participates in amyloid
deposits toxicity by its ability to misfold and aggregate, even in
the presence of protease inhibitors (Zeinolabediny et al., 2017).
When injected into themouse hippocampus, p17 colocalizes with
phospho-Tau, plaque and fibril-like structures, where it increases
Aβ expression and plaque-like development (Zeinolabediny
et al., 2017). This led to cognitive impairment, as measured by
recognition and Morris water maze tests (Zeinolabediny et al.,
2017). Recently, APP metabolism in macrophage and microglia
was reported to be modulated by HIV-1 Gag protein (Chai
et al., 2017). The Gag polyprotein was shown to increase Aβ

production and associated neurotoxicity by the activation of
secretases. APP on the other hand, was reported to act as an
antiviral factor by sequestering Gag in lipid rafts and restricting
HIV-1 release (Chai et al., 2017). The balance between these two
mechanisms (restriction and evasion), as well as the impact on
Aβ peptide genesis will need further investigation.

The causative role of Tau and/or hyperphosphorylation
of Tau in HAND is still poorly established. However, in
10 month-old gp120 transgenic mice, cognitive abnormalities,
which are associated with an increase in neuronal death
and gliosis, are also linked with an increase in Tau
hyperphosphorylation (Kang et al., 2010). This effect is
concomitant with an over-activation of GSK3-β, the main
enzyme involved in Tau phosphorylation (Kang et al., 2010). In
HIV-1 transgenic rats, levels of phosphorylated-Tau (p-Thr181,
p-Thr231 and p-Ser396) were markedly elevated in the
hippocampus and associated with an increase in Cdk5 activity,
the other main enzyme involved in Tau phosphorylation (Cho
et al., 2017). These animal model observations are in accordance
with significantly elevated levels of phospho-Tau and abnormal
NFT in HIV+ patients with HAND (Brew et al., 2005; Anthony
et al., 2006; Kang et al., 2010).

HIV, AD AND THE BLOOD BRAIN BARRIER

Neurodegenerative disorders, including HAND, are often
associated with BBB impairment (Atluri et al., 2015; Zhao
et al., 2015). Endothelial microvascular cells, pericytes, neurons
and astrocytes form and regulate the BBB neurovascular unit
(NVU), a tightly regulated endothelium that separates the brain
from the systemic circulation. The BBB is also a metabolic
barrier because endothelial cells express several enzymes and
efflux pumps impeding the entry of xenobiotics and cells into
the CNS (Cecchelli et al., 2014). When the modulation of the
microenvironment by inflammation or cell damage occurs, BBB
integrity can be perturbed. In AD, the damage of microvessels
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TABLE 1 | Common neurotoxicity pathways between Alzheimer’s disease (AD) and human immunodeficiency virus (HIV).

AD symptoms Observation in HIV+ patients Observations in in vivo and in vitro HIV models

Misprocessing of APP and
Aβ synthesis

Increase in CSF Aβ1–42 (ELISA; Brew et al., 2005)

Presence of amyloid plaques in brain (Esiri et al., 1998;
Green et al., 2005)

Increase of amyloid plaques production (Congo red
staining; Cho et al., 2017)

Increase of C99 fragment (western blot; Cho et al.,
2017)

Increase of Aβ1–42 (ELISA; Kim et al., 2013)

Abnormal Tau phosphorylation Increase in CSF total and phosphorylated Tau (ELISA;
Brew et al., 2005; Anthony et al., 2006)

Increase of GSK3β, Cdk5 and p35 in frontal cortex
(Patrick et al., 2011)

Increase of p-Thr181, p-Thr231, p-Ser396, p-Ser404
(western blot; Kang et al., 2010; Cho et al., 2017)

Increase of Cdk5 and GSK3β contents (western blot;
Kang et al., 2010; Cho et al., 2017)

Activation of death pathways
and apoptosis

Increase of apoptosis (TUNEL; Lannuzel et al., 1997)

Increase of JNK/ERK contents and activities (western
blot and kinases assay; Lannuzel et al., 1997)

Increase of caspase 3, Bax, pJNK/JNK, Erk contents
(western blot; Kruman et al., 1998; Kaul and Lipton,
1999; Cho et al., 2017)

Increase of apoptosis (TUNEL; Kruman et al., 1998)

Oxidative Stress Oxidative stress, ROS production, mitochondrial
dysfunction, impaired glucose metabolism (Vignoli et al.,
2000)

Increase of NAPDH oxydase, CYP2E1, iNOS, IkB,
HIF-1 (western blot; Cho et al., 2017)

