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Abstract. This paper proposes a protocol to assess the space–
time consistency of 12 satellite-based precipitation products
(SPPs) according to various indicators, including (i) direct
comparison of SPPs with 72 precipitation gauges; (ii) sensi-
tivity of streamflow modelling to SPPs at the outlet of four
basins; and (iii) the sensitivity of distributed snow models to
SPPs using a MODIS snow product as reference in an un-
monitored mountainous area. The protocol was applied suc-
cessively to four different time windows (2000–2004, 2004–
2008, 2008–2012 and 2000–2012) to account for the space–
time variability of the SPPs and to a large dataset com-
posed of 12 SPPs (CMORPH–RAW v.1, CMORPH–CRT
v.1, CMORPH–BLD v.1, CHIRP v.2, CHIRPS v.2, GSMaP
v.6, MSWEP v.2.1, PERSIANN, PERSIANN–CDR, TMPA–
RT v.7, TMPA–Adj v.7 and SM2Rain–CCI v.2), an unprece-
dented comparison. The aim of using different space scales
and timescales and indicators was to evaluate whether the
efficiency of SPPs varies with the method of assessment,
time window and location. Results revealed very high dis-
crepancies between SPPs. Compared to precipitation gauge
observations, some SPPs (CMORPH–RAW v.1, CMORPH–
CRT v.1, GSMaP v.6, PERSIANN, and TMPA–RT v.7) are
unable to estimate regional precipitation, whereas the oth-
ers (CHIRP v.2, CHIRPS v.2, CMORPH–BLD v.1, MSWEP
v.2.1, PERSIANN–CDR, and TMPA–Adj v.7) produce a re-
alistic representation despite recurrent spatial limitation over
regions with contrasted emissivity, temperature and orogra-
phy. In 9 out of 10 of the cases studied, streamflow was
more realistically simulated when SPPs were used as forcing

precipitation data rather than precipitation derived from the
available precipitation gauge networks, whereas the SPP’s
ability to reproduce the duration of MODIS-based snow
cover resulted in poorer simulations than simulation using
available precipitation gauges. Interestingly, the potential of
the SPPs varied significantly when they were used to repro-
duce gauge precipitation estimates, streamflow observations
or snow cover duration and depending on the time window
considered. SPPs thus produce space–time errors that can-
not be assessed when a single indicator and/or time window
is used, underlining the importance of carefully considering
their space–time consistency before using them for hydro-
climatic studies. Among all the SPPs assessed, MSWEP v.2.1
showed the highest space–time accuracy and consistency in
reproducing gauge precipitation estimates, streamflow and
snow cover duration.

1 Introduction

1.1 On the need for and difficulty involved in
estimating precipitation fields

Water resources are facing unprecedented pressure due to the
combined effects of population growth and climate change.
In the 20th century, water extraction underwent a 6-fold in-
crease to sustain food needs and economic levels due to the
increasing world population (vision, water council, 2000). At
the same time, global warming has led to the redistribution

Published by Copernicus Publications on behalf of the European Geosciences Union.



596 F. Satgé et al.: Consistency of satellite-based precipitation products in space and over time

of precipitation, which has favoured the occurrence of both
drought and extreme flood events (Trenberth, 2011).

As a key component of the hydrologic cycle, it is there-
fore crucial to have accurate precipitation estimates in many
research fields, including hydrological and snow modelling
(e.g. Hublart et al., 2016), climate studies (e.g. Espinoza Vil-
lar et al., 2009), extreme flooding (e.g. Ovando et al., 2016),
drought (e.g. Satgé et al., 2017a), and monitoring to under-
stand past and ongoing changes and to optimize water re-
sources management (e.g. Fabre et al., 2015, 2016).

Measurements of precipitation are usually retrieved from
point gauge stations. Considered as ground truth at the point
level, precipitation estimates are then spatialized to represent
the distribution of precipitation in space and over time to be
used as inputs for impact modelling. However, in most cases,
the gauge network is too sparse and unevenly distributed to
correctly capture the spatial variability of precipitation. This
is especially true for remote regions such as tropical forests,
mountainous areas and deserts where the usual insufficient
installation and maintenance operations seriously compro-
mise precipitation monitoring. An alternative approach con-
sists in using precipitation derived from weather radar using
the backscattering of electromagnetic waves via hydromete-
ors (e.g. Mahmoud et al., 2018). Unlike measurements using
traditional gauges, this technique monitors large areas in a
distributed way, thus offering the opportunity to monitor pre-
cipitation over remote regions. However, ground radar mea-
surements are rarely available at the global or even regional
scale (Tang et al., 2016) and are limited in the case of com-
plex terrain which interferes with the radar signal (Zeng et
al., 2018). More recently, some authors (Messer et al., 2006;
Overeem et al., 2011; Zinevich et al., 2008) reported on
the possibility of estimating precipitation from wireless net-
works such as commercial cellular phone microwave links.
These estimations are based on the attenuation of the electro-
magnetic signals between telecommunication antennas dur-
ing precipitation events, and their first results are promising
(see e.g. Doumounia et al., 2014). However, this technique
faces the problem of private cellular phone company pol-
icy about sharing data and telecommunication antenna are
mainly located in urban areas, which limits accurate precipi-
tation estimates in space. On the other hand, several satellite-
based precipitation estimates (SPPs) are now available, mak-
ing possible to monitor precipitation on regular grids at the
near global scale, representing an unprecedented opportunity
to complement traditional precipitation measurements.

1.2 Satellite-based precipitation estimates (SPPs):
opportunities and limitations

Several SPPs have become available in recent decades to
monitor precipitation at global scale and on regular grids.
The first generation of SPPs appeared with the Tropical Rain-
fall Measuring Mission (TRMM) launched in 1997 by NASA
(National Aeronautics and Space Administration) and the

Japan Aerospace Exploration Agency (JAXA). Over the last
18 years, the TRMM Multisatellite Precipitation Analysis
(TMPA) (Huffman and Bolvin, 2018), the Climate predic-
tion centre MORPHing (CMORPH) (Joyce et al., 2004), the
Precipitation Estimation from remotely Sensed Information
using Artificial Neural Networks (PERSIANN) (Sorooshian
et al., 2000) and the Global Satellite Mapping Precipitation
(GSMaP) (GSMaP, 2012) SPP datasets have been developed
based on the TRMM mission to deliver precipitation esti-
mates at the 0.25◦ grid scale. In 2014, the Global Precipi-
tation Measurement (GPM) mission was launched to ensure
TRMM continuity. The second generation of SPPs based on
GPM missions included the Integrated Multi-SatellitE Re-
trievals for GPM (IMERG) (Huffman et al., 2017) and a
new GSMaP version product which deliver precipitation es-
timates at a finer grid scale (0.1◦) than the first generation of
SPPs but estimates are limited to the period from 2014 to the
present. At the same time, some SPPs took advantage of pre-
vious SPPs and missions to estimate precipitation over larger
time window: long-term SPP generation. This is the case
of PERSIANN-Climate Data Record (PERSIANN–CDR)
(Ashouri et al., 2015), Multi-Source Weighted-Ensemble
Precipitation (MSWEP) (Beck et al., 2017) and Climate Haz-
ards Group InfraRed Precipitation (CHIRP) with Station data
(CHIRPS) (Funk et al., 2015).

However, SPPs are indirect measurements made from
satellite/sensor constellations, including passive microwaves
(PMWs) and infra-red (IR) sensors on board low earth or-
bital (LEO) and geosynchronous satellites, and are subject to
uncertainty due to technical limitations. Indeed, the irregular
sampling and limited overpass of LEO PMW measurements
impede the correct capture of short-term and slight precip-
itation events (Gebregiorgis and Hossain, 2013; Tian et al.,
2009) which can introduce error into precipitation estimates
over arid regions and/or during the dry seasons (Prakash et
al., 2014; Satgé et al., 2016, 2017a; Shen et al., 2010). In
mountainous regions, the precipitation/no precipitation cloud
classification based on cloud top IR temperature may fail in
the case of precipitation processes resulting from orographic
warm clouds (Dinku et al., 2010; Gebregiorgis and Hossain,
2013; Hirpa et al., 2010). The contrast between temperature
and emissivity (i.e. water and snow-covered area) of rough
land surfaces creates background signals similar to those pro-
duced by precipitation, leading to misinterpretation between
rainy or not rainy clouds, which can introduce high bias into
precipitation estimates (Satgé et al., 2016, 2018; Tian and
Peters-Lidard, 2007; Ferraro et al. 1998; Hussain et al. 2017).

In addition to these spatial inconsistencies, the orbital
satellite context implies constantly varying input data for
each observation time (snapshot), which likely introduces
inhomogeneity into the SPP time records. This could be
exacerbated by aging sensors and permanent sensor fail-
ures. As an example, the TRMM satellite mission ended on
8 April 2015, making unavailable the TRMM Microwave Im-
ager (TMI) from input data used for TMPA retrieval (Huff-
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man and Bolvin, 2018). Consequently, the potential of SPPs
is expected to present space and time errors whose quantifi-
cation is crucial before their use for hydro-climatic studies.

1.3 State-of-the-art evaluation of SPPs

In the context described above, many studies have reported
on the efficiency of SPPs over different regions. The most
common way to evaluate SPP potential is to compare their es-
timates with precipitation gauge measurements, as reviewed
by Maggioni et al. (2016) and Sun et al. (2018). The compar-
ison of gauge-based assessment studies confirmed the spa-
tial variability of SPP efficiency in reproducing precipitation,
so no single SPP can be said to be the most effective one
at global scale. For example, when TMPA, CMORPH, and
PERSIANN SPP datasets were compared, TMPA was found
to be closer to the observed precipitation in India (Prakash et
al., 2014), the Guyana shield (Ringard et al., 2015), Africa
(Serrat-Capdevila et al., 2016), Chile (Zambrano-Bigiarini
et al., 2017) and South America Andean plateau (Satgé et
al., 2016), whereas CMORPH was closer to observed pre-
cipitation in Bali, Indonesia (Rahmawati and Lubczynski,
2017), Pakistan (Hussain et al., 2017), and China (Su et
al., 2017; Zeng et al., 2018). However, these assessments
based on comparison with gauge observations did not assess
SPP’s potential performance over unmonitored regions. This
is especially true for high mountainous regions where avail-
able gauge networks (generally located in the valley) cannot
correctly represent the local precipitation induced by topo-
graphic effects. As a result, evaluating SPP potential over
high mountainous regions remains challenging (Hussain et
al., 2017; Satgé et al., 2017b).

