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We present a model for the lowest two potential energy surfaces (PESs) that describe the photoinduced ring-opening
reaction of benzopyran taken as a model compound to study the photochromic ring-opening reaction of indolinoben-
zospiropyran and its evolution toward its open-chain analogue. The PESs are expressed in terms of three effective
rectilinear coordinates. One corresponds to the direction between the equilibrium geometry in the electronic ground
state, referred to as the Franck-Condon (FC) geometry, and the minimum of conical intersection (CI); while the other
two span the two-dimensional branching space at the CI. The model reproduces correctly the topography of the PESs.
The ab initio calculations are performed with the extended multi-configuration quasi-degenerate perturbation theory
at second order (XMCQDPT2) method. We demonstrate that accounting for electron dynamic correlation drastically
changes the global energy landscape since some zwitterionic states become strongly stabilized. Quantum dynamics cal-
culations using this PES model produce an absorption spectrum that matches the experimental one to a good accuracy.

I. INTRODUCTION

Fast and reproducible photochromism provides the poten-
tial for many optical switching processes from ophthalmic
glasses to optical memories, and non-linear optical devices1–3.
In this paper, we focus on a particular class of photochromic
molecules: spiropyrans, where a ring-opening reaction is in-
duced by a π → π∗ excitation, as shown on Fig. 1 (a), from
the electronic ground state S0 to the first singlet excited state
S1. Irradiating a spiropyran molecule with Ultra-Violet (UV)
light leads to the breaking of the bond between the spiro car-
bon atom and the oxygen atom of the chromene moiety. After
this first step, a cis-trans isomerization takes place around the
three central C-C bonds leading to a planar structure called
merocyanine. This planar form allows the π-system to be de-
localized over the whole structure, resulting in an absorption
band in the visible range for the merocyanine isomer4,5: see
Fig. 1 (a). The two isomeric forms thus have quite differ-
ent structures, and the nature of the mechanism that allows
spiropyran/merocyanine systems to switch from one isomeric
form to another is far from being fully understood.

Over the past decades spiropyrans have been the focus
of many theoretical and experimental studies6–14. In partic-
ular, time-resolved spectroscopic experiments9,10 have pro-
vided insights into the dynamics of the photochromic process
in benzospiropyran compounds. For instance, these have been
shown to be sensitive to the initial chirp and polarisation state
of the femtosecond pulses initiating the reaction11,12. We as-
sume as in Ref.6 that benzopyran (see Fig. 1 (c)) can be used
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FIG. 1. (a) Photo-induced ring opening of indolinobenzospiropyran
into its merocyanine analogue. (b) The π-system of the chromene
moiety is orthogonal to the indoline moiety, thus explaining that the
absorption spectrum corresponding to the π → π∗ excitation is, to
a first approximation, the sum of the spectra of the two orthogonal
fragments. (c) Ring opening of the benzopyran molecule. We assume
as in Ref.6 that benzopyran can be used as a model compound to
study the photochromic ring opening of indolinobenzospiropyran.

as a model compound to study the photochromic ring-opening
reaction of indolinobenzospiropyran and its evolution toward
its open-chain analogue (see Fig. 1). This approximation is
valid since only the benzopyran moiety initially absorbs be-
fore the isomerization9,10, which originates from the quasi or-
thogonality between the benzopyran and the indoline moiety
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(see Fig. 1 (b))4,15. Note that calculations on the full system,
exposed in Ref.16,17, indicate the possibility of an alternative
deactivation pathway involving C-N dissociation on the in-
doline moiety. Our model system is specifically designed to
address deactivation via C-O dissociation on the benzopyran
chromophore. The extent to which both pathways may com-
pete will not be addressed in the present work.