Neuroinflammation Massive gliosis through peripheral macrophages
invasion and chemokines release (Peters et al., 2004)

Increase of astrocytes GFAP and microglial Iba1
(western blot and histology; Kang et al., 2010; Cho
et al., 2017)

Increase of proinflammatory cytokines (TNF, IL6,
MCP-1; western blot; Cho et al., 2017)

Excitotoxicity Increased CSF glutamate levels (ELISA; Ferrarese et al.,
2001)

Increase glutamate release and decrease glutamate
reuptake by astrocytes (Dreyer and Lipton, 1995;
Belmadani et al., 2001)

Neurodegeneration Cortical gray and white matter loss (post mortem
histological study; Masliah et al., 1992)
About 20%–50% neuronal loss in the frontal cortex
(Ketzler et al., 1990)

Decrease of NeuN (western blot; Kang et al., 2010; Cho
et al., 2017)
Impaired neurogenesis (Mishra et al., 2010)

Cognitive and learning deficits Decrease of memory performances (Becker et al., 2009) Learning deficits (Morris Water Maze; Vigorito et al.,
2007)

Blood Brain Barrier Increased CSF/plasma albumin ratio in HAD patients
(Anesten et al., 2016)

HIV infection increases leukocytes transmigration
through tight junctions (TJs) proteins down regulation
and metalloproteinases upregulation (Eugenin et al.,
2011)

HPA axis deregulation Glucocorticoid resistance, modification of
glucocorticoid sensitivity, altered cytokine production
(Chrousos and Zapanti, 2014)

Adrenal insufficiency, elevated plasma GC (Christeff
et al., 1997; Kino, 2000)

Increase of hypothalamic CRF levels, AVP levels and
CRF mRNA levels (Costa et al., 2000)

is believed to be associated with the progression of the disease
(Johnson et al., 2005; Marchesi, 2011; Rosenberg, 2014). In
mouse models and in AD patients, an alteration of the BBB
physiology exists and is linked with amyloid deposits (Gosselet
et al., 2013; Montagne et al., 2017; Yamazaki and Kanekiyo, 2017)
Moreover, Aβ peptides are normally cleared from the brain by
specific transport across the BBB. Receptors and transporters
expressed by NVU cells like LRP1, the P-glycoprotein (P-gp)
and Breast Cancer Resistance Protein (BCRP), play an important
role in Aβ transport through the BBB (Gosselet et al., 2013;
Storck et al., 2016). LRP1 may also be involved in Aβ endocytosis
in endothelial cells for degradation via the lysosomal pathway
(Nazer et al., 2008). Other receptors such as the receptor for
advanced glycation end products (RAGE) are involved in Aβ

entry into the CNS (Candela et al., 2010; Bu et al., 2017).
Downregulations of LRP1, P-gp and BCRP or upregulation of
RAGE during AD potentiate the Aβ accumulation (Gosselet
et al., 2013; Yamazaki and Kanekiyo, 2017). In addition, Aβ

can lead to a decrease of tight junction (TJ) proteins (occludin,
claudin-5 and ZO-1) in endothelial cells and reduction of
microvessel coverage by pericytes, which induces higher BBB
permeability (Gosselet et al., 2013; Yamazaki and Kanekiyo,
2017).

During HIV-1 infection, impairment of the BBB occurs and is
probably responsible for the spread of virions from the vascular
compartment, enhances immune cell recruitment, andmay allow
brain infection by other opportunistic pathogens (Atluri et al.,
2015; Zhang et al., 2015; Anesten et al., 2016). The interaction
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between HIV-1 and the BBB occurs with all of the NVU cells
and often involves viral proteins. HIV-infected astrocytes can
directly impair BBB integrity by dysregulating gap junctions
(Eugenin et al., 2011). Tat, gp120, Vpr and Nef, have shown
cellular alteration, dysregulation of molecular pathways and an
inhibition of repair mechanisms resulting in impairment of
the BBB (Zhang et al., 2015). Tat has been shown to directly
modulate the endothelium through several cellular pathways,
including the inhibition of the RhoA/ROCK or Ras pathways,
which lead to the downregulation of TJ proteins expression,
resulting in the BBB impairment (Chen et al., 2012, 2016; Jiang
et al., 2017). These effects are accompanied by an accumulation
of Aβ peptide in the brain, suggesting a direct role for HIV
proteins in Aβ-BBB interaction. Interestingly, Tat can also
modulate the expression of receptors and transporters of Aβ,
which are involved in bi-directional transport of peptides across
the BBB. Extracellular Tat can upregulate RAGE expression
resulting in Ras/MAPK signaling pathway activation and in fine
Aβ accumulation (András and Toborek, 2013; Chen et al., 2016).
Tat can also reduce Aβ clearance across endothelial cells in
inhibiting the synthesis of LRP-1 (Chen et al., 2016). Similarly,
gp120 has been shown to impair BBB integrity through the PKC
and JAK/STAT pathways and to enhance monocyte migration,
a process that can also increase the number of HIV-infected
monocytes that cross the BBB to get to the CNS (Kanmogne
et al., 2007; Yang et al., 2009; Zhang et al., 2015). Conversely,
rats injected with recombinant gp120 in the caudate putamen
showed lesion in brain microvessels, suggesting that gp120 could
directly impair brain endothelial cell physiology and therefore
BBB integrity (Louboutin et al., 2010).