An alternative method consists in assessing the sensitiv-
ity of hydrological models to SPPs. The efficiency of SPPs
can be evaluated indirectly via their ability to generate rea-
sonable discharge simulations at the outlet of the basin con-
cerned. Compared to gauge-based assessment studies, fewer
authors have reported on hydrological sensitivity to SPPs,
as reviewed in Maggioni and Massari (2018). For example,
TMPA, CMORPH and PERSIANN datasets were compared
as forcing data for hydrological modelling in Africa (Casse
et al., 2015; Thiemig et al., 2013; Tramblay et al., 2016) and
South America (Zubieta et al., 2015). These studies provided
complementary information to gauge-based assessments, of-
fering an operational overview of SPPs for the management
of water resources. However, due to the aggregation pro-
cess at basin scale, the potential of SPPs over specific un-
gauged regions remains unclear. Moreover, in these stud-
ies, the SPPs were not compared with gauge observations
(Thiemig et al., 2013) or provided only a brief comparison
at basin (Casse et al., 2015; Tramblay et al., 2016) or gauge
(Zubieta et al., 2015) scale. Therefore it is difficult to con-
clude on the respective advantages and limitations of using
gauges or streamflow data as indicators to assess the abil-
ity of SPPs to reproduce precipitation patterns as SPPs could

rank differently depending on the indicator used. For exam-
ple, considering CMORPH, PERSIANN and TMPA datasets
over two African watersheds, TMPA showed the closest esti-
mate in comparison with gauges for both basins (Thiemig et
al., 2012) while CMORPH and TMPA provided more accu-
rate streamflow simulations depending on the basin consid-
ered (Thiemig et al., 2013).

Whatever the selected approach (based on gauges and/or
hydrological modelling), the analysis is performed using a
single time window which does not assess the temporal vari-
ability of SPPs due to the acquisition process and/or aging
sensors. To date, only a few studies have been conducted to
observe changes in the efficiency of SPPs over time. For ex-
ample, CHIRPS precipitation estimates were analysed over
two distinct time windows to assess potential changes in pre-
cipitation accuracy over Cyprus and Nepal from one period
to another (Katsanos et al., 2016; Shrestha et al., 2017). Sim-
ilarly, Bai et al. (2018) analysed the accuracy of CHIRPS in
mainland China separately for each year to assess its inter-
annual variability. These studies highlighted temporal incon-
sistencies in CHIRPS estimates inherent to variations in the
input data used for precipitation retrieval. However, only the
CHIRPS SPP was considered, and similar features are to be
expected with other SPPs.

Today more than 20 SPPs are available from the first
(TRMM), second (GPM) and long-term SPP generation
(Beck et al., 2017). Nevertheless, previous studies only con-
sidered SPP subsets. SPP assessment has indeed focussed on
(i) a single SSP or a limited sample of SPPs (e.g. Cao et al.,
2018; Erazo et al., 2018; Shrestha et al., 2017); (ii) transition
from the previous to a new version of an algorithm for a spec-
ified SPP (TMPA-v6 to TMPA-v7 for example) (e.g. Chen
et al., 2013; Melo et al., 2015; Milewski et al., 2015); and
(iii) the effectiveness of the transition from the first (TRMM)
to the second (GPM) generation of SPPs (e.g. Satgé et al.,
2017a; Sharifi et al., 2016; Wang et al., 2017). All these stud-
ies provided useful feedback related to their specific objec-
tives but did not really help assess the respective performance
of SPPs due to the small sample of SPPs considered.

For these reasons, comprehensive feedback on SPPs, in-
cluding space–time consistency, different indicators, insights
into unmonitored regions, and a representative SPP sample,
can only be acquired by backcrossing large SPP assessment
studies. Even so, as each study is based on different statisti-
cal indices, spatial and temporal scales and periods, such an
effort is seriously compromised.

1.4 Objectives

From the previously established state of the art, this paper in-
vestigates the influence of selected indicators and time win-
dows on assessments of the space–time consistency of SPPs.
The comprehensive protocol relies on different indicators:
(i) gauge observations; (ii) observations of streamflow using
sensitivity analysis of a lumped hydrological model in differ-
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ent catchments; and (iii) snow cover observed from satellite
imagery via sensitivity analysis of a distributed snow model
in an unmonitored mountainous area, applied to four time
windows. The aim of using different indicators was to evalu-
ate whether the efficiency of the SPPs varies with the assess-
ment method, whereas different time windows are used to
evaluate a potential variation in SPP performance over time.
The Lake Titicaca region was selected as the study area be-
cause it includes all the specific features considered as poten-
tial limiting factors for SPPs (high mountain massifs, large
water bodies and snow-covered areas) to evaluate the poten-
tial of SPPs in an extreme context in terms of the sensors’
limitations with respect to the orographic effect (i.e. moun-
tains) and high temperature–emissivity contrast (i.e. Lake
Titicaca and a snow-covered region). It also offers the op-
portunity to provide feedback on the use of SPPs over poorly
monitored regions.

2 Material: study area and data

2.1 Study area

The Lake Titicaca basin is located between 14 and 17◦ S and
71 and 68◦W in the northern part of the South American
Andean plateau, known as the Altiplano. It extends over an
area of 49 000 km2. The Lake Titicaca catchment is bordered
to the west and east by the two Cordilleras (Occidental and
Real) and includes a few snow-covered areas. With a sur-
face area of 8560 km2, a mean depth of 105 m (284 m max)
and a water volume estimated at 903 km3 (Delclaux et al.,
2007), Lake Titicaca is the main water body and source of
the endorheic Altiplano hydrologic system. Lake Titicaca is
drained by the Desaguadero River to the south (Fig. 1) which
contributes up to 65 % of water inflows into Lake Poopó
(second largest Bolivian lake) (Pillco and Bengtsson, 2010).
An accurate Lake Titicaca water balance for monitoring pur-
poses is therefore crucial to support efficient water resources
management in the Altiplano. However, the transboundary,
economic and remote context means hydro-meteorological
monitoring is sparse. Thanks to almost global-scale cover-
age, SPPs represent a promising alternative to monitor re-
gional precipitation in space and over time, and offer an un-
precedented opportunity to achieve efficient regional water
resources management.

2.2 Hydro-climatic data

2.2.1 Hydro-meteorological stations

Precipitation and air temperature data for Bolivia were pro-
vided directly by the Servicio Nacional de Hidrologia e Me-
teorologia (SENAMHI), whereas for Peru, data were col-
lected from the Peruvian SENAMHI website. Only weather
gauges with less than 20 % daily missing data over the 2000–

2012 period were selected, giving a total of 72 stations in
Bolivia and 51 in Peru (Fig. 1).

Water level and discharge data from SENAMHI were man-
aged with the HYDRACCESS free software (Vauchel, 2005)
developed by SO-HYBAM to obtain daily discharge records
at the outlet of four catchments (Fig. 1): the Ilave (7766 km2),
the Katari (2588 km2), the Keka (801 km2), and the Ramis
(14 560 km2) catchments with respective mean annual dis-
charges estimated at 37.3, 2.0, 3.8 and 73.0 m3 s−1 (Uría and
Molina, 2013). Nearly complete discharge observations over
the 2000–2012 period were available for two basins (Katari
and Keka), whereas discharge observations were only avail-
able from 2008 to 2012 for the other two (Ilave and Ramis).

2.2.2 Interpolation of meteorological in situ
observations

To obtain continuous and spatialized meteorological se-
ries for the study area, precipitation and temperature gauge
data were interpolated using the inverse distance weighted
method (IDW) on a 5 km grid at the regional scale (for de-
tails on the purpose of hydrological modelling, see Sect. 3.2)
and on a 500 m grid at the local scale (for the purpose of snow
modelling, see Sect. 3.3). The choice of the IDW technique
as interpolation method was based on the study of Ruelland
et al. (2008), which showed low sensitivity of hydrological
models to rainfall input datasets derived using different in-
terpolation methods (IDW, Thiessen, spline, ordinary krig-
ing), with IDW yielding the highest hydrological efficiency.
Temperature values were interpolated by accounting for a
constant lapse rate of 6.5 ◦C km−1, in a similar way to that
described in Ruelland et al. (2014). Because the gauges are
mainly located in the flat land part of the basins, it was not
possible to provide evidence for an effect of elevation on
precipitation distribution. Consequently, no orographic effect
was accounted for in the interpolation of the point precipita-
tion observations. Pref and Tref refer to interpolated precipi-
tation and temperature, respectively.

2.3 Remote sensing data

2.3.1 Satellite precipitation estimates (SPPs)

Twelve SPPs with a spatial resolution below or equal to
0.25◦ (∼ 25 km at the Equator) were selected for the 2000–
2012 period. Other precipitation datasets with coarser reso-
lution (>0.25◦) are currently available, but we did not use
them because (1) the scarce available gauges network will
not warrant a consistent potential assessment due to the dif-
ference between point-gauge and grid-cell-average measure-
ment (Tang et al., 2018) and because (2) the considered
catchments and snow analysis zone area is smaller than such
coarse-resolution precipitation datasets. However, it is worth
mentioning that in specific situations, coarse-resolution SPPs
could perform better than higher-resolution SPPs (Beck et
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Figure 1. Study area: location, meteorological stations (precipitation and temperature observations), streamflow gauges, studied catchments
and snow analysis zone.

al., 2019) and that reanalysis precipitation datasets tend to be
a better choice in cold regions/periods (Huffman et al., 1995).
Such statements cannot be verified in the present study due to
the scarce gauge network context and considered catchments
and snow analysis zone area.

