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Abstract Despite the growing spatiotemporal density of geophysical observations at subduction zones,
predicting the timing and size of future earthquakes remains a challenge. Here we simulate multiple
seismic cycles in a laboratory‐scale subduction zone. The model creates both partial and full margin
ruptures, simulating magnitude Mw 6.2–8.3 earthquakes with a coefficient of variation in recurrence
intervals of 0.5, similar to real subduction zones. We show that the common procedure of estimating the next
earthquake size from slip‐deficit is unreliable. On the contrary, machine learning predicts well the timing
and size of laboratory earthquakes by reconstructing and properly interpreting the spatiotemporally
complex loading history of the system. These results promise substantial progress in real earthquake
forecasting, as they suggest that the complex motion recorded by geodesists at subduction zones might be
diagnostic of earthquake imminence.

Plain Language Summary Large and devastating subduction earthquakes, such as the 2011
magnitude 9.0 Tohoku‐oki earthquake (Japan), are currently considered unpredictable. Scientists lack a
long enough seismic catalog that is necessary for drawing statistical insights and developing predictions. For
this reason, we simulate tens of earthquakes using a small‐scale experimental replica of a subduction zone.
We show that machine learning (a group of algorithms that make predictions based on the “information”
acquired in past “experience”) can predict when, where, and how big the next experimental earthquake
will be. The “information” in our study is provided by the slow deformation accumulating in the analog
tectonic plates during the periods in between earthquakes. Since such slow deformation is also measured by
means of space geodesy along real subduction zones, there is the possibility that, in the future, variations of
this machine learning approach can predict the timing and size of natural subduction earthquakes.

1. Introduction

The subduction megathrust—the interface between subducting and overriding tectonic plates—has hosted
the largest earthquakes of the last century, e.g., the 2011 Mw 9.0 Tohoku‐Oki earthquake (Japan). Such
events originate from sudden slip episodes that propagate for several hundreds of kilometers along themega-
thrust, displacing the Earth's crust by tens of meters and relaxing the elastic stress that has accumulated due
to the combination of tectonic plate convergence and friction acting along the megathrust.

In the ideal case of (i) perfectly elastic plates, (ii) constant coupling between overriding and subducting plate,
(iii) constant plate convergence velocity, and (iv) homogeneous frictional properties and prestress along the
megathrust, earthquakes should occur at regular time intervals, with only small variations in magnitude
(i.e., the characteristic earthquake model; Reid, 1906). Other earthquake recurrence models, including the
time‐ and slip‐predictable models (Shimazaki & Nakata, 1980) and the nonperiodic noncharacteristic model
(Satake & Atwater, 2007), take into account temporal variations of fault strength, stress drop, and loading
rate. Such variations move the system toward a more complex recurrence pattern (e.g., Kanamori &
Brodsky, 2004). Subduction megathrusts follow irregular rupture patterns with recurrence times for large
earthquakes spanning from a few hours to centuries or more (Ando, 1970; Goldfinger et al., 2013; Sieh
et al., 2008). Such variability can be explained by the interplay between spatiotemporal variations of inter-
plate coupling (e.g., Moreno et al., 2011; Tsang et al., 2015), spatial variations of frictional properties (e.g.,
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Cubas et al., 2013), differences of interplate roughness (e.g., Lallemand et al., 2018), and nonsteadiness of
plate motions (Heki & Mitsui, 2013; Loveless & Meade, 2016).

Despite the international efforts to instrument and monitor subduction zones with unprecedented resolu-
tion (McGuire et al., 2017), it is still unclear how to constrain the timing and size of future earthquakes.
There is increasing seismological evidence of phenomena related to the failure of highly locked zones (also
known as asperities) on the megathrust such as the increase of foreshocks (Schurr et al., 2014) and repeating
events that are indicative of a slow slip on the interface surrounding the asperity, pushing the megathrust to
failure (Kato et al., 2012). Geodesy also yields useful information for understanding megathrust dynamics.
By measuring the ratio between the overriding and incoming plate velocities, geodesists can identify coupled
(locked) portions of the megathrust, where stress builds up interseismically and where this stress will likely
be released through future earthquakes. Moreover, the recent identification of transients (i.e., interseismic
accelerations and decelerations) in the geodetic time series prior to large earthquakes (e.g., Mavrommatis
et al., 2014) suggests that the continental surface velocity is likely a good indicator of when a given portion
of the megathrust is ready to fail. The recent progress in seismic and geodetic identification of earthquake
precursory phenomena is accompanied by a rapidly increasing number of studies where machine learning
(ML) algorithms have been used for earthquake related problems, such as predicting laboratory earthquakes
(Rouet‐Leduc et al., 2017), estimating lab‐scale fault friction (Rouet‐Leduc, Hulbert, Bolton, et al., 2018), pre-
dicting GPS displacement rates associated to slow slip events (Rouet‐Leduc, Hulbert, & Johnson, 2018), and
forecast of aftershock locations (DeVries et al., 2018).