Describing the corresponding photochemical process is a
very difficult task. Indeed, simulating internal conversion be-
tween vibronically coupled electronic states requires a non-
adiabatic quantum dynamics treatment (see, e.g. Ref.18 and
references therein). The extreme case occurs at conical in-
tersections vicinities19,20, namely molecular geometries where
two potential energy surfaces cross (the corresponding states
are degenerate). In the vicinity of a conical intersection,
the Born-Oppenheimer approximation breaks down, allowing
non-adiabatic processes to take place. Conical intersections
were predicted by John von Neumann and Eugene Wigner
in 1929 and seem to be ubiquitous nowadays in polyatomic
molecules20,21. To describe the corresponding dynamics, two
typical strategies can be used: direct dynamics, where the po-
tential energies and vibronic couplings are calculated on the
fly along trajectories22, and dynamics on grids, where an an-
alytical model for the potential energies and vibronic cou-
plings is a prerequisite23. Trajectory-based methods – ei-
ther semiclassical, e.g., trajectory surface hopping (TSH)24,
or quantum, e.g., ab initio multiple spawning (AIMS)25 or di-
rect dynamics variational multiconfiguration Gaussian (DD-
vMCG)22,26 – have many advantages but are bound to lower
accuracy than grid-based quantum methods such as multicon-
figuration time-dependent Hartree (MCTDH)27, which will be
adopted here.

For grid-based methods, one has to solve the time-
dependent Schrödinger equation for the nuclei after having
solved the Schrödinger equation for the electronic Hamilto-
nian that provides the potential energy surfaces (PES)s and
the couplings between the different electronic states. Obtain-
ing such PESs and the couplings expressed as multidimen-
sional functions of the nuclear coordinates is a significant
bottleneck for the quantum-mechanical treatment of the vi-
bration and/or reaction. In addition, quantum chemistry cal-
culations produce adiabatic energies and non-adiabatic cou-
pling vectors. However, quantum dynamics simulations are
more easily run using a so-called quasi-diabatic representa-
tion, which induces less numerical instabilities in quantum
dynamics simulations28–30. Instead of vector functions of the
nuclear coordinates that are singular at conical intersections,
quasi-diabatic representations lead to a Hamiltonian matrix
where the off-diagonal elements are smooth-varying scalar
functions. The quasi-diabatic potential energy surfaces (the
diagonal elements of the Hamiltonian matrix) also are sim-
ple functions, as opposed to the two-dimensional cusp at the
conical intersection between two adiabatic surfaces. Quasi-
diabatic functions are thus much easier to fit to regular math-
ematical expressions.

Fortunately, dynamical processes in complex molecular
systems often occur around a reactive core made of relatively
few active degrees of freedom that are responsible of most

of the dynamics. It is thus reasonable to invoke simplify-
ing approximations for the inactive degrees of freedom when
calculating the PES and simulating quantum dynamics31. A
widely used approach is the rigid-constraint one, which con-
sists in freezing some nuclear degrees of freedom. Additional
approximations may be considered. Indeed, since the quasi-
diabatic states depend smoothly on the nuclear coordinates,
so do the quasi-diabatic Hamiltonian matrix elements that can
thus be described by simple functions. For the treatment
of processes with conical intersections, a very fruitful ap-
proach, termed vibronic-coupling Hamiltonian (VCH) model,
has been formulated by Köppel and coworkers32–35. In this,
the diabatisation is energy-based; it is done by ansatz: the PES
(diagonal terms of the quasi-diabatic Hamiltonian matrix)
and the potential-like interstate couplings (off-diagonal terms)
are given as low-order Taylor expansions around the Franck-
Condon geometry in terms of nuclear coordinates. The eigen-
values of the quasi-diabatic Hamiltonian matrix are then fitted
to the adiabatic energies calculated with an electronic struc-
ture method over a range of geometries. This method is very
efficient if the conical intersection (CI) is not far from the
Franck-Condon (FC) geometry. In other cases, when motions
of large amplitude are involved, Köppel and coworkers have
devised models, where the diabatisation is also energy-based,
exploiting the concept of regularized diabatic states36–39. In
the latter models, symmetry plays a key role, in particular to
define the “coupling” mode in the quasi-diabatic picture.