The SPPs include the following datasets: Climate Haz-
ards Group InfraRed Precipitation (CHIRP), Climate Pre-
diction Center MORPHing (CMORPH), Global Satellite
Mapping of Precipitation (GSMaP), Precipitation Estima-
tion from Remotely Sensed Information using Artificial
Neural Network (PERSIANN), the Soil Moisture to Rain
(SM2Rain) method, Tropical Rainfall Measuring Mission
(TRMM), Multisatellite Precipitation Analysis (TMPA) and
Multi-Source Weighted-Ensemble Precipitation (MSWEP).
All the SPPs used a combination of satellite (S) data gather-
ing information from passive microwave (PMW) radiome-
ters and infra-red (IR) data from low Earth orbital (LEO)
and geosynchronous satellites, respectively, except for the
SM2Rain method, which relies on satellite surface soil mois-
ture derived from passive and active microwaves. The se-
lected SPPs differ in terms of the combination of satellite
sensors and algorithms and whether the products include re-
analysis (R) and/or a calibration step against gauge (G) data
in their processing or not. Table 1 provides an overview of
these SPPs and relevant references for more information on
their respective production. The mean annual precipitation
pattern retrieved from all SPPs is presented in Fig. 2.

SPPs were first aggregated to obtain daily time step
records using 08:00 to 08:00 local time (LT) time windows
to match local daily gauge observations. It should be noted
that some SPPs (CHIRP v.2, CHIRPS v.2 and GSMaP v.6)

are only delivered at daily scale with a daily aggregation
based on different time windows which could compromise
the comparison of SPPs at daily scale. Finally, using the
nearest neighbour technique, all the SPPs were spatially re-
sampled to 5 km to facilitate their comparison. The result-
ing database consists of 10 500 daily virtual stations at 5 km
spatial resolution over the 2000–2012 period for each SPP.
Additionally, SPPs were resampled to 500 m resolution over
the selected subset region to assess SPP potential for snow
modelling (see Fig. 1).

2.3.2 MODIS snow products

MOD10A1 (Terra) and MYD10A1 (Aqua) snow products
version 5 were downloaded from the National Snow and Ice
Data Center for the period 24 February 2000–6 January 2016.
This corresponds to 5795 daily values among which 5697
have been available for MOD10A1 (98.3 %) and 4918 for
MYD10A1 (84.9 %) since Aqua was launched in May 2002
and became operational in July 2002. These snow products
are derived from a NDSI (Normalized Differential Snow
Index) calculated from the near-infrared and green wave-
lengths, and for which a threshold has been defined for the
detection of snow. Cloud cover represents a significant limit
for these products, which are generated from instruments op-
erating in the visible–near-infrared wavelengths.

As a result, the grid cells were gap-filled so as to pro-
duce daily cloud-free snow cover maps of the study area. The
different classes in the original products were first merged
into three classes: no-snow (no snow or lake), snow (snow
or lake ice), and no-data (clouds, missing data, no decision,
and saturated detector). The missing values were then filled
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Table 1. Main characteristics and references of the 12 SPPs considered. In the data source column, S stands for satellite, R for reanalysis,
and G for gauge information.

Full name Acronym Data Temporal Temporal Spatial Spatial References
source coverage resolution coverage resolution

Climate Hazard Group CHIRP v.2 S, R 1981–present daily 50◦ 0.05◦ Funk et al. (2015)
InfraRed Precipitation v.2

Climate Hazard Group CHIRPS v.2 S, R, G 1981–present daily 50◦ 0.05◦ Funk et al. (2015)
InfraRed Precipitation with
Station v.2

CPC MORPHing technique CMORPH–RAW v.1 S 1998–present 3 h 60◦ 0.25◦ Joyce et al. (2004)
RAW v.1

CPC MORPHing technique CMORPH–CRT v.1 S, G 1998–present 3 h 60◦ 0.25◦ Joyce et al. (2004)
bias corrected v.1

CPC MORPHing technique CMORPH–BLD v.1 S, G 1998–present 3 h 60◦ 0.25◦ Xie et al. (2011)
blended v.1

Global Satellite Mapping of GSMaP v.6 S, G March 2000– daily 60◦ 0.1◦ Ushio et al. (2009)
Precipitation Reanalyse present Yamamoto et al. (2014)
Gauges v.6

Multi-Source Weighted- MSWEP v.2.1 S, R, G 1979–present 3 h Global 0.1◦ Beck et al. (2017)
Ensemble Precipitation v.2.1

Precipitation Estimation from PERSIANN S, G 2000–present 6 h 60◦ 0.25◦ Hsu et al. (1997)
Remotely Sensed Information Sorooshian et al. (2000)
using Artificial Neural Networks

PERSIANN-Climate Data PERSIANN–CDR S 1983–2016 6 h 60◦ 0.25◦ Ashouri et al. (2015)
Record

TRMM Multi-Satellite TMPA–RT v.7 S 2000–present 3 h 60◦ 0.25◦ Huffman et al. (2010)
Precipitation Analysis Real Huffman and Bolvin (2018)
Time v.7

TRMM Multi-Satellite TMPA–Adj v.7 S, G 1998–present 3 h 50◦ 0.25◦ Huffman et al. (2010)
Precipitation Analysis Huffman and Bolvin (2018)
Adjusted v.7

Soil Moisture to Rain from SM-Rain–CCI v.2 S 1998–2015 daily Global 0.25◦ Ciabatta et al. (2018)
ESA Climate Change
Initiative v.2

according to a gap-filling algorithm described in Ruelland
et al. (submitted). This algorithm works in three sequential
steps: (i) Aqua–Terra combination; (ii) temporal deduction
by sliding the time filter up to 6 days; and (iii) spatial deduc-
tion by elevation and neighbourhood filter to gap-fill the re-
maining no-data grid cells. The resulting database consists of
8170 binary (snow/no-snow) daily stations at 500 m spatial
resolution for the period 2000–2012 (hereafterMsc). Finally,
snow-covered distribution (SCD) represents the percentage
of days with snow and can be retrieved for any grid cells and
periods.

3 A protocol to evaluate the space–time consistency of
satellite precipitation estimates

Figure 3 is a flowchart of the main methodological steps.
Twelve SPPs were first considered as a representative sam-
ple of currently available SPPs. This is an important con-
sideration to guide potential SPP users towards the most

efficient SPP. However, to avoid overloading the research,
a pre-selection was made at the Titicaca Lake catchment
scale (hereafter denoted regional scale) to discard less suit-
able SPPs. The remaining SPPs were then assessed using
three successive and complementary methods. The first as-
sessment step consisted of comparing SPPs and gauge obser-
vations at the locations of the 69 grid cells which included
gauges. The second assessment step consisted of analysing
the sensitivity of streamflow modelling to the SPPs at the four
basin outlets using observed streamflow as reference data.
The third step consisted of analysing the sensitivity of snow
modelling to the SPPs (precipitation datasets) over a subset
mountainous area in the Andes (see Fig. 1) using SCD as ob-
served from MODIS gap-filled snow products as reference.
Each assessment step was analysed according to three 4-year
time windows (2000–2004, 2004–2008, 2008–2012) and one
12-year time window (2000–2012) in which a hydrological
year corresponds to a period from 1 October to the follow-
ing 30 September. The aim of the proposed protocol was
to investigate the influence of the selected indicator (gauges,
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Figure 2. Mean annual precipitation maps for the 2000–2012 pe-
riod retrieved from all SPPs at their original grid size. For each SPP,
only the grid cells with more than 80 % available daily data were
retained. In order to keep the regional precipitation pattern visible,
black colour was used to filter grid cells whose mean annual precip-
itation was greater than 2500 mm yr−1.

streamflow modelling, snow modelling) and time window to
assess the SPPs’ space–time consistency. More details of the
proposed protocol are presented in the following sections. It
is noteworthy that the use of a 10-day timescale rather than a
daily timescale may conceal some of the differences among
the datasets, notably by eliminating any insights into their
capacity to capture individual events and higher intensities.
However, our choice was based on the inconsistencies we
expected between gauges and daily measurements of SPPs
as a reason to (i) use a different daily time window aggrega-
tion than the local one (08:00 to 20:00) for SPPs delivered at
daily scale, (ii) the spatial inconsistency between point-gauge
measurement and average grid-cell measurement (Tang et al.,
2018), and (iii) the temporal filters used for gap-filling of
MODIS snow products, which led us to consider that these
reference data were more valid at a 10-day scale than at a
daily scale.

3.1 Comparison of SPPs with gauge observations:
pre-selection and evaluation

SPP consistency was first analysed at the regional scale for
the 2000–2012 period. For each of the 69 0.05◦ grid cells

including at least one precipitation gauge, the daily precipi-
tation series from the gauges and SPPs were first aggregated
to the 10-day time step over the 12-year period (2000–2012).
For each of the 69 0.05◦ grid cells, the 10-day records were
only computed when more than 80 % of the daily values
were available from all the precipitation datasets (Pref and
SPPs) for exactly the same date. Next, mean spatially av-
eraged 10-day precipitation series were computed from Pref
and all SPPs by aggregating the values from all 69 grid cells.
It should be noted that SM2Rain–CCI v.2 estimates rely on
soil-moisture observations, with many missing data over wa-
ter bodies and mountainous regions (Dorigo et al., 2015),
leading to significant spatial gaps over Lake Titicaca and the
Cordillera region (Fig. 3). As a result, in comparison to other
SPPs, only 44 Pref 0.05◦ grid cells (including gauges) were
available for SM2Rain–CCI v.2. Therefore, SM2Rain–CCI
v.2 was analysed separately from other SPPs by computing
additional Pref and SM2Rain–CCI v.2 mean spatially aver-
aged 10-day precipitation series based on the 44 available
Pref 0.05◦ grid cells.