Currently, there are too few documented instances of precursory phenomena to facilitate a robust assess-
ment of earthquake imminence. Moreover, seismic and geodetic records span only a small fraction of the
seismic cycle duration, and therefore, it is a challenge to determine which features of the data are indicative
of the late‐interseismic phase.

To overcome the lack of long time series in real subduction zones, we profit from recent developments in
analog seismotectonic modeling that allows for the simulation of multiple seismic cycles in a convenient
experimental time and scale (Rosenau et al., 2017). We show that, while slip‐deficit alone has a low informa-
tive power with respect to the size and timing of future earthquakes, ML can decipher the geodetic‐like
signal preceding slip events, allowing for the prediction of both the timing and size of future events.

2. The State of the Art: Inferring the Pattern of Future Earthquakes Using
Interseismic Coupling

Megathrust earthquakes grow into Mw > 9 events by unzipping multiple asperities along strike of the sub-
duction zone (Lay & Kanamori, 1981; Moreno et al., 2009; Subarya et al., 2006). Inferring the number of
asperities that may fail is thus a first‐order predictor for the size of future events. Estimates on potential
along‐strike rupture extent and, in turn, earthquake magnitude are aided by maps of interseismic coupling
(ISC) generated from geodetic measurements (e.g., Avouac, 2015). Higher landward velocities of coastal sites
indicate more strongly coupled zones of the megathrust, where most of elastic energy and slip‐deficit accu-
mulate during the interseismic observation period.

According to the slip‐predictable model, coseismic slip equals slip‐deficit, while the timing remains
unknown (Shimazaki & Nakata, 1980). Therefore, the pattern of ISC may serve as a proxy for constraining
the size of future earthquakes. However, this simple model is supported by only a few observations from nat-
ural subduction zones (Moreno et al., 2010; Schurr et al., 2014) and numerical simulations (Kaneko et al.,
2010). In contrast, recent investigations reveal that high ISC zones may span the whole range of coseismic
slip magnitudes (Barnhart et al., 2016; Métois et al., 2016) and that earthquakes may leave large portions
of highly coupled megathrust unruptured (e.g., Konca et al., 2008). Moreover, some earthquakes (e.g., Mw

8.4 Sumatra 2007) propagated or even nucleated into areas of low/no coupling (Konca et al., 2008), highlight-
ing the potential for temporal variations in the ISC pattern as well as uncertainties associated to the ISC
inversion method. Hence, the concept that slip‐distribution mirrors ISC cannot be generalized. The 2010
Mw 8.8 Maule earthquake (Chile) demonstrates the challenges of setting up and interpreting ISC models.
For Maule, slip distributions have been suggested to correlate with ISC either very well (Melnick et al.,
2012; Moreno et al., 2010) or poorly (Lorito et al., 2011). This situation is partly due to uncertainties asso-
ciated with inversion methods, inconsistent data availability before and after the event, and missing
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spatial coverage of the offshore seismogenic region, meaning that improving the robustness of spatial corre-
lation between slip and locking models is an ongoing area of research (e.g., Barnhart et al., 2016; Loveless &
Meade, 2011). Besides modeling issues, the major problem in determining the spatiotemporal relationship
between slip‐deficit and earthquake slip is the limited number of natural cases where large subduction zone
earthquakes have been recorded by dense geodetic networks: this is where analog seismotectonic models
can fill the gap.