In our case, for the benzopyran molecule, the situation is
particularly difficult since not only the CI lies far from the FC
geometry but the molecule has no specific symmetry either.
Our ultimate goal here is to explain and simulate experiments
where the ring-opening process is controlled by laser pulses so
that the system either goes selectively to the open form (pho-
toreactivity) or back to the closed form (photostability). The
present paper is rather methodology-oriented: we present a
model inspired by the approach of Köppel and coworkers36–39

but extended to a case where symmetry is not present. In addi-
tion, we highlight the dramatic impact of accounting for elec-
tron dynamic correlation on the topography of the PESs and
on the physical process with respect to the original complete
active space self-consistent field (CASSCF) calculations used
in a recent work on the same system40. The outline of this pa-
per is as follows. Section II is devoted to the numerical details
for the quantum chemistry calculations. Section III presents
the ideas underlying the proposed approach. Section IV deals
with the results, and the paper concludes presenting outlooks
for the future.

II. COMPUTATIONAL DETAILS

Preliminary investigations have been performed with the
complete active space self-consistent field (CASSCF) method.
Following strategies used in previous works6,40, our CAS, de-
noted (12,11) from now onward, was built with 12 electrons
in 11 orbitals. We used state-averaged (SA) molecular orbitals
with respect to the two electronic states S0 and S1. We assume
that the processes of absorption and excitation of the system
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mainly depend on the delocalized π system on the benzene
and pyran parts of the molecule : the corresponding π/π∗ or-
bitals must thus be included. In order to describe the breaking
of the CO bond in the pyran part, we also add the two σ/σ∗

orbitals of this bond. For the description of the ring opening,
the non-bonding out-of-plane orbital on the oxygen also has to
be included40. The description of the active space is provided
in section I of the supporting material.

The S0 and S1 stationary points were optimized at the SA-
2-CASSCF/6-31G∗ level of theory using the GAUSSIAN 0341

and the MOLCAS42 programs. The energy scans are very sim-
ilar to what is shown on Fig. 9 of Ref. 40: the vertical-
transition energy between the two electronic states is 4.65 eV
(267 nm). On the excited electronic state, there is a transi-
tion state at 4.69 eV before a conical intersection (CI) point.
The energy of the minimum of the conical intersection seam is
2.64 eV. The minimum of the cis open form of S0 lies at 0.91
eV. The stationary points are thus M0 (also denoted FC, for
Franck-Condon), the minimum of S0 for the closed form, M1,
the minimum of S1, TS, the transition state on S1, CI, the min-
imum of the conical intersection seam, and cis, the minimum
of S0 for the open form. In the following, we will present sev-
eral interpolated energy scans to compare the values obtained
at the various levels of theory. The x-axis, corresponding to
the scan coordinate, is in arbitrary unit: x = 0 corresponds to
M0, x = 5 to M1, x = 10 to TS, x= 15 to CI, and x = 20 to
cis. Intermediate points correspond to linear interpolations in
internal coordinates between these reference geometries (note
that from Fig. 2 to 5, all such five points are identical and were
optimized at the SA-2-CASSCF/6-31G level of theory).

Several basis sets implemented in GAUSSIAN 03 and MOL-
CAS have been compared: see Fig. 2. By visual inspection of
the figure, we can conclude that the scans obtained with the
6-31G∗ and the valence triple-zeta polarization (TZVP) basis
sets are indistinguishable. As expected, the small atomic nat-
ural orbital with valence triple zeta accuracy and with polar-
ization functions, ANO-S-VTZP, basis set of MOLCAS gives
different energies, but the positions and the nature of the sta-
tionary geometries remain very close. This is the reason why
we have used the geometries optimized with the 6-31G∗ basis
set for all the scans.

The ring-opening mechanism is described in detail in Ref.
40; the reactivity can be split into two steps: first, a π → π∗
excitation, mainly localized on the benzene moiety, exciting
the system to the first electonic state and, second, an energy
transfer to a π → σ∗ state, leading to the bond breaking. The
change of dominant configuration within S1 explains the ex-
istence of a transition state due to the presence of an avoided
crossing between two diabatic states. The CASSCF method
essentially accounts for static correlation. In Ref. 40, it helped
us to rationalise the electronic states in terms of configura-
tion interactions when building a quasi-diabatic PES model,
since we assumed that such a picture would provide the chem-
ical meaning of the quasi-diabatic states, and that further in-
cluding dynamic correlation would be a mere refinement. On
the contrary, we now show that the introduction of electron
dynamic correlation leads to dramatic effects, changing the
mechanism completely. In Ref. 40, the number of quasi-
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FIG. 2. Comparison of different basis sets on CASSCF calcu-
lations: scans with SA-2-CASSCF(12,11)/6-31G* (black), SA-2-
CASSCF(12,11)/TZVP (red), and SA-2-CASSCF(12,11)/ANO-S-
VTZP (green). The curves present some angular points due to the
fact that they are built along four different directions: 0 → 5, 5 →
10, 10 → 15 and 15 → 20.