Mean spatially averaged 10-day SPPs and Pref series for
the 12-year period 2000–2012 were compared according to
different statistical criteria, namely correlation coefficient
(CC), standard deviation (SD), percentage bias (%B) and the
centred root mean square error (CRMSE) (Eqs. 1–4):

CC=
Cov(SPP, Pref)

SDSPP×SDref
, (1)

where CC is the correlation coefficient, SPP and Pref are the
SPP and Pref precipitation time series, and Cov is the covari-
ance.

SD=

√
1
n

∑n

i=1

(
Pi −P

)2
, (2)

where SD is the standard deviation in millimetres, n is the
number of values, and P is the precipitation value in mil-
limetres (SPP or Pref).

%B =
1
n

∑n
i=1

(
SPPi −Prefi

)
1
n

∑n
i=1Prefi

× 100, (3)

where %B is the SPP bias value as a percentage, n is the
number of values, SPP is the precipitation estimate of the
considered SPP value in millimetres, and Pref is the reference
precipitation value in millimetres.

CRMSE=

√
1
n

∑n

i=1

((
SPPi −SPP

)
−
(
Prefi −Pref

))2
, (4)

where CRMSE is the centred root mean square error in mil-
limetres, n is the number of values, SPP is the precipitation
estimate of the considered SPP value in millimetres, and Pref
is the reference precipitation value in millimetres.

To facilitate interpretation of the statistical results, the Tay-
lor diagram (Taylor, 2001) was used to present obtained CC,
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Figure 3. Flowchart of the main steps from SPP preselection to successive assessment approaches including (1) comparison between SPPs
and gauge observations, (2) sensitivity analysis of runoff modelling to the various SPPs at the four basin outlets and (3) sensitivity analysis
of snow modelling to the various SPPs over a subset mountainous area in the Andes.

and normalized values of SD and CRMSE. Normalization
was performed by dividing SPPs CRMSE and SD by Pref
SD. Therefore, in the Taylor diagram, the reference (black
dot) corresponds to CRMSE, SD and CC values of 0, 1 and
1, respectively. Also in the Taylor diagram, the position of
the SPPs relative to the reference dot is an integrated indi-
cator (CRMSE, SD, and CC) of SPP efficiency in reproduc-
ing gauge precipitation. The shorter the distance between the
SPPs and the reference position, the closer the SPPs and Pref
estimates. Additionally, %B values were used to observe the
potential overestimation/underestimation of each SPP con-
sidered. For the following assessment step, only the six SPPs
most efficient at the regional scale for 2000–2012 were con-
sidered.

To assess the consistency of SPPs over time, mean spa-
tially averaged precipitation 10-day series were compared to
Pref according to a Taylor diagram for three 4-year periods
corresponding to the 2000–2004, 2004–2008 and 2008–2012

periods, respectively. For all the periods considered, 98.6 %
of Pref grid cells had more than 90 % 10-day records for both
the wet and dry seasons. Consequently, the temporal assess-
ment of the SPPs was not expected to be influenced by any
inconsistency of Pref over time in terms of available records.

To assess the spatial consistency of the SPPs, we compared
the CC, CRMSE and %B computed between the SPPs and
Pref 10-day series for the 2000–2012 period at the location
of each grid cell which included gauges. For each SPP, CC,
CRMSE and %B obtained at the grid-cell level were plot-
ted to highlight regions potentially concerned by low (high)
SPP potential. We repeated the analysis for the three 4-year
windows. We only considered CRMSE scores to simplify in-
terpretation of the results, as this score was found to pro-
vide more statistical discrimination than CC, SD and %B. It
is worth mentioning that resampling SPPs (see Sect. 2.3.1)
could affect the assessment of SPP potential at the grid-cell
level. Indeed, at a coarser spatial resolution (0.25◦), SPP grid

Hydrol. Earth Syst. Sci., 23, 595–619, 2019 www.hydrol-earth-syst-sci.net/23/595/2019/



F. Satgé et al.: Consistency of satellite-based precipitation products in space and over time 603

cells’ average precipitation estimates are expected to be more
representative of the mean precipitation derived from all the
gauges in the grid cell considered than the one derived from
a single gauge. However, for these particular grid cells, a pre-
liminary SPP assessment at the original and resampled grid
sizes revealed no significant differences (data not shown).

Finally, for each grid cell, mean and SD CRMSE values
were computed from the three CRMSE values obtained from
the three 4-year periods. Mean and SD CRMSE values were
then plotted to assess the consistency of SPPs in space and
over time. The lower the mean and SD of CRMSE, the more
stable the SPP considered at the specific grid-cell location.

3.2 SPPs as input data for hydrological modelling

The GR4j lumped hydrological model (Perrin et al., 2003)
was chosen to analyse the sensitivity of streamflow simula-
tions to the various SPPs. The model has demonstrated its
ability to perform well under various hydro-climatic condi-
tions (e.g. Coron et al., 2012; Perrin et al., 2003; Grouillet
et al., 2016; Dakhlaoui et al., 2017), notably in the Andean
region (e.g. Hublart et al., 2016).

This model relies on daily precipitation (P ) and potential
evapotranspiration (PE), which was computed using the for-
mula proposed by Oudin et al. (2005) (Eq. 5):

PE=
Re

λρ

T + 5
100

if (T + 5) > 0; else PE= 0, (5)

where PE is daily potential evapotranspiration (mm), Re is
extra-terrestrial solar radiation (MJ m−2 d−1), which depends
on the latitude of the target point and the Julian day of the
year, λ is the net latent heat flux (fixed at 2.45 MJ kg−1), ρ is
water density (fixed at 11.6 kg m−3) and T is the daily mean
air temperature (◦C) estimated at the target point by interpo-
lating the gauge observations while correcting for elevation.

Firstly, a production module computes the amount of
water available for runoff, i.e. “effective precipitation”. To
do so, a soil-moisture accounting (SMA) store is used
to separate the incoming precipitation into storage, evap-
otranspiration and excess precipitation. At each time step,
soil drainage is computed as a fraction of the storage and
added to excess precipitation to form the effective precipi-
tation. Secondly, a routing function split the effective pre-
cipitation into two components: 90 % is routed as delayed
runoff through a unit hydrograph UH1 in series with a non-
linear routing storage, while the remaining 10 % is routed
as direct runoff through a unit hydrograph: UH2 (Perrin et
al., 2003). UH1 and UH2 consist of slow and quick rout-
ing paths, respectively, to account for differences in runoff
delays. Finally, the streamflow at the catchment outlet is
computed by summing up delayed and direct runoff. This
model relies on four calibrated parameters: maximum capac-
ity of the soil moisture accounting store (X1, mm), inter-
catchment exchange coefficient (X2, mm), maximum capac-

ity of routing storage (X3, mm), and time base for unit hy-
drographs (X4, days) for each catchment. Acceptable pa-
rameter bounds were defined according to the recommen-
dation of Perrin et al. (2003) and previous experiments in
a similar Andean context (Hublart et al., 2016; Ruelland
et al., 2014). The following ranges were used for model
calibration with all the precipitation datasets tested (Pref
and SPPs): 10 mm<X1< 1800 mm, −5 mm<X2< 5 mm,
1 mm<X3< 500 mm, 0.5 days<X4< 5 days. These
ranges are large enough to compensate for the differences in
the different precipitation datasets and basins. Beyond these
ranges, we assumed that streamflow simulations could not be
realistic. In practice, parameter bounds were rarely reached
when calibrating the model with the different datasets tested
(data not shown here for the sake of brevity).

The area catchment P - and PE-averaged values were com-
puted from the 5 km grid cells P (Pref and SPPs) and PE in-
cluded in each catchment considered. We used a weighted
average based on the 5 km× 5 km fraction included in the
catchment considered. Pref and SPPs were used sequentially
as forcing precipitation datasets for the streamflow simula-
tion. For each run, model parameter calibration was based
on the shuffled complex evolution (SCE) algorithm (Duan et
al., 1992) by optimizing the Nash–Sutcliffe efficiency crite-
rion (NSE, Eq. 6; Nash and Sutcliffe, 1970) at a 10-day time
step. The NSE criterion represents the overall agreement of
the shape of the hydrograph, while placing more emphasis
on high flows. NSE values vary from −∞ to 1, with a max-
imum score of 1 meaning a perfect agreement between the
observed and simulated values. By contrast, negative values
mean that more realistic estimates are obtained using the ob-
served mean values rather than the simulated ones.

NSE= 1−

{∑N
t=1
(
Qt

obs−Q
t
sim
)2∑N

t=1
(
Qt

obs−Qsim
)2
}
, (6)

where NSE is the Nash–Sutcliffe efficiency, Qt
obs and Qt

sim
are, respectively, the observed and simulated streamflow for
time step t , and N is the number of time steps for which
observations are available.

The distribution of the basin in the study region (Fig. 1)
provided the opportunity to assess the hydrological consis-
tency of the SPPs in space by running GR4j in the four basins
over the common 2008–2012 period of observed discharge
availability. The hydrological consistency of the SPPs over
time was then evaluated by running the model over the en-
tire 2000–2012 period for which discharge observations were
only available in two catchments (Katari and Keka). For each
precipitation input (Pref and SPPs), the model was calibrated
against observed streamflow over the whole period (2000–
2012) and over three 4-year sub-periods (2000–2004, 2004–
2008, and 2008–2012). No validation step was used as the
objective was to assess hydrological modelling sensitivity to
various precipitation datasets (Pref and SPPs) and not to as-
sess the hydrological model robustness under climate vari-
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ability. The aim of the analysis of the streamflow simulation
accuracy among the basins and periods considered was thus
to evaluate the strength of the SPPs in space and over time
and discrepancies in reproducing streamflow.