3. New Analog Models of Megathrust Earthquakes

Analog modeling is an experimental technique allowing for the simulation of a given geologic process in a
convenient spatial and temporal scale. The recent improvements in imaging and monitoring techniques
associated to specific scaling (Rosenau et al., 2017) allows lab modelers to simulate the main features of
the megathrust seismic cycle in a simplified but realistic way (e.g., Corbi et al., 2013). To conduct our model,
we use a 52 × 34 × 11 cm3 gelatin wedge (analog of the overriding plate) underthrusted at constant rate of
0.01 cm/s by a 10° dipping, flat rigid plate (analog of the subducting plate; Figure 1a). The analog megathrust
embeds two velocity weakening patches (asperities) of equal size and friction separated by a velocity
strengthening patch (barrier). Velocity weakening and strengthening behaviors are achieved with the gela-
tin on sandpaper and gelatin on plastic contacts, respectively (Corbi et al., 2013). After an initial stress
buildup phase, the model experiences stick–slip behavior consisting of periods of stress buildup interrupted
by spontaneous nucleation of frictional instabilities propagating at the contact between the gelatin and the
plate (Corbi et al., 2013). These instabilities are the analog earthquakes. The model produces ruptures across
single (Figure 1b) or twin asperities (Figure 1c) which relative number depends on the barrier to asperities
length ratio (Corbi et al., 2017). The analysis of the modeled surface deformation is performed via image
cross correlation (MatPiv; Sveen, 2004). This analysis provides us the velocity field between consecutive
images, discretized in 1,350 interrogation windows that are analogs of homogeneously distributed “synthetic
GPS stations” (one station every 1.2 cm, equivalent to one station every 7.5 km in nature) above the whole
model surface (Figure 1d).

4. Spatial Correlation Between Slip and Slip‐Deficit

To evaluate the correlation between slip and slip‐deficit maps we select a 7‐min‐long interval (Figure S1;
data are published open access in Corbi et al., 2019) during which the experiment produces 40 seismic cycles
with average duration of about 10.5 s (standard deviation 4.9 s; Figure 1e). The corresponding coefficient of
variation (CV = standard deviation/mean) of approximately 0.47 indicates a recurrence behavior intermedi-
ate between quasiperiodic (CV < 0.1) and random (CV = 1), and which reproduces the general behavior of
natural subduction zones [e.g., Cascadia, CV = 0.5 (Kulkarni et al., 2013); South Peru‐North Chile, CV = 0.3
(Comte & Pardo, 1991); South Chile, CV = 0.4 (Bookhagen et al., 2006)]. The key advantages of experimental
over natural data are straightforward: (i) a denser spatial coverage of synthetic GPS stations, (ii) availability
of the offshore (hardly accessible) region up to the trench, and (iii) long time series spanning tens of seismic
cycles (hundreds of thousands of years). In order to avoid inversion bias, we directly compare interseismic
and coseismic surface motion rather than slip at depth. Accordingly, we will hereafter refer to the seaward
surface motion as slip (i.e., seaward motion) and the landward surface motion as slip‐deficit. Slip and slip‐
deficit maps of each cycle are constructed by summing incremental displacement fields during coseismic
and interseismic phases, respectively.

Our synthetic catalog of slip maps consists of 30 single‐asperity ruptures with scaled‐to‐nature Mw [Mw is
computed first scaling to nature the rupture area A and then using the following magnitude‐rupture area
proportionality (Strasser et al., 2010): Mw = 4.441 + 0.846*(log10(A))] spanning from 6.2 to 8.0 (Figure 1b)
and 10 twin‐asperity ruptures with scaled‐to‐nature Mw 8.3 (i.e., ruptures that saturate the entire model
length; Figure 1c). Slip‐deficit maps are generally characterized by two patches of relatively higher deficit
located above the two velocity weakening regions. The average ISC across all cycles is approximately 0.5
(Figure S2).