Ultimately, these mechanisms could disturb Aβ clearance
through the interstitial fluid, resulting in an increase in Aβ

deposit and accumulation. In this context, it is more than
pertinent to consider the role of the BBB in AD and HAND
pathogenesis (Yamazaki and Kanekiyo, 2017).

HIV, HPA AXIS DYSREGULATION AND AD:
GC AS A LINK BETWEEN HIV INFECTION
AND AD?

In HIV+ patients treated with cART, the adrenal gland is
frequently affected, resulting in higher serum cortisol levels
both in early stages and severely affected patients (Sellmeyer
and Grunfeld, 1996; Christeff et al., 1997; Collazos et al., 2003;
Langerak et al., 2015). In addition, an excess of circulating
GC can also dysregulate numerous brain functions. As GC
act in synergy with glutamate, a deregulation of the HPA
axis activity or a modification of GR function can be toxic,
especially in the hippocampus by inducing excitotoxicity,
neuronal damage (neuronal death by apoptosis and synaptic
deficits), neuroinflammation, oxidative stress and cognitive
decline (Magariños and McEwen, 1995; de Kloet et al., 2005).
In fact, it appears that plasma cortisol levels correlate with the
severity of hippocampal atrophy and therefore could contribute
to the cognitive decline and psychological symptoms that occur
in neurodegenerative pathologies and particularly in AD (Lupien

et al., 1998). In AD, this view is particularly sustained by the
fact that cognitive deficits and psychological symptoms are
associated with an early deregulation of the HPA axis, as well
as elevated levels of GC in plasma and CSF (Csernansky et al.,
2006; Hoogendijk et al., 2006). Moreover, GC and GR can
directly trigger APP misprocessing and Aβ pathway through the
direct transcription of APP and BACE1 genes (Lahiri, 2004).
Along this line, GC and stress appear to induce abnormal Tau
hyperphosphorylation and accumulation (Sotiropoulos et al.,
2011). This suggests that dysregulations of the HPA axis would
likely increase Aβ pathology and subsequent Tau accumulation
and hyperphosphorylation, resulting inexorably in a vicious
circle whereby the pathology increases the secretion of GC, which
further increases the pathology (Green et al., 2006; Brureau et al.,
2013; Pineau et al., 2016).

In HAND, viral proteins such as Tat and gp120, together
with GC, could have synergistic effects on excitotoxicity and
oxidative stress, by decreasing glutamate uptake by different
but complementary processes, as previously mentioned. This
is illustrated by the fact that combined treatment of GC and
gp120 directly increases calcium mobilization, ATP depletion,
decrease of mitochondrial potential, ROS production and
neurotoxicity (Brooke and Sapolsky, 2003). Basal levels of GC
enhanced the disruptive effects of gp120 on metabolism in
the hippocampus and in the cortex. Moreover, raising GC
concentration exacerbated the ability of gp120 to mobilize
cytosolic calcium in hippocampal cells (Yusim et al., 2000;
Brooke and Sapolsky, 2003). Acute exposure to GC initiated the
endocytosis of glucose transporter in neurons and glia, whereas
chronic exposure to GC could directly inhibit its transcription,
resulting in energy depletion (Brooke and Sapolsky, 2003). The
decrease of glucose transporter is responsible for a lack of ATP
production, necessary to supply sodium/potassium pumps that
are part of the glutamate transporter system (EAATs; Virgin
et al., 1991; Chan et al., 1996). Gp120 and Tat act on astrocyte,
microglia and neurons. Especially, gp120 induces arachidonic
acid and superoxide release that in turn inhibits glutamate uptake
by glia cells (Dreyer and Lipton, 1995; Belmadani et al., 2001).
So, taken together, GC, Tat and gp120 strongly block glutamate
uptake (Wang et al., 2004; Cheung et al., 2008; Potter et al.,
2013), which could potentiate excitotoxicity and neuronal loss
observed in HAND patients. Such mechanisms were already
described in AD, and potentially due to GC excess (Virgin et al.,
1991; Goodman et al., 1996). Even if this view is speculative and
needs further investigation, GC and HPA axis deregulation could
participate in neuronal dysfunction in HIV patients. Excessive
GC secretion, in synergy with viral proteins, could trigger and/or
accelerate the onset of the pathology by altering APP processing,
Tau phosphorylation and BBB integrity. In addition, synergetic
action between GC and HIV could potentiate oxidative stress
induction, excitotoxicity and neuroinflammation and, finally,
cognitive decline (Figure 2).