3.3 SPPs as input data for snow modelling in the Andes

A distributed degree-day model (Ruelland et al., 2019) was
chosen to analyse the sensitivity of snow cover simula-
tions to the SPPs. This storage-based model relies on daily
distributed precipitation (P ), temperature (T ) and potential
evaporation (PE) (Eq. 7) to represent the main snow accu-
mulation and ablation (sublimation and melt) processes (see
Fig. 4). It operates at a daily time step according to a grid
of 500× 500 m corresponding to the spatial resolution of the
MODIS data.

Snow accumulation is defined using a temperature thresh-
old Ts fixed at 0 ◦C. Sublimation is accounted for based on
daily PEsub (mm) at the target grid cell and snowmelt is con-
trolled with a melt factor parameter Kf (◦C−1 d−1 to be cali-
brated) according to Eqs. (8)–(9).

PEsub = PE×Ksub, (7)

where PEsub is potential evapo-sublimation, PE is potential
evaporation (see Eq. 5), andKsub is a proportional coefficient
depending on the mean latitude (lat, decimal degrees) of the
study area and varying from 0 at the poles to 1 at the Equator
(see Ruelland et al., 2019 for more details):

Mf= Kf× (T −Ts) , (8)

Melt=
{

0 Tj ≤ Ts
Min(SWE,Mf) Tj > Ts , (9)

where Mf is the potential melt (mm), Kf is a melt factor pa-
rameter to be calibrated, T is the temperature on day j on
the grid cell considered, and Ts is the threshold temperature
parameter (fixed at 0 ◦C) for snow accumulation and melt.
Melt cannot exceed the snow water equivalent (SWE) of the
snowpack storage.

The snow-covered areas (SCAs) are estimated from the
SWE. For each grid cell, snow is stored in a reservoir which
represents the SWE of the grid-cell snowpack (see Fig. 4).
It is fed solely by the solid fraction of precipitation and is
emptied according to the simulated sublimation and melt pro-
cesses. For each model, a grid cell is assigned to snow or not
depending on a water level threshold SWEth (mm), to be cal-
ibrated.

As the region contains permanent snow-covered areas, for
grid cells located below and above 5700 m a.s.l., the SWE
reservoir was initialized to 0 and 300 mm, respectively, at
the beginning of the simulations. These values were defined
based on MODIS snow observations and on model sensitivity
tests to SWE initial conditions accounting for different ele-
vation thresholds. The analysis revealed limited sensitivity to

initial conditions (data not shown). An initial 3-year warm-
up period was used for each simulation to limit the influence
of these conditions.

The following ranges were used for model calibra-
tion with all the tested precipitation datasets (Pref
and SPPs): 0.5 mm ◦C−1 d−1<Kf< 20 mm ◦C−1 d−1,
1 mm<SWEth< 80 mm. Kf ranges were based on ranges
adapted from the values reviewed in Hock (2003). Re-
garding the SWEth value, the assumption is that, using
remote sensing, snow cover cannot be detected below a
certain threshold (Bergeron et al., 2014). For instance,
based on in situ measurements to detect snow cover from
MODIS in the Pyrenees, Gascoin et al. (2015) found a mean
threshold of 40 mm. Since this value may be influenced by
the local context (vegetation, topography, and climate) and
spatial difference between point (in situ) and areal satellite
(MODIS) observations, SWEth was tested according to
large ranges. It is worth mentioning that the tested bounds
were reached during calibration for all simulations (i.e.
Kf= 20 mm ◦C−1 d−1 and SWEth= 1 mm). However, we
did not consider larger parameter ranges to ensure “realistic”
simulations.

In association with Tref for temperature forcing data (see
Sect. 2.2), Pref and SPPs were sequentially used as forcing
precipitation datasets to simulate snow cover with the model.
For each run, model parameters were calibrated based on the
shuffled complex evolution (SCE) algorithm by optimizing
the grid-cell-to-grid-cell correlation between the snow cover
duration (SCD) simulated by the model and that observed by
the gap-filled MODIS snow products (see Sect. 2.3.2), ac-
cording to the following Eq. (10):

R2
= 1−

∑n
p=1

(
SCDMODIS(p)−SCDMODEL(p)

)2∑n
p=1

(
SCDMODIS(p)

)2 , (10)

where R2 is a determination coefficient, n is the total num-
ber of grid cells in the study area (see Fig. 1), p is a given
grid cell, and SCDMODIS and SCDMODEL are, respectively,
the snow cover duration (SCD) observed by MODIS and the
SCD simulated by the model as a percentage of days over the
analysis period.

For each precipitation input (Pref and SPP), the model
was calibrated against MODIS observed snow cover over the
entire period 2000–2012 and over three 4-year sub-periods
(2000–2004, 2004–2008, and 2008–2012). The aim of the
analysis of the snow simulation accuracy among the areas
and periods considered was to evaluate the strength of SPPs
in space and over time and to identify discrepancies in repro-
ducing snow cover in a remote Andean area (see Fig. 1).
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Figure 4. Distributed degree-day model used in the study (Ruelland
et al., 2019).

4 Results

4.1 Space–time consistency of SPPs compared with
gauge observations

SPPs are distributed over the Taylor diagram, indicating high
discrepancy among them for the 2000–2012 period (Fig. 5a).
Some SPPs greatly overestimated precipitation, with %B
values of 165 %, 75 %, 40 % and 45 % for CMORPH–CRT
v.1, TMPA–RT v.7, PERSIANN and PERSIANN–CDR, re-
spectively. CMORPH–RAW v.1, GSMaP v.6 and SM2Rain–
CCI v.2 greatly underestimated precipitation, with %B val-
ues of −24 %, −25 % and −37 %, respectively. However, all
SPPs were highly correlated with Pref with CC greater than
0.75. Generally, including gauge data in the SPP processing
clearly enhanced precipitation estimates. Indeed, CHIRPS
v.2, CMORPH–BLD v.1, PERSIANN–CDR and TMPA–Adj
v.7 were closer to the reference dot than their respective non-
adjusted versions, CHIRP v.2, CMORPH–RAW v.1, PER-
SIANN and TMPA–RT v.7. With the closest and farthest dis-
tance to the reference, MSWEP v.2.1 and CMORPH–CRT
v.1 were, respectively, the most and least consistent SPPs to
represent the mean spatially averaged precipitation over the
2000–2012 period.

According to the literature, a quality threshold value can
be used to express SPP potential. Some authors (e.g. Hussain
et al., 2017; Satgé et al., 2016; Shrestha et al., 2017) consid-
ered a normalized RMSE value lower than 0.5 to be associ-
ated with a very good SPP performance. Even though there
were slight differences between CRMSE and RMSE, the use
of a normalized CRMSE threshold value of 0.5 to select only
the most efficient SPPs remains logical. Therefore, six SPPs
were selected for the following assessment steps, including

CHIRP v.2, CHIRPS v.2, CMORPH–BLD v.1, PERSIANN–
CDR, TMPA–Adj v.7, and MSWEP v.2.1.

At the regional scale, SPP rank performance remained
stable during the time windows considered and similar to
what was observed for the 2000–2012 period (Fig. 5). There-
fore, at the regional scale, SPPs were generally consis-
tent over time, MSWEP v.2.1 being the most accurate and
PERSIANN–CDR the least accurate SPP. However, for the
2008–2012 period, CHIRPS v.2 and CHIRP v.2 were closer
than for the previously considered period. This might be due
to the decrease in the number of available gauges for the ad-
justment processes applied to CHIRP v.2 to produce CHIRPS
v.2.

Figure 5c shows the spatial distribution of SPP errors for
the 2000–2012 period in terms of %B, CC, and CRMSE.
CMORPH–BLD v.1 was poorly correlated with Pref, with
the highest proportion of grid cells with CC less than 0.7.
This value is generally used as a quality threshold with CC
values less than 0.7 indicating poor SPP performance (see
e.g. Satgé et al., 2016). MSWEP v.2.1 had the best CC value
overall, with the highest proportion of grid cells with a CC
greater than 0.9 and only two grid cells with unsatisfactory
CC values.

The main differences were in %B and CRMSE.
CMORPH–BLD v.1 and PERSIANN–CDR precipitation un-
derestimations and overestimations at the regional scale
(Fig. 5a) were confirmed at the gauge scale (Fig. 5c). CHIRP
v.2, CHIRPS v.2, and TMPA–Adj v.7 presented similar %B
distribution, while MSWEP v.2.1 had the most homogeneous
%B distribution, with the values of almost all grid cells rang-
ing between −30 % and +30 %. This range was previously
defined as satisfactory %B for SPPs (Shrestha et al., 2017).
The gauge adjustment applied to CHIRP v.2 was globally
positive, with a %B reduction from CHIRP v.2 (15.9 %) to
CHIRPS v.2 (0.4 %) of almost 100 % (Fig. 4a). It consider-
ably increased the numbers of grid cells with %B between
−15 % and +15 % from CHIRP v.2 to CHIRPS v.2 (Fig. 5b)
and generally enhanced CRMSE and CC scores.

Interestingly, all the SPPs underestimated precipitation for
the two grid cells located over the northern Lake Titicaca is-
lands. This is probably linked to SPP’s limited ability to de-
tect warm cloud precipitation (see Sect. 5.1).