diabatic states to be included in the VCH (vibronic-coupling
Hamiltonian) model had been determined from CASSCF cal-
culations. More precisely, three quasi-diabatics were selected
: (ref)bp corresponding to the closed-form molecule denoted
with index bp (for benzopyran) and (ref)mr corresponding
to the opened-form molecule denoted with index mr (for me-
rocyanine); a third state, (ππ∗), had been included, since the
absorption is induced by a π → π∗ transition mainly local-
ized on the benzene ring of the molecule and the transition
state (TS) can be interpreted as an avoided crossing between
the two quasi-diabatic states (ππ∗) and (ref)mr.

When switching to complete active space with second-
order perturbation theory (CASPT2), the stabilization of zwit-
terionic states drastically changes the global picture: Fig. 3 (a)
depicts the effect of CASPT2 calculations (obtained with the
MOLCAS program). First, the degeneracy at the conical inter-
section (using the CASSCF geometries) is lifted significantly
(about 1 eV) indicating that the geometries corresponding to
the seam of the CI are affected by the perturbative treatment.
In addition, using the CASSCF notation, we clearly see that,
due to the perturbation, S3 now lies between S1 and S2. The
difference between S1 and S3 is only around 0.2 eV. This is
due to the zwitterionic character of S3

40 : S3 is lowered and
interacts strongly with the ππ∗-type electronic state. Not only
are the energies strongly affected, but this also makes nec-
essary to adopt a Multi-State (MS) procedure43 involving at
least four electronic states. This means that electron dynamic
correlation cannot be treated as a mere perturbation.

Fig. 3 (b) presents the results of our calculations with a
multi-state (MS) approach over the first four electronic states:
the scans with SA-2-CASSCF(12,11)/ANO-S-VTZP and SA-
2-CASPT2(12,11)/ANO-S-VTZP are depicted in black and
red, respectively. They serve as a reference for the other cal-
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FIG. 3. (a) Effect of dynamic correlation in CASPT2
calculations on the first four electronic states: scans with
SA-2-CASSCF(12,11)/ANO-S-VTZP (black) and with SA-2-
CASPT2(12,11)/ANO-S-VTZP (red). (b) MS-CASPT2 applied to
the first four electronic states: SA-2-CASSCF(12,11)/ANO-S-VTZP
(black) as a reference, along with SA-2-CASPT2(12,11)/ANO-S-
VTZP (red), MS-2-SA-2-CASPT2(12,11)/ANO-S-VTZP (green),
and MS-4-SA-4-CASPT2(12,11)/ANO-S-VTZP (blue). Note that
SA-2-CASPT2 and MS-2-SA-2-CASPT2 are indistinguishable from
M0 to CI. Note also that the new angular feature around x = 11 for
MS-2-CASPT2 energies is due to a discontinuity of the second refer-
ence wavefunction from one to the other side of the avoided crossing
marked by the S1 TS for CASSCF energies. This effect disappears
when increasing the size of the reference space (MS-4-CASPT2 en-
ergies).

culations. The scan with MS-2-SA-2-CASPT2(12,11)/ANO-
S-VTZP is shown in green: the difference between this curve
and the curve with SA-2-CASPT2 in red is hardly visible. An
important change with respect to CASSCF calculations is the
fact that, with MS-4-SA-4-CASPT2, the S1 and S3 states in-
teract and mix, leading to a strong lowering of the first excited
state. Two qualitative features are interesting: first, the de-
generacy at the conical intersection is still strongly lifted (we
remind here that, for the CI, we use the geometries optimized
with CASSCF), confirming that the position of the CI is af-
fected by the introduction of dynamic correlation. Second, the
TS disappears and is replaced by a mere shoulder. This should
have a impact on the quantum dynamics of the system. A
comprehensive study of the influence of the higher states has

also been achieved: up to MS-8 calculations have been per-
formed, indicating that the energies of the first two states are
sensitive to S6 for the cis geometry. The results are not shown
here since we will return to this problem with extended multi-
configuration quasi-degenerate perturbation theory at second
order (XMCQDPT2) calculations.

