Echo-less Photoconductive Switches for High-Resolution Terahertz Time-domain Spectroscopy

To cite this version:
Kenneth Maussang, José Palomo, Jean-Michel Manceau, Raffaele Colombelli, Isabelle Sagnes, et al.. Echo-less Photoconductive Switches for High-Resolution Terahertz Time-domain Spectroscopy. Conférence CNano 2017, Dec 2017, Lyon, France. 110, pp.20 - 25, 2017. hal-02127994

HAL Id: hal-02127994
https://hal.umontpellier.fr/hal-02127994
Submitted on 13 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Echo-less Photoconductive Switches for High-Resolution Terahertz Time-domain Spectroscopy

1. A buried metal interdigitated photoconductive switch

![Schematic of a standard photoconductive switch](image1)

![Schematic of a buried metal photoconductive switch](image2)

![Cut view of a buried metal interdigitated photoconductive switch](image3)

![Calculated electrical potential U](image4)

2. Experimental characterization as emitter

![Experimental setup for emitters' characterization](image5)

![Numerical simulations of the relative frequency response of a buried metal switch compared to standard switch](image6)

3. LT-GaAs layer for switches as detectors

![LT-GaAs MBE growth on a Si GaAs substrate](image7)

![Pre-photolithography sample](image8)

4. Time traces and echo suppression

![Resolution limited only by echo in detection crystal (42 ps time window)](image9)

![Resolution limited only by delay line length and probe beam alignment stability during scan](image10)

5. Spectral resolution improvement

![Rotational lines of water are resolved](image11)

![Demonstrating high-resolution detection](image12)

Conclusions:
- THz pulse generation and detection with echo suppression.
- High-resolution in the spectral window 500 GHz – 3.5 THz experimentally demonstrated.
- Demonstration of 9 GHz spectral resolution from 2\(\frac{\nu}{\nu_1}\) to 2\(\frac{\nu}{\nu_2}\) and 3\(\frac{\nu}{\nu_3}\) to 2\(\frac{\nu}{\nu_4}\) water vapour rotational lines measurement.
- Perspectives:
 - better understanding of spectral properties, including influence of the distance between electrodes and the buried metal plane.

K. Maussang1,2, J. Palomo1, J.-M. Manceau2, R. Colombelli1, I. Sagnes3, L. H. Li3, E. H. Linfield3, A. G. Davies3, J. Mangeney1, J. Tignon1 and S.S. Dhillon1
1Laboratoire Pierre Aigrain, Département de physique de l’ENS, École normale supérieure, PSL Research University, Université Paris Diderot (Paris 7), Sorbonne Paris Cité, Sorbonne Universités, Université Pierre et Marie Curie (Paris 6), CNRS, 24 rue Lhomond, 75005 Paris, France
2Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, CN2 – Orsay, 91405 Orsay cedex, France
3School of Electronic and Electrical Engineering, University of Leeds, Leeds LS9 2JT, United Kingdom
4Institut d’Electronique et des Systèmes, CNRS (UMR 5214), Université de Montpellier, 860 rue de Saint-Priest, 34 095 Montpellier Cedex 5, France

Overview

Interdigitated photoconductive (iPC) switches are powerful and convenient devices for time-resolved spectroscopy, with the ability to operate both as sources and detectors of terahertz (THz) frequency pulses. However, reflection of the emitted or detected radiation within the device substrate itself can lead to echoes that inherently limit the spectroscopic resolution achievable from their use in time-domain spectroscopy (TDS) systems. We demonstrate a design of iPC switches for THz pulse emission and detection that suppresses such unwanted echoes and provides high-resolution in frequency. As a proof-of-principle, the 2\(\frac{\nu}{\nu_1}\) to 2\(\frac{\nu}{\nu_2}\) and the 3\(\frac{\nu}{\nu_3}\) to 2\(\frac{\nu}{\nu_4}\) rotational lines of water vapor have been spectrally resolved, demonstrating a spectral resolution below 10 GHz.

References:

kenneth.maussang@umontpellier.fr / sukhdeep.dhillon@lpa ens.fr