Echo-less Photoconductive Switches for High-Resolution Terahertz Time-domain Spectroscopy

To cite this version:
Kenneth Maussang, José Palomo, Jean-Michel Manceau, Raffaele Colombelli, Isabelle Sagnes, et al.. Echo-less Photoconductive Switches for High-Resolution Terahertz Time-domain Spectroscopy. Conférence CNano 2017, Dec 2017, Lyon, France. 110, pp.20 - 25, 2017. hal-02127994

HAL Id: hal-02127994
https://hal.umontpellier.fr/hal-02127994
Submitted on 13 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1. A buried metal interdigitated photoconductive switch

- a) Schematic of a standard photoconductive switch.
- b) Schematic of a buried metal photoconductive switch.
- c) Cut view of a buried metal interdigitated photoconductive switch. A gold plan is inserted below a 10 µm thick layer of undoped GaAs.
- d) Calculated electrical potential U for an applied voltage of 4V.

2. Experimental characterization as emitter

- Experimental setup for emitters' characterization. Based on a THz Time-Domain Spectroscopy setup.
- Numerical simulations of the relative frequency response of a buried metal switch compared to standard switch.

3. LT-GaAs layer for switches as detectors

- Pre-photolithography sample. The MBE grown sample is wafer bonded to a gold-coated host Si GaAs substrate. The substrate and the AlGaAs (5%) layer of the MBE grown wafer are removed, exposing the LT-GaAs active region with the echo-blocking metal plane 6 µm below the surface.

4. Time traces and echo suppression

- Resolution limited only by echo in detection crystal (42 ps time window).
- THz power concentrated in a single pulse: higher peak amplitude for a given polarization bias electrical field, $E_{bias}=10 kV/cm$

5. Spectral resolution improvement

- Rotational lines of water are resolved: $2\gamma_2\gamma_3(1.661007 \text{ THz})$, $\gamma_3\gamma_3\gamma_3(1.66994 \text{ THz})$
- Frequency separations of 8.9 GHz and 47 GHz.

Conclusions:

- THz pulse generation and detection with echo suppression.
- High-resolution in the spectral window 500 GHz – 3.5 THz experimentally demonstrated.
- Demonstration of 9 GHz spectral resolution from $2\gamma_2\gamma_3$ and $\gamma_3\gamma_3\gamma_3$ water vapour rotational lines measurement.
- Perspectives: better understanding of spectral properties, including influence of the distance between electrodes and the buried metal plane.

Overview

Interdigitated photoconductive (iPC) switches are powerful and convenient devices for time-resolved spectroscopy, with the ability to operate both as sources and detectors of terahertz (THz) frequency pulses. However, reflection of the emitted or detected radiation within the device substrate itself can lead to echoes that inherently limit the spectroscopic resolution achievable from their use in time-domain spectroscopy (TDS) systems. We demonstrate a design of iPC switches for THz pulse emission and detection that suppresses such unwanted echoes and provides high-resolution in frequency. As a proof-of-principle, the $2\gamma_2\gamma_3$ and the $\gamma_3\gamma_3\gamma_3$ rotational lines of water vapor have been spectrally resolved, demonstrating a spectral resolution below 10 GHz.

1Laboratoire Pierre Aigrain, École normale supérieure, PSL Research University, Université Paris Diderot (Paris 7), Sorbonne Parc Cité, Sorbonne Universités, Université Pierre et Marie Curie (Paris 6), CNRS, 24 rue Lhomond, 75005 Paris, France
2Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, CN2 – Orsay, 91405 Orsay cedex, France
3School of Electronic and Electrical Engineering, University of Leeds, Leeds LS9 9JT, United Kingdom
4Institut d’Électronique et des Systèmes, CNRS (UMR 5214), Université de Montpellier, 860 rue de Saint-Priest, 34 095 Montpellier Cedex 5, France