Finally, we have achieved calculations with the XMC-
QDPT2 method44 using the FIREFLY8 program45,46. This
approach has been proven to provide a more efficient and
robust description than MS-CASPT2 approaches for getting
correct energies near a conical intersection47–50. The conver-
gence of XMCQDPT2 calculations with respect to the number
of electronic states in the multi-state treatment is presented
in Fig. 4 (a): MS-4-SA-2-XMCQDPT2(12,11)/TVZP (in
green) and MS-8-SA-2-XMCQDPT2(12,11)/TVZP (in blue)
curves for the first two adiabatic states are almost indis-
tinguishable, proving that MS-4 is sufficient. Interestingly
enough, the convergence is faster than with MS-CASPT2
methods: as aforementioned, MS-CASPT2 energies were
sensitive to S6 for the cis geometry, which is no longer
the case here. In Fig. 4 (b), we present scans where
the molecular orbitals have been state-averaged over more
than two states: the MS-4-SA-2-XMCQDPT2(12,11)/TVZP
curve from before (in red) along with the MS-4-SA-4-
XMCQDPT2(12,11)/TVZP (in green), and the MS-5-SA-5-
XMCQDPT2/TVZP (in blue) curves. Some points are miss-
ing at the MS-5-SA-5-XMCQDPT2/TVZP level of theory
due to some problems of convergence (the problem was even
more severe with MS-5-SA-5-CASPT2). We observe a per-
fect agreement for the first two adiabatic states, indicating that
the calculations have converged. We notice that the transition
state has disappeared at all levels of theory.

For completeness, we compare XMCQDPT2 and CASPT2
calculations in Fig. 5. The geometries of reference are
slightly different due to the different atomic orbitals used in
the two programs (MOLCAS and FIREFLY8). Before the CI,
the curves are almost identical. Around the CI, the situation
is very different. This difference can be attributed to the bet-
ter convergence and behavior of the XMCQDPT2 method to
describe regions of strong non-adiabatic couplings.

We thus have chosen the MS-4-SA-4-
XMCQDPT2(12,11)/TVZP level of theory for our model, to
be used in quantum dynamics simulations. The stationary
points were optimized at this level of theory using FIREFLY8.
We never found any minimum in S1 before rapidly reaching
the CI seam. The stationary points are thus M0, the minimum
of S0 for the closed form, CI, the minimum of the seam of the
conical intersection, and cis, the minimum of S0 for the open
form. The corresponding energies are given in Tab. I.

The experimental absorption spectrum15 is the one of 2,2-
diethylchromene (where the CH2 group is replaced by C-
(CH2-CH3)2) at 77 K in 3-methylpentane. Our calculation
at the MS-4-SA-4-XMCQDPT2(12,11)/TVZP level of theory
gives a vertical transition energy at 4.02 eV (308 nm), very
close to the absorption maximum of the experimental spec-
trum at 310 nm.

We notice that the geometries of the stationary points are a
little bit more “twisted” (i.e. less planar) for XMCQDPT2 cal-
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Stationary point (state) XMCQDPT2 (hartree) XMCQDPT2 (eV) CASSCF (eV)
M0 (S0) -421.82563 0.00 0.00
FC (S1) -421.67799 4.02 4.65
FC (S2) -421.65001 4.78 6.53