CMORPH–BLD v.1, PERSIANN–CDR, and TMPA–Adj
v.7 had the highest proportion of grid cells with CRMSE val-
ues greater than 0.7 (Fig. 5c). This value can be used as a
quality threshold above which SPP performance is consid-
ered unsatisfactory (see e.g. Shrestha et al., 2017). Therefore,
over the 2000–2012 period, precipitation estimates derived
from CMORPH–BLD v.1, PERSIANN–CDR and TMPA–
Adj v.7 are subject to high uncertainties at local scale. The
inclusion of gauge observations for CHIRPS v.2 estimates
reduced the number of grid cells with unsatisfactory perfor-
mance by 50 % in comparison with the non-adjusted CHIRP
v.2 version. With only 14 and 12 grid cells with CRMSE
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Figure 5. Efficiency of SPPs compared with gauge observations: (a) pre-selection of SPPs at the regional scale in the form of a Taylor
diagram; (b) consistency of SPPs over time at the regional scale in the form of a Taylor diagram; and (c) consistency of SPPs in space for the
2000–2012 period from CC, CRMSE and %B values obtained from each Pref grid cell including at least one gauge.
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greater than 0.7, respectively, CHIRPS v.2 and MSWEP v.2.1
showed the highest spatial consistency.

More generally, the spatial analysis highlighted three areas
in which all the SPPs considered presented less satisfactory
statistical scores (CRMSE, CC, and %B) than over the re-
maining areas. These regions correspond to the south-eastern
Lake Titicaca shore, and the south-western and north-eastern
borders of the catchment.

The SPPs’ lowest potential over the south-eastern shore
of Lake Titicaca and at the south-western and north-eastern
borders of the catchment highlighted in the 2000–2012 pe-
riod was confirmed for all four time windows, as indicated by
CRMSE values (Fig. 6). For each time window, the CRMSE
distribution differed depending on the SPP considered. More
interestingly, the distribution of CRMSE of all the SPPs dif-
fered depending on the time window considered. As a re-
sult, the efficiency of the SPPs varied over time for a spe-
cific region (at the grid-cell scale). As a clear example, for
the CMORPH–BLD v.1 south-eastern located grid cells, the
CRMSE values changed drastically over time: these grid
cells presented unsatisfactory CRMSE scores (above 0.7) for
the 2000–2004 period and satisfactory CRMSE scores (be-
low 0.5) for both the 2004–2008 and 2008–2012 periods.

In this context, Fig. 6d represents the space–time consis-
tency of the SPPs over the 2000–2012 period. The mean and
SD CRMSE values obtained at the location of each grid cell
in the three sub-periods considered, used as indicators of the
space–time consistency, are plotted in Fig. 6d. Overall, all
SPPs are stable in space and over time, with SD CRMSE
values below 0.25, but their consistency differed in accuracy.
CMORPH–BLD v.1 provided stable but not accurate precip-
itation estimates, with mean CRMSE values systematically
above 0.7. In contrast, MSWEP v.2.1 and CHIRPS v.2 pre-
sented stable and accurate precipitation estimates, with many
grid cells with a mean CRMSE below 0.5. CHIRP v.2 space–
time consistency was lower than that of CHIRPS v.2, thereby
confirming the advantage of the gauge calibration (Fig. 6d).
PERSIANN–CDR and TMPA–Adj v.7 were more consistent
in space and over time over the southern mid and western re-
gions, respectively. Interestingly, the close potential precipi-
tation estimates observed for CHIRP and CHIRPS v.2 at the
regional scale and for the 2008–2012 period were confirmed
at the grid-cell level, with similar spatial error distribution
for both SPPs. Therefore, gauge adjustment appears to be
less efficient for the 2008–2012 than for the 2000–2004 and
2004–2008 periods.

MSWEP v.2.1 and CHIRPS v.2 were the most stable SPPs
in space and over time, with the highest proportion of grid
cells with a mean and a SD CRMSE below 0.5 and 0.25, re-
spectively (Fig. 6d). However, for grid cells located on the
south-eastern shore of the lake, CHIRPS v.2 provided more
accurate and stable precipitation estimates than MSWEP
v.2.1 and all the other SPPs.

4.2 Space–time consistency of SPPs compared with
streamflow simulations

Streamflow simulations using Pref varied along the catch-
ments, with the lowest NSE score of 0.63 for Keka and the
highest of 0.89 for Katari. Simulated SPP streamflow effi-
ciency followed the same trend, except with CMORPH–BLD
v.1 and TMPA–Adj v.7 (Fig. 7). TMPA–Adj v.7 provided
the best streamflow simulation for the Ilave catchment and
the worst for Keka, whereas the opposite was observed us-
ing CMORPH–BLD v.1 as forcing data. The low efficiency
of CMORPH–BLD v.1 in the Ilave catchment was related
to its erroneous streamflow peaks in the 2009 and 2012 dry
seasons. CHIRP v.2 and CMORPH–BLD v.1 had the lowest
scores for the Katari and Ramis catchments, with NSE values
of 0.59 and 0.45, respectively. For all the catchments, stream-
flow simulations based on CHIRPS v.2 presented systemati-
cally higher NSE scores than simulations based on CHIRP
v.2, showing that the adjustment provided in CHIRPS v.2
with the integration of gauge observations led to better pre-
cipitation estimates. This confirms the enhancement of the
gauge-based assessment observed with an overall reduction
in bias and an increase in CRMSE and CC.

For all the catchments considered, the best streamflow
simulations were obtained with at least one of the SPPs as
forcing precipitation data. TMPA–Adj v.7 and CMORPH–
BLD v.1 provided a better streamflow simulation than Pref
for Ilave and Keka, respectively, and MSWEP v.2.1 outper-
formed Pref for the Katari and Ramis catchments. These re-
sults show that SPPs can efficiently replace the currently
available sparse precipitation gauge networks for use in hy-
drological studies of the region. Overall, MSWEP v.2.1 ap-
pears to be the most consistent SPP product for streamflow
simulations. Indeed, the streamflow simulations forced by
MSWEP v.2.1 were more realistic than those forced by Pref
over three catchments (Katari, Keka, and Ramis) and were
almost the same for the Ilave catchment.

However, as shown in Fig. 7c, the SPP hydrological rank-
ing in the 2008–2012 period changed drastically over time.
For example, for the Katari catchment, MSWEP v2.1 led
to the best streamflow simulations for the 2004–2008 and
2000–2012 periods but not for the 2000–2004 period, for
which TMPA–Adj v.7 forced streamflow simulations had a
higher NSE score of 0.85. Additionally, CMORPH–BLD v.1
potential fell drastically over the 2000–2004 period with a
negative NSE score, whereas it produced the most realis-
tic streamflow simulation for the period 2008–2012. In the
Keka catchment, for each time window, the best streamflow
simulation was obtained using different SPPs. CHIRP v.2,
PERSIANN–CDR and CMORPH–BLD v.1 resulted in the
highest NSE scores over the various sub-periods analysed,
with, respectively, 0.73 for the period 2000–2004, 0.83 for
2004–2008 and 0.77 for 2008–2012.

To conclude, the analysis of streamflow model sensitivity
to the different precipitation datasets depended to a great ex-
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Figure 6. Consistency of SPPs in space and over time compared with gauge observations. CRMSE values obtained from the SPPs at the
gauge level for three 4-year periods: (a) 2000–2004; (b) 2004–2008; and (c) 2008–2012. (d) Mean and SD CRMSE values obtained for each
grid cell using the three respective values obtained for the three 4-year periods.

tent on the time window and catchment considered. However,
MSWEP v.2.1 appeared to be the most “stable” SPP. It pro-
vided the most realistic streamflow simulations with higher
NSE scores than Pref for 7 out of 10 simulations and also
outperformed other SPPs in almost all streamflow simula-
tions tested. The results obtained for the 2000–2012 period
faithfully reflected global SPP performance for all the time
windows, with MSWEP v.2.1 as the most and CMORPH–
BLD v.1 as the least suitable SPP for hydrological modelling
over the Katari and Keka catchments.

4.3 Space–time consistency of SPPs for snow cover
duration

Whatever the period, the best SCD simulations were obtained
using Pref as input data withR2 values of 0.83, 0.80, 0.79 and
0.82 for the 2000–2004, 2004–2008, 2008–2012 and 2000–
2012 periods, respectively (Fig. 8). Simulated SCD using
SPPs as input data systematically overestimated SCD com-
pared to the SCD computed from the gap-filled MODIS snow
products. The MSWEP v.2.1 (CHIRP v.2) datasets provided

the most realistic (unrealistic) SCD simulations over 2000–
2012, with R2 of 0.80 and 0.67, respectively (see Fig. 8a).
Interestingly, mean annual precipitation over 2000–2012 (see
Fig. 8a) was significantly higher with the SPPs (ranging from
762 mm with MSWEP v.2.1 to 1229 mm with CHIRP v.2)
than with Pref (523 mm). The least realistic SCD simula-
tions with the SPPs may thus be explained by higher pre-
cipitation, which increases snowfall input and snow cover
duration despite the specific calibration of the snow model.
Indeed, MSWEP v.2.1 mean annual precipitation (762 mm)
was the closest to the Pref ones and provided the most realis-
tic SCD estimates. Conversely, CHIRP v.2 provided the high-
est mean annual precipitation estimate (1229 mm), whereas
it produced the least realistic SCD estimates, with R2 values
of 0.74, 0.58, 0.65, and 0.67 for the 2000–2004, 2004–2008,
2008–2012 and 2000–2012 periods, respectively. This trend
was observed for all the periods considered (see Fig. 8b). All
the other SPPs presented relatively close mean annual pre-
cipitation estimates and therefore relatively close SCD simu-
lation performances (Fig. 8b).
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Figure 7. Observed versus simulated streamflow using Pref and SPPs as input data in the hydrological model: (a) 10-day streamflow simu-
lations at the four basin outlets (Ilave, Katari, Keka and Ramis) over the 2008–2012 calibration period; (b) corresponding efficiency (NSE
scores) of simulated versus observed streamflow; (c) efficiency (NSE score) of simulated versus observed streamflow over the 2004–2004,
2004–2008, and 2000–2012 calibration periods at two basin outlets (Katari and Keka).
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Figure 8. Observed (gap-filled MODIS snow products) versus simulated snow cover duration (SCD) using Pref and SPPs as input data in
the snow model: (a) maps of snow cover duration for 2000–2012; (b) efficiency (R2 scores) of simulated SCD versus MODIS SCD for the
different calibration periods. SCDs are expressed as the percentage of days over the simulation period. R2 values stand for the grid-cell-to-
grid-cell correlation between the observed and simulated SCD. Green and red stars highlight SPPs with the closest and further precipitation
estimates to Pref over the subset considered.