We quantified the similarity between the slip‐deficit pattern and the subsequent slip by means of spatial cor-
relation computed both within the slip area (Rsa) and over the whole seismogenic zone (Rsz). We found that
in 40% of seismic cycles, Rsa and Rsz show good correlations (i.e., both Rsz and Rsa >0.5; Figure 2a), and in
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50% of cycles, Rsa is high and Rsz is low (i.e., Rsa > 0.5 and Rsz < 0.5; Figure 2b). The former case
corresponds to a scenario of slip mirroring slip‐deficit, and the latter case corresponds to a scenario where
slip matches well the slip‐deficit pattern within the ruptured asperity but the second region of high slip‐
deficit remains unruptured. Over the analyzed 40 seismic cycles (Figure S3), Rsa generally shows higher
values (>0.4), while Rsz spans homogeneously from 0 to 1 (Figure 2c). This indicates that (a) velocity
weakening regions are areas where slip‐deficit accumulates interseismically and where the bulk of slip
occurs (e.g., Kaneko et al., 2010) and (b) slip‐deficit represents only a weak proxy for constraining the
lateral extent of future earthquakes because locked patches do not necessarily rupture in a given seismic
cycle. Based on our modeling results, we conclude that slip‐deficit alone has low predictive potential with
respect to the size of future events in a twin‐asperity system.

This variability of Rsz can be explained by the quasiperiodic behavior of each asperity (CV < 0.1; Figure S4).
The asperities have mean recurrence times of 19.2 ± 0.9 and 16.1 ± 1.3 s (where error is 1 standard
deviation). This recurrence behavior of the two asperities results in occasional large (dual asperity) ruptures
that correlate highly with the slip‐deficit of the whole subduction margin, whereas most of the smaller,
single‐asperity ruptures correlate with the slip‐deficit local to the rupture.

Figure 1. Analog model of megathrust earthquakes. (a) Oblique view of the experimental setup. Cyan rectangles
highlight the two velocity weakening patches. The analog model produces spontaneous ruptures that involve either
(b) one or (c) both velocity weakening zones. Ruptures are characterized in terms of apparent slip (i.e., coseismic
surface displacement; red contour with interval of 0.15 mm). White/red stars in (b) and (c) represent the epicenters.
(d) Experimental monitoring is performed with a video camera from top view (orthogonal to the x‐y plane); image analysis
allows dense resolution of the velocity field (white points) also above the offshore seismogenic zone. The nine blue points
highlight target stations used for the machine learning analysis. (e) Time series of analog earthquakes magnitude. The
light and dark gray shading highlight the fraction of the experiment shown in Figures 3a and 3b and the zoom of Figure 3c,
respectively.
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5. Machine Learning Predicts the Timing and Size of Laboratory Earthquakes

Our next modeling approach is inspired by the recent laboratory study of Rouet‐Leduc et al. (2017) in which
ML was used to determine which features of the continuous acoustic data of a block slider experiment were
most predictive of the time until failure. Following this supervised learning framework, we take the contin-
uous “synthetic” geodetic signals from our experiment and construct a ML problem to determine which
features of these data (if any) can predict time until failure.

We use the Gradient Boosted Regression Trees (GBRT; Friedman, 2001; supporting information S1), a ML
regression algorithm, to predict the time to the subsequent earthquake (hereafter time to failure (TTF))
based on 94 features describing the surface deformation measured in the analog model (Table S1; none of
the features refers to time). The GBRT is first trained on a portion of data: in this phase, the GBRT learns
the relationships between data features and the target TTF (supporting information S2). The trained
algorithm is then fed with “test” data (data not used in the training) and predicts the subsequent TTFs. To
quantify the quality of the predictions, we report the correlation coefficient R.

We use a shifting training window of N (N = 2, … 35) seismic cycles and a single (the subsequent) cycle to
test. This data split ensures no “leakage” into the testing data (having a total of 40 seismic cycles available,
we can run 40‐N shifting tests). For each iteration, we select the most relevant features to be used for the pre-
diction (supporting information S2). With respect to the standard approach of training the algorithm on a
large fraction of the data set and testing on the remaining part (e.g., training on 60% and testing on 40%; sup-
porting information S3 and Figure S5), our approach improves the prediction performances and also allows
us to evaluate the influence of the training window length on prediction performances. We found that the
best prediction performances are achieved for N = 10 (see supporting information S4 for details about the
metrics used for discriminating between the prediction performance of models with different N and
Figure S6). In this case, R = 0.3 over the whole time series (Figures 3a and S7). Considering that in this case
the GBRT has to predict TTF for a variety of event locations andmagnitudes, this result shows that themodel
does a decent job of generalizing.