CI (S0/S1) -421.73801 2.38 2.64
cis (S0) -421.78991 0.97 0.95

TABLE I. Energy values (absolute values in hartree and relative values in eV) at the four relevant points optimized at the MS-4-SA-4-
XMCQDPT2(12,11)/TVZP level of theory. M0 denotes the minimum of S0 for the closed form, CI the minimum of the seam of the conical
intersection, and cis the the minimum of S0 for the open form. We also give relative energies (in eV) at the SA-2-CASSCF(12,11/6-31G∗ level
of theory (the corresponding absolute value for M0 (S0) is -420.43712 hartree). The difference of energy between S0 and S1 at CI is 7. 10−5
hartree = 0.002 eV.
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FIG. 4. (a) MS-XMCQDPT2 energies: the curve SA-
2-CASSCF(12,11)/TVZP in black serves as a refer-
ence. The other curves are with MS-XMCQDPT2:
MS-2-SA-2-XMCQDPT2(12,11)/TVZP in red, MS-4-
SA-2-XMCQDPT2(12,11)/TVZP in green, MS-8-SA-2-
XMCQDPT2(12,11)/TVZP in blue. (b) Influence of the
number of states in the state-averaged procedure: SA-2-
CASSCF(12,11)/TVZP in black serves again as a reference.
The MS-4-SA-2-XMCQDPT2(12,11)/TVZP curve is in red, the
MS-4-SA-4-XMCQDPT2(12,11)/TVZP curve in green, and the
MS-5(12347)-SA-5-XMCQDPT2(12,11)/TVZP curve in blue.

culations than for CASSCF ones, but they remain qualitatively
similar. The geometries are shown on Fig. 6: at the bottom of
the figure, we have superimposed the CASSCF geometries in
blue and their XMCQDPT2 counterparts in red.

At this stage, it is worth noting that Morokuma and
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FIG. 5. Comparison between XMCQDPT2 and CASPT2 calcu-
lations. The SA-2-CASSCF(12,11)/TVZP curve in black serves
as a reference for the XMCQDPT2 calculations, and the SA-2-
CASSCF(12,11)/ANO-S-VTZP curve in red for the CASPT2 calcu-
lations. The curve MS-4-SA-4-XMCQDPT2(12,11)/TVZP is in blue
and the curve MS-4-SA-4-CASPT2(12,11)/ANO-S-VTZP level is in
green.

FC CI cis

(a) (b) (c)

FIG. 6. Optimized geometries at the MS-4-SA-4-
XMCQDPT2(12,11)/TZVP level of theory (in red). Comparisons
with CASSCF geometries (in blue) for FC (a), for CI (b), and for cis
(c).

coworkers16,17 have performed quantum chemistry simula-
tions at the CASSCF//CASPT2 levels on the full spiropyran
system and not on the benzopyran only. These static cal-
culations have been followed by semiclassical simulations
at a similar level of theory for the electronic part51. They
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claim that their CASPT2//CASSCF study does not support the
widely accepted conical-intersection mechanism (adopted in
the present work) since the CASSCF-optimized CI on the C-
O bond-cleavage path corresponds to an avoided crossing with
an energy gap (> 20 kcal/mol) at the CASPT2 level. They
propose another internal conversion funnel. These calcula-
tions do not include the zwitterionic states in the active space
and the conical intersection is optimized at the CASSCF level
only. In view of the present study, it is clear that such a de-
scritpion cannot be reliable for our system. Accounting for the
zwitterionic states is mandatory for a correct description of
the mechanism. In addition, our CASPT2 calculations at the
CASSCF-optimized geometries also give a significant energy
gap (about 1 eV and thus> 20 kcal/mol): see the red curves on
Fig. 3 (a) and (b). This does not prove that there is no conical
intersection but simply that is is displaced somewhere in the
vicinity of the latter and that its geometry must be obtained by
a re-optimization at a post-CASSCF level, such as performed
in the present work. To conclude, we cannot completely rule
out the competitive pathway proposed in Refs.16,17, but our
calculations prove that the reaction leading to the ground state
can be understood only at a post-CASSCF level including the
lowest zwitterionic states in the reference space.

III. CONCEPTUAL DEVELOPMENTS

A. Choice of the active coordinates

In Ref. 40, a first model for the photodynamics of benzopy-
ran based on CASSCF calculations was proposed. To this end,
we chose very carefully a set of twelve active polyspherical
coordinates31,52 and described the two adiabatic states of in-
terest in terms of three underlying quasi-diabatic states that
vary smoothly along this set of “active” curvilinear coordi-
nates of the polyspherical kind. The polyspherical coordinates
are curvilinear, i.e. coordinates involving angles, which, in
principle, are better adapted to describe motions of large am-
plitude. The method of diabatisation was energy-based53. In
other words, it was done by ansatz : we optimized the param-
eters defining the quasi-diabatic Hamiltonian matrix elements
expressed as functions of the polyspherical coordinates by fit-
ting the eigenvalues of this matrix to energies calculated on a
grid of points.