Interestingly, all the SCD simulations based on SPPs as
inputs had higher scores for the period 2000–2004, with a
minimum efficiency for CHIRP v.2 (R2

= 0.74) and a maxi-
mum for MSWEP v.2.1 (R2

= 0.83). This is not in line with
the space and time analysis based on gauges and hydrologi-
cal modelling analyses. Indeed, CMORPH–BLD v.1 was the
least efficient SPP to represent Pref and observed streamflow
over 2000–2004, while its SCD estimates were the second
most efficient SCD simulation forced by SPPs. Similarly, the
CHIRP v.2 forced streamflow simulation was the most realis-
tic one in the Keka basin for the period 2000–2004, while the
CHIRP v.2 SCD simulation was the least efficient in compar-
ison to the other SPPs. The TMPA–Adj v.7 forced streamflow
simulation was the first most realistic one for the Ilave basin

and the second most realistic one for the Ramis basin over
the period 2008–2012, whereas its SCD simulations were
among the least efficient (R2

= 0.67) in comparison to the
other SPPs. This shows that SPPs can be effective for a spe-
cific region or for a given indicator (i.e. gauges and hydrolog-
ical modelling), but not for another region or indicator (i.e.
snow modelling) and inversely. However, the analysis also
confirmed the MSWEP v.2.1 overall stability and efficiency
in space and over time previously highlighted for the precip-
itation and streamflow representation. Indeed, MSWEP v.2.1
forced SCD simulations remained relatively stable, with sim-
ilar scores obtained for all the periods considered.

Hydrol. Earth Syst. Sci., 23, 595–619, 2019 www.hydrol-earth-syst-sci.net/23/595/2019/



F. Satgé et al.: Consistency of satellite-based precipitation products in space and over time 611

5 Discussion and conclusion

5.1 SPP spatial variability: the Lake Titicaca bias

At the regional scale, the performances of the SPPs were in
relatively good agreement with the gauge references. How-
ever, their performances differed markedly in space with a
general trend to underestimating precipitation over Lake Tit-
icaca.

Due to its size, the solar radiation absorption capacity of
Lake Titicaca increases the temperature by 4 to 6◦ over the
superficial water layer in comparison to that over the sur-
rounding land (Delclaux et al., 2007; Roche et al., 1992).
Additionally, evaporation from Lake Titicaca is very high, es-
timated at 1700 mm year−1 (Pillco Zolá et al., 2018). There-
fore, crossing the lake, the air masses pick up lake moisture,
which increases their temperature and allows their ascension.
This convection results in more precipitation over the lake
than over the surrounding land (Roche et al., 1992). These
precipitation events originate from warm clouds whose de-
tection remains challenging for SPPs. Indeed, SPPs use cloud
top IR temperature to discretize rainy and rainless clouds.
The IR temperature threshold may be too low to correctly
detect warm rain clouds, as suggested over mountainous re-
gions (see e.g. Dinku et al., 2007, 2010; Gebregiorgis and
Hossain, 2013; Hirpa et al., 2010; Li et al., 2013). Conse-
quently, many precipitation events may be lost, leading to
underestimation of precipitation over Lake Titicaca. To sup-
port our hypothesis, we computed the probability of detec-
tion (POD) of daily precipitation events. POD is an indicator
of an SPP’s ability to correctly forecast precipitation events
with values ranging between 0 and 1 and a perfect score of
1. A low POD indicates that precipitation events are not de-
tected by SPPs. Figure 9 shows the POD obtained from all
SPPs for each grid cell with gauges over the 2000–2012 pe-
riod. With relatively lower POD values for grid cells above
the lake than for grid cells over the surrounding land, TMPA–
Adj v.7 and CHIRPS v.2 exhibited a clear trend in underesti-
mating daily precipitation occurrence over the lake. MSWEP
v.2.1 and CHIRP v.2 showed the same trend over the north-
ern part of the lake. These POD “anomalies” could partially
explain the negative bias observed over Lake Titicaca be-
cause of the warm cloud precipitation process. CMORPH–
BLD v.1 and PERSIANN–CDR showed no significant trends
and were the least efficient SPPs overall.

It is noteworthy that the eastern lake border is character-
ized by significant emissivity and temperature changes (in-
duced by the lake and by the snow cover in the Cordillera),
which perturb PMW precipitation retrieval (see e.g. Ferraro
et al., 1998; Levizzani et al., 2002; Tian and Peters-Lidard,
2007) and may also contribute to the SPPs’ relatively lower
performance.

River streamflow and precipitation over the lake surface
account for, respectively, 53 % and 47 % of the total Titi-
caca water supply (Roche et al., 1992). Even if MSWEP

Figure 9. SPPs’ ability to forecast daily precipitation events rep-
resented in the form of POD. POD= a/a+ b, with “a” being the
number of days on which both SPP and Pref detected precipitation
and b the number of days on which only Pref detected precipitation
events. The legend shows the range between min and max to focus
on POD anomalies over Lake Titicaca. Grid cells located outside
the Lake Titicaca basin were removed to facilitate interpretation.

v.2.1 led to realistic simulations of streamflow, its absolute
bias of greater than 35 % over the lake is a major problem
when attempting to model the Lake Titicaca water budget.
Therefore, MSWEP v.2.1 precipitation estimates need to be
adjusted over the lake. Previous studies merging gauges and
SPPs successfully applied over the Altiplano (Blacutt et al.,
2015; Heidinger et al., 2012; Vila et al., 2009) and elsewhere
(Ma et al., 2018; Ringard et al., 2017) should be used as a
guideline.

5.2 Gauges versus hydrological modelling-based
assessment

Most of the studies on comparisons of SPP potential rely
more on gauge-based assessment (see the reviews by Mag-
gioni et al., 2016; Sun et al., 2018) than on hydrological
modelling-based assessment (see the review by Maggioni
and Massari, 2018). However, as shown in this study, the
SPP’s performance compared with gauge observations is
not systematically supported by the sensitivity analysis of
streamflow modelling. To provide more insight into this dis-
crepancy, Fig. 10 compares SPP performance with precipi-
tation gauges and with observed streamflow at the outlet of
the four basins considered (Ilave, Katari, Keka, and Ramis).
To simplify the analysis, the comparisons focus on the best
and worst SPPs obtained from both gauges and hydrological
analysis. Over the Katari and Ramis basins, MSWEP v.2.1
was the most efficient SPP, according to both gauges and
hydrological assessment. However, for the Ilave and Keka
basins, the most efficient SPPs varied with the assessment
indicator. For the Ilave basin, MSWEP v2.1 was the most ef-
ficient SPP in representing precipitation at the gauge level,
while TMPA–Adj v.7 provided the best streamflow simula-
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tion. For the Keka basin, CHIRPS v.2 and CMORPH–BLD
v.1 were the most efficient SPPs according to the gauges
and hydrological analysis, respectively. Similar discrepan-
cies were also observed concerning the least efficient SPPs.
Indeed, for the Katari, Keka and Ramis basins, the least ef-
ficient SPPs varied with the assessment indicator considered
(i.e. gauges or hydrological). We identified two main factors
to explain those discrepancies.

The first factor is the spatial distribution of precipitation
gauges in the catchment. For a given basin, the observed out-
let streamflow includes precipitation over the basin. There-
fore, unlike the gauge-based assessment, the hydrological as-
sessment allows indirect feedback from the SPP’s ungauged
grid cells in the basin. The ratio of “suitable” to “unsuitable”
SPP grid cells at the basin scale may differ from the point
gauge assessment of SPP grid cells and explain part of the
discrepancy between the gauges and hydrological-based as-
sessment. This difference could be even more marked when
the gauges are located in specific grid cells where SPPs
do not provide efficient precipitation estimates due to ge-
omorphological context or to spurious SPP anomalies, as
shown by Chen and Li (2016) and Satgé et al. (2017b). The
hydrological-based assessment makes it possible to over-
come these problems (distribution and density of the gauges).
Besides, errors in the spatial distribution of precipitation can
be partially offset by model calibration. Except when a dense
network of precipitation gauges adequately captures the pre-
cipitation spatial patterns, hydrological-based evaluation ap-
pears to be a necessary step to complement SPP gauge-based
assessments.

The second factor is the difference in spatial representa-
tion between point (gauge) and areal (SPP grid-cell) mea-
surement of precipitation. An areal measurement (SPP grid-
cell) can be considered the aggregation of “infinity” point
measurements (gauges). “Infinity” is hard to represent with
limited spatial gauge measurements. At the SPP grid-cell
scale, precipitation events can occur in the vicinity of the
gauges but not at the exact location of the gauges. Conse-
quently, differences in precipitation estimates derived from
the gauges and the SPPs are related not only to SPP deficien-
cies, but also to the difference in their respective measured
spatial scale. As a result, as shown by Tang et al. (2018),
the use of sparse gauge networks tends to underestimate SPP
potential. This would be even more marked for lower spa-
tial resolution SPPs (TMPA–Adj v.7, PERSIANN–CDR, and
CMORPH–BLD v.1 in this study) than for higher spatial res-
olution SPPs (CHIRP v.2, CHIRPS v.2, and MSWEP v.2.1
in this study), as the difference in spatial representation be-
tween a gauge and an SPP is greater. Indeed, the gauge-based
assessment ranked CHIRPS v.2 and MSWEP v.2.1 as the best
SPPs for this study area. However, aggregation of precipi-
tation at the basin scale eliminated the difference in spatial
representation between point (gauge) and areal (SPP) pre-
cipitation as both gauge and SPP aimed to represent precip-
itation at the same spatial scale (basin scale). Therefore, un-

like gauge precipitation measurements, streamflow measure-
ments are not expected to be more representative of high than
low spatial resolution SPPs. Indeed, as shown in Fig. 10, the
best performances are not systematically achieved with the
highest SPP resolutions compared with streamflow observa-
tion. The results obtained over the Ilave and Keka basins il-
lustrate this feature: over the Keka basin, CHIRPS v.2 (5 km)
precipitation estimates were better, whereas CMORPH–BLD
v.1 (25 km) provided better streamflow estimates. Similarly,
MSWEP v.2.1 (10 km) was more efficient than gauges, but
TMPA–Adj v.7 (25 km) provided better streamflow simula-
tion over the Ilave basin.