Figure 2. Spatial correlation between apparent slip and slip‐deficit. Example of seismic cycles (a) where the slip correlates
well with slip‐deficit both along the whole margin and within the slip area and (b) where slip correlates well with slip‐
deficit only within the slip area. Slip and slip‐deficit maps have the same contour interval of 0.15 mm. The white/red stars
represent the epicenters. (c) Histogram quantifying the number of seismic cycles with given correlation coefficient.
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Aiming to improve the fit to observations, we include an additional constraint: we train individual GBRT
models for TTF at nine target points equally distributed parallel to the trench (Figure 1d). The TTF of
individual points appears more regular/periodic (with CV < 0.1 for target points 1, 2, 3, and 8; Figure S4)
and easier to interpret for the GBRT, especially those located above the asperities (Figure S8). In fact, the
GBRT is capable of predicting the TTF of individual target points with great accuracy (i.e., half of the target
points located within the two asperities show 0.7 < R< 0.8), even when using a short training window length
of N = 5. By checking which and how many adjacent points will rupture simultaneously (i.e., analyzing the
space–time distribution of TTF; Figure 3b), this method allows predicting the location, size, and timing of
upcoming events. For example, in Figure 3c we see that at time 3.05 min, the GBRT correctly predicts an
upcoming event occurring in the northern part of the trench, involving four to five target points
[≈86–107 km when scaled to nature (Corbi et al., 2013), corresponding to Mw 7.9/8.0 according to the
magnitude‐rupture length scaling (Strasser et al., 2010)]. Similarly, the GBRT successfully predicts an
upcoming event at time 3.85 min spanning the whole model width (i.e., seven target points corresponding
to a rupture length of 150 km in nature and therefore a Mw 8.3). There are still some misfits (e.g., the false
alarm at 5.05 min in the northern asperity) that make our analysis still only semiquantitative. However,
the success of this ML approach raises the challenging possibility that features of real geodetic signals
may be used as a proxy for constraining the onset time of future earthquakes.

6. Identifying Diagnostic Features in Geodetic Time Series

Understanding which features are the most important for a successful prediction is essential for exporting
this method to real subduction zones. When ranking our features in terms of predictor importance (support-
ing information S5) we observe that the top 15 features are representations of the cumulative displacement
(or elastic loading) of the plate margin (Figure S9a). In particular, the algorithm identified the trench‐
parallel component of cumulative displacement measured at target points 2 and 7 (i.e., Dv2 and Dv7) as
the most influent features of the whole set. Dv2 and Dv7 are indeed roughly linearly related to TTF so that
they became a valid proxy for TTF (Figure S9b). Therefore, the GBRT is mostly informed by the relative
loading history of various positions on the surface of the model (Figure S10).

Figure 3. Machine learning results. (a) TTF versus experimental time. The red and blue time series refer to observation
and prediction, respectively. The color‐coded horizontal line highlights the performances of the prediction cycle by
cycle quantified by means of relative root‐mean‐square error (RRMSE). Dark blue RRMSE colors highlight cycles with a
good fit. (b) Space–time evolution of the predicted time to failure calculated for the nine target points. The blue
shading highlights the prediction of an upcoming event at a given location. The red squares indicate the spatiotemporal
distribution of observed analog earthquakes (width of red squares not scaling with time). (c) One‐minute long zoom of (b).
Synchronous existence of low time to failure values for several target points along the margin suggests that a large‐
magnitude earthquake is impending.
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The dominant role of cumulative displacement is not a surprise: the elastic wedge cannot be loaded by
convergence indefinitely but only as much as its frictional base is able to sustain in agreement with the
elastic rebound theory. Rather, what is remarkable is that the GRBT keeps track of the site‐specific loading
history and reconstructs when the strength limit is approaching at individual surface locations.

7. Implications and Outlook: Toward Earthquake Prediction?

We have used an analog model that reproduces multiple subduction megathrust seismic cycles to overcome
the limits caused by (i) the short temporal span of geodetic data with respect to the duration of natural
seismic cycles, (ii) the fragmentary coverage of the geodetic network, and (iii) uncertainties related to inver-
sion of inland data to the predominantly offshore seismogenic zone.