This approach was devised as a generalization of the VCH
model proposed by Köppel and coworkers35,53,54. In contrast
to the original formulation, the number of diabatic states in
our case was larger than the number of adiabatic ones (three
and two, respectively).

Since the quasi-diabatic states depend smoothly on the nu-
clear coordinates, so do the quasi-diabatic Hamiltonian matrix
elements that can thus be described by simple functions (typ-
ically linear or quadratic). The ability to fit the adiabatic data
by diagonalisation of the quasi-diabatic Hamiltonian matrix
and adjustment of its parameters ensures the quasi-diabatic
character of the states involved in the model. In this approach,
each quasi-diabatic state is associated with the dominant con-
figuration around its own equilibrium geometry. The key point

was the choice of additional quasi-diabatic states to be intro-
duced in the model, which is determined from an analysis of
static electron correlation. In other words, this was achieved
at the CASSCF stage of the study.

Much care must be taken to understand the chemical mean-
ing of the quasi-diabatic states in terms of dominant elec-
tronic configurations that can become quasi-degenerate at
some point along the reaction path. For our model, we found
out that the level of theory had to be further refined so as to
include electron dynamic correlation. It is only the ability to
fit at this higher level of theory that proves that the model is
ultimately correct. This idea had already been tested success-
fully on a two-dimensional model of ethylene55,56: we used a
model including 17 quasi-adiabatic states to fit five adiabatic
states calculated with multireference configuration interaction
(MRCI). Note that, in the model developed for ethylene55,56,
one could assign to each quasi-diabatic state a single elec-
tronic configuration. For benzopyrane, each quasi-diabatic
state corresponds to a family of many electronic configura-
tions with a similar chemical nature. The difference comes
from the fact that for ethylene we could consider two active
electrons only in the reference space.

As already explained, three quasi-diabatic were selected :
(ref)bp corresponding to the closed-form molecule denoted
with index bp (for benzopyran), (ππ∗), and (ref)mr corre-
sponding to the open-form molecule denoted with index mr
(for merocyanine). The third state, (ππ∗), was added because
the absorption is induced by a π → π∗ transition mainly lo-
calized on the benzene ring of the molecule so that the TS
point can be interpreted as an avoided crossing between the
two quasi-diabatic states (ππ∗) and (ref)mr.

From the detailed discussion of Sec. II, we can already
deduce that the addition of electron dynamic correlation is
not a mere refinement of the picture at the CASSCF level
as we originally thought in Ref. 40. On the contrary, the
stabilization of zwitterionic states drastically modifies the ra-
tionalization of the process: not only the transition state
(TS) disappears but also a larger anharmonicity appears along
the path leading from M0 to CI on S0. This is well sum-
marized by the comparison of the two scans with either
CASSCF or XMCQDPT2 depicted on Fig. 7. The en-
ergies at the SA-4-CASSCF(12,11)/TZVP and MS-4-SA-4-
XMCQDPT2(12,11)/TZVP levels of theory are given along
two different energy cuts, where the S0 minimum correspond
to x = 12 and the minimum of the CI seam to x = 34. The ar-
rows highlight the main changes for the post-CASSCF treat-
ment: the disappearance of TS and the high anharmonicity
along the path leading from M0 to CI on S0. The analysis
of the dominant configurations confirms that these changes
are mainly due to the stabilization of the zwitterionic state,
S3. The latter has another physical effect. The absorption of
light corresponds to a π → π∗ excitation, but whereas, for
CASSCF calculations, the excited orbitals at the FC geom-
etry on S1 are mainly the π orbitals on the benzene moiety,
for XMCQDPT2 calculations, these are the π orbitals on the
pyran moiety that are mainly involved. In other words, we
observe a πpyr → πpyr∗ excitation, which partly explains the
disappearance of the transition barrier, since no energy trans-
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fer is required from the benzene to the pyran ring. To illustrate
this more precisely, Fig. 8 shows the potential energy gradient
at the FC geometry on S1. This figure can be compared with
the Fig. 6 (top) of Ref. 40 : at the CASSCF level, the gradient
is very different and looks similar to the breathing mode in
benzene.