To summarize, SPP assessments based on a gauge network
make it possible to detect very local SPP inconsistencies but
are influenced by (i) the distribution of the gauges and (ii) the
difference in spatial resolution (point versus grid cells). It is
also worth mentioning that hydrological-based assessments
may be influenced by the model itself. In this study, the SPP
assessment relied notably on their ability to provide realis-
tic streamflow simulations at the basin outlet using a lumped
model. Distributed physical models could reinforce the po-
tential assessment of each product based on spatial criteria
(for instance humidity or water level), but this would be diffi-
cult over the Lake Titicaca region due to the scarcity of data.
Similarly, other ET estimates could have been used, espe-
cially those based on remote sensing techniques to compen-
sate for the limited availability of temperature gauge data.
However, we would like to underline that our purpose was
not to evaluate or discuss the model structure or ET esti-
mates, but to highlight the complementarity of point gauges
and integrated hydrological modelling. In this context, the
same ET estimates and the same hydrological model were
used to assess all the SPPs through the specific calibration of
each dataset.

A complete quality assessment of SPPs is therefore dif-
ficult to achieve and the choice of the most suitable SPPs
should rather be based on assessment steps and include the
final use of the SPPs.

5.3 Space–time SPP consistency

For each assessment indicator considered (i.e. gauges,
streamflow and snow cover duration), the performances of
the SPPs varied depending on the time window considered.
These variations can be easily observed when SPPs are used
as forcing data for hydrological modelling, in which case the
ranking of SPPs observed for each of the 2000–2004, 2004–
2008, 2008–2012 and 2000–2012 time windows changed
significantly (see Fig. 7b, c). Therefore, as shown in the anal-
ysis, a given SPP can appear to be the best option to represent
precipitation for one particular period but not for another.
Additionally, for the same period, the SPP may be suitable
for a specific regional subset but not for another, as clearly
shown at the gauges and hydrological-based assessment (see
Figs. 5 and 7b). This space–time inconsistency is of major
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Figure 10. Comparison of the performance of the SPPs with that of precipitation gauges and observed streamflow at the outlet of the four
basins (Ilave, Katari, Keka, and Ramis): (a) SPP performance at the gauge level for the four catchments represented according to a Taylor
diagram (scores were computed using only the grid cells included in the catchments for the 2008–2012 period); (b) best and worst SPPs
according to the gauge-based and hydrological-based assessments for the 2008–2012 period.

concern in the current context of climate variability. Indeed,
over remote regions, the scarcity of meteorological stations
encourages scientists to use remote sensing data to under-
stand precipitation variability and its contribution to mete-
orological, agricultural and hydrological droughts (see e.g.
Agutu et al., 2017; Arvor et al., 2017; Guo et al., 2017; Tan
et al., 2017; Tao et al., 2016; Bayissa et al., 2017; Satgé et al.,
2017a). Therefore, for these studies, a consistent analysis of
the consistency of SPPs in space and over time is a pioneer-
ing step to select the most realistic SPPs. It should make it
possible to foresee potential propagation of SPP inconsisten-
cies in the studies to consistently weight the observed results.
From our analysis, it will be recalled that some SPPs are rel-
atively stable at regional scale (CHIRPS v.2, MSWEP v.2.1)
and could thus be used to study regional precipitation pat-
terns with a relatively high degree of confidence. For studies
on the spatial variability of precipitation, MSWEP v.2.1 is the
most suitable SPP for the study region as it is the most stable
in space and over time. However, as discussed above, correc-
tion methods need to be taken into consideration to enhance
precipitation estimates over Lake Titicaca. Moreover, care
should be taken in the north-eastern and south-western re-
gions corresponding to the transition from the Amazon to the
Altiplano and the Altiplano to the Pacific watershed zones,
respectively (see Fig. 6d). For these specific regions, all the
SPPs studied here represented the lowest space–time stabil-
ity. These regions present very significant variations in ele-
vation, which are known to interfere in SPPs (Ochoa et al.,
2014; Satgé et al., 2017b) and may partially explain this local
discrepancy.

5.4 Snow modelling to assess SPPs over unmonitored
regions

SPPs are subject to high uncertainty in mountainous re-
gions. Indeed, the precipitation/no precipitation classification
based on cloud top IR temperature generally fails because
the temperature threshold used for the discretization process
is too high. Currently, over high-elevation mountainous re-
gions, the top cloud temperature is generally lower than over
flat regions, resulting in many non-rainy cold clouds being
misidentified as rainy clouds (Hussain et al., 2017; Satgé
et al., 2017a). In addition, snow and ice cover appear to be
similar to ice precipitation aloft in the scattering signal in
microwave channels (Ferraro et al., 1998; Levizzani et al.,
2002), leading to the misidentification of snow and ice cover
with rainy clouds (Dinku et al., 2010; Hussain et al., 2017;
Mourre et al., 2016). As an example, the inconstancy de-
scribed in both IR and PMW precipitation recovery led to
marked overestimation by SPPs over the Himalayan Pakistan
region (Hussain et al., 2017; Satgé et al., 2018). However,
the accessibility and handling difficulty over high-elevation
snow-covered regions limits the availability of gauges and
hence the assessment of SPPs. In this context, the pro-
posed snow modelling-based assessment using snow cover
observed by satellite imagery offers an alternative way to
obtain initial feedback on the efficiency of SPPs over com-
pletely unmonitored regions. The present study shows that
gap-filled MODIS snow products can be used as reference
to indirectly assess SPP efficiency and show great promise
for the validation of SPPs in regions where distinguishing
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Figure 11. Snow-covered area observed from gap-filled MODIS
snow products at a 10-day time step over the Andean subset.

between rainfall and snowfall is still challenging. However,
the distribution of SCD (Fig. 8a) indicates permanent snow-
covered areas over which seasonal dynamics from optical
imagery (MODIS) are difficult to capture as there is more
variation in depth than in spatial extent. Consequently, the
regional seasonal snow cycle captured from MODIS is weak
and erratic (see Fig. 11). Preliminary modelling tests showed
that the dynamics of these snow-covered areas were poorly
simulated by the snow model when the Pref and SPP precip-
itation datasets were used.

Another possible approach could consist of coupling satel-
lite radar altimetry and optical imagery to monitor the sea-
sonal snow cycle in terms of snow depth and volume. The re-
cently launched Sentinel-2 (optical) and Sentinel-3 (altime-
ter) satellites present an unprecedented opportunity to moni-
tor snow volumetric dynamics at finer spatial resolution than
MODIS.

In addition, the SPPs tested in this study were not orig-
inally designed to distinguish between liquid and solid pre-
cipitation. The newly released SPPs Integrated Multi-satellite
Retrievals for the Global Precipitation Mission (IMERG-v.3
v.4 v.5) are the first SPPs which make it possible to discretize
liquid to solid precipitation at 10 km spatial resolution and al-
most global scale. We expect that such products will enhance
the monitoring of seasonal snow dynamics. However, as yet,
no studies have reported on the potential of IMERG products
to estimate snowfall, which should guide the next step in the
assessment of SPPs over the region.

6 Conclusions

This paper compared the space–time consistency of 12 SPPs
at different spatial and temporal scales with point gauge
observations and according to sensitivity analysis of snow-
runoff responses. The main results of the study can be sum-
marized as follows.

– Given the currently available precipitation gauge net-
work, SPPs are attractive and efficient tools to monitor

local precipitation and to force impact modelling, such
as snow-hydrological models. Of the SPPs with a grid
scale of 10 km and more than 35 years of observed pre-
cipitation, MSWEP v.2.1 provided the best precipitation
estimates at the gauge level, the most realistic stream-
flow simulations (with 7 out of 10 simulations outper-
forming the ones obtained using the available precip-
itation gauge network), and the most realistic simula-
tions of snow cover duration compared to those simu-
lated with the other SPPs.

– SPPs present space–time errors that cannot be assessed
when only one indicator and/or time window is used.
Indeed, the use of a single indicator is not representa-
tive of SPP performance (SPPs may be ranked differ-
ently depending on the indicator used) and may conceal
part of the SPP potential and/or limitation. Similarly, the
use of a single time window for SPP assessment may
also conceal part of the SPP potential and/or limitations
(SPPs may rank differently depending on the time win-
dow used).

– The proposed sensitivity analysis of snow modelling to
the SPPs by using MODIS snow products as control
data has great promise for the assessment of SPP po-
tential over completely unmonitored snow-covered re-
gions.

– For the three assessment indicators (gauges, streamflow
and snow cover duration) considered here, all SPP ver-
sions including gauge data for precipitation estimates
(TMPA–Adj v.7, CMORPH–BLD v.1 and CHIRPS
v.2) outperformed their satellite-only-based version
(TMPA–RT v.7, CMORPH–RAW v.1 and CHIRP v.2).

– Soil-moisture-based precipitation estimates (SM2Rain–
CCI v.2) were shown to be very promising precipitation
estimates, but are unsuitable for regional contexts with
large waterbodies and mountainous and snow-covered
regions, which include too many gaps in time and space.
The much smoothed decreasing north-west–south-east
precipitation pattern produced by GSMaP v.6 was not
sensitive to local precipitation variability, reflecting an
overall poor performance.
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