PERSPECTIVES AND CONCLUSION

In recent years, a consensus has emerged regarding the etiology
of neurological disorders, which is now believed to be complex
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FIGURE 2 | Proposed mechanisms by which glucocorticoids and their receptors modulate/potentiate the development of HAND and potentially AD. The
dysregulation of the HPA axis is observed both in HIV patients and rodent models. GC overexposure, in combination with viral proteins or not, is able to induce the
increase of Aβ production, Tau phosphorylation, excitotoxicity, oxidative stress, neuroinflammation and apoptosis. It should be also mentioned that Aβ itself can
trigger Tau phosphorylation, excitotoxicity, oxidative stress, neuroinflammation and cell death. All these processes lead to neurodegeneration and synaptic deficits
and potentially responsible for cognitive decline observed in HAND patients, all of which could progressively favor to the development of AD.

and multifactorial, even in the case of familial (genetic) forms.
A concept that is clearly emerging though is that acute and
chronic (neuro) inflammation may pave the way to such
disorders and neurotropic pathogens may therefore represent
likely candidates among environmental factors promoting this
inflammatory/causative state. Inflammation, in particular in the
brain, is a clear hallmark of HIV infection, and can also be found
in virally suppressed individuals (Edén et al., 2007). in vitro and
in vivo studies show neurotoxic effects of some HIV proteins.
Direct and indirect effects, coupled to the potential toxicity of
some anti-HIV drugs could provide a weakened environment
where the onset of neurological disorders (e.g., AD), could be
favored.

HIV neuroinfection sharesmany pathways and characteristics
of familial and sporadic forms of AD, but whether HIV patients
will have more chance to develop bona fide AD is not yet fully
understood and will have to be determined in the following years.

The HIV+ population is aging and starting to face age-related
disorders. However, there is still little information on their
susceptibility to neuronal disorders besides what qualifies as
HAND. Although large epidemiological studies are still needed
to definitively conclude that aging HIV+ patients are more at
risk of developing AD, there are however key physiological
findings that suggest that this could be the case, though
debate between neurologists exists (Ortega and Ances, 2014;
Chakradhar, 2018). In this context, it was reported that HIV-1
modulates Aβ metabolism differently from what is observed
in AD (in terms of Aβ deposition patterns), which suggests
unique features for HAD and HAND (Ortega and Ances, 2014).
This also suggests that the onset of dementia in aged HIV+

patients could be due to either HIV but also to AD or a
combination of both. Identification of HIV+ patients with AD
are starting to be reported and may provide more clinical
data regarding how these two diseases may or may not be
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connected (Mäkitalo et al., 2015; Turner et al., 2016). Because of
the similarities between HAND and AD one of the challenges
facing neurologists will be to discriminate between advanced
cognitive impairment caused by HIV (HAD) and AD (Xu and
Ikezu, 2009). Distinctive CSF biomarker profiles, coupled to
appropriate imaging techniques are keys to understanding and
diagnosing these pathologies. In this light, the study by Mäkitalo
et al. (2015) is of particular importance as it reports the CSF
pattern of a HIV+ patient having developed AD, possibly because
of HIV CSF escape.

In conclusion, the causes behind sporadic forms of AD are still
poorly characterized, but environmental factors, in combination
or not with genetic triggers, are emerging as key players in
their onset. In particular, the dysregulation of the HPA axis that
can associated with HIV infection could favor an environment
where oxidative stress, neuroinflammation, excitotoxicity, BBB
disruption and amyloid-β load are exacerbated and thus,
combined with other (genetic or environmental) factors pave the
way for the establishment of brain diseases such as AD. It is
therefore not unlikely that HIV infection may represent a risk
factor for AD and other related neuronal disorders.
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