01
23
45
67
8

5 10 15 20 25 30 35 40 45

∆E (eV
)

Scan coordinate

π→π
∗

π→σ∗

nO→π∗

FIG. 7. Comparison between scans with CASSCF and XMC-
QDPT2 calculations. In red are given the energies at the SA-4-
CASSCF(12,11)/TZVP level of theory, in yellow those at the MS-
4-SA-4-XMCQDPT2(12,11)/TZVP one. The global S0 minimum
corresponds to x = 12, the CI minimum to x = 34 (the corresponding
geometries are optimized consistently with the levels of theory used
for the energies).

FIG. 8. The S1 potential energy gradient at the FC geometry, gFC .

Of course, such changes will have an impact on the model
originally developed in Ref. 40 : after several attempts, it be-
came obvious that we could no longer fit the two adiabatic
PESs with a Hamiltonian matrix based on three quasi-diabatic
states as was achieved at the CASSCF level even with our 12
polyspherical coordinates. In Ref. 40, only harmonic func-
tions had been used for the diagonal elements of the poten-
tial matrix. But even with higher-order expressions or Morse
functions, we could not fit the adiabatic PESs. The most
severe problem we had to face was the difficulty to repro-
duce the topography around the CI owing to the strong an-
harmonicity of S0 (although the CI could be stabilized at the
right position). In a energy-based diabatisation, the ability

to reproduce the topography around the CI is an important
test to ensure that the non-adiabatic coupling (NAC) is de-
scribed correctly in the model53. The NAC is the basic quan-
tity that governs the internal conversion between same-spin
electronic states around conical intersections57 and the pos-
sibility to reproduce the splitting of the two adiabatic states
within the so-called branching plane is a signature, at least at
the first order, that the NAC is correctly taken into account in
the model. This plane is formed by the two directions, the two
branching space (BS) vectors, that lift degeneracy to first or-
der. These vectors are known as the gradient-difference (GD)
and derivative-coupling (DC) vectors58–60. The first conclu-
sion is thus the following. Determining the quasi-diabatic
states to be included in the model for the potential energies
at the CASSCF stage and assuming that post-CASSCF calcu-
lations will merely refine the model cannot work for a com-
plex system such as benzopyran. This probably has a general
scope, except for systems with a small number of active elec-
trons such as ethylene55,56. If the number of active electrons
increases, it becomes more likely that spurious zwitterionic
states may strongly interact with the reference states for post-
CASSCF treatments. One solution could be to add even more
quasi-diabatic states (associated with the zwitterionic config-
urations) to reproduce the anharmonicity observed on the adi-
abatic PESs. However, the procedure to choose and to locate
theses new quasi-diabatic states in the configuration space is
not straightforward since the electronic configurations are in-
trinsically mixed almost everywhere. This is the reason why
we have adopted a new strategy here.

Since it is very difficult to reproduce the topography around
the CI, one solution, following the philosophy of Yarkony and
coworkers61, is to build an effective model that enforces this
topography around the CI to be correct from the onset. This
guarantees, at least to some order and locally, that the NAC is
correctly described. The next step is thus to generate the BS
vectors at the conical intersection (here, we mean the mini-
mum of the seam of the CI). The definition of the first-order
non-adiabatic couplings among electronic states and thus of
the BS vectors relies on the availability of the electronic
wavefunctions and the knowledge of how they vary with re-
spect to nuclear coordinates. In particular, the DC vector re-
quires in principle to produce the first derivatives of the elec-
tronic wavefunctions with respect to the nuclear coordinates.
Even though much progress has been achieved in the analytic-
gradient techniques to the production of DC vectors62,63, this
approach is tractable only for relatively small molecules and
is not available yet for the XMCQDPT2 method.

Fortunately, the branching space can be obtained in the
vicinity of a conical intersection