We observed that slip‐deficit accumulated during the last interseismic phase is diagnostic of the location of
highest slip. However, it is a poor indicator for constraining the lateral extent of a future rupture, and thus
the magnitude of future earthquakes. Extending the analysis of spatial correlation back in time (beyond the
latest interseismic period) could result in an improvement of this correlation, although the optimal number
of previous interseismic cycles for correlation with the latest coseismic slip is very likely linked to the parti-
cular configuration of the asperities such as size, interasperity distance, and friction (Kaneko et al., 2010). In
the long‐term perspective, asperities tend to synchronize if conditions for interaction are met (Corbi et al.,
2017; Kaneko et al., 2010) leading the system to produce giant earthquakes. Unfortunately, the stage of
the synchronization of a given megathrust is unknown and, most importantly, if and how the pattern of
asperities evolves thought subsequent seismic cycles is still debated (Park & Mori, 2007). Another
limiting factor of the slip‐deficit analysis is that it does not hold any information about the timing of
future earthquakes.

Our analysis showed that analog‐earthquake prediction requires the reconstruction of the spatiotemporally
complex loading history. This reconstruction is implicitly done by ML using the training data. We thus
showed that 10 seismic cycles of dense‐network observations are required for training the algorithm to
maximize its predictive accuracy, and that the training length may be decreased when predicting the TTF
of a specific region. It is possible that these results may be analog‐model dependent and that a larger number
of cycles might be necessary for training more complicated models that incorporate frictional, rheological,
and geometrical variations. However, even a low complexity model such as ours, creates variations in
magnitude and recurrence time making the system “realistically unpredictable.” Using ML, we were able
to counterbalance this unpredictability by training the algorithm to recognize patterns that are difficult to
detect by human inspection.

Given that we have shown predictability in an already fairly realistic model, there is hope that similar
approaches could be developed for real subduction zones. Currently, the available geodetic record is far
shorter than the number of cycles needed by our approach on the analog model, although in nature there
are shorter cycles of smaller‐magnitude events. This leads to two straightforward paths of future develop-
ment: (i) to develop ML approaches on simulated data (analog or numerical) that can be trained on a variety
of models to predict the time to failure on a range of spatiotemporal scales and (ii) to tailor ML approaches at
natural subduction zone observatories with the aim of predicting also smaller‐magnitude events or the
whole spectrum of subduction seismicity including interplate, intraplate, and upper plate earthquakes.
Additionally, there is considerable scope for investigating further features beyond the ones used in this study
as they might not be complete enough for natural cases where, for example, strength variations might occur
due to pore fluid pressure variation or where foreshocks, slow earthquakes, or mantle relaxation additionally
influence the loading history.

Future work can focus on engineering features and approaches that are more likely to succeed both in lab
and nature. Comparable or better predictions can be likely obtained using a fraction of the data currently
needed for training with a wider fan of features. Accordingly, we tested the two most important features
in a linear implementation (linear regression) of the prediction of TTF (supporting information S4 and
Figure S11). The linear implementation, while producing good fits in some cycles, also produced a drift in
the prediction of later cycles and unphysical negative TTF values. From this limited investigation, it remains
unclear if a linear model trained on a small subset of features could improve upon the success of the GBRT.
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Alternatively, changes in the framing of the problem may lead to other types of predictions: This study
frames the regression to the time to failure since we choose to first demonstrate that ML recognizes a
specific deformation pattern as indicative of a given stage of the interseismic period. Other framings,
however, such as the classification of earthquake imminence (e.g., binary classification distinguishing if
an event will happen in the next seconds), or regression to the future surface velocity, are all yet to be
explored. Another possibility is treating surface deformation data as an image analysis problem (e.g.,
using Convolutional Neural Networks) and directly training the algorithm to predict the upcoming
slip area.

Securing the society against natural disasters is a social priority. In this era of “big data” in earthquake
science, advanced data analysis methods, such as ML, could open the door to a situation where earthquakes
are increasingly predictable. We have shown that the application of ML to surface velocities at plate bound-
aries is a promising avenue for further research toward this goal.

Data and Material Availability

All data and materials used in the analysis are available through GFZ Data Services and published open
access in Corbi et al. (2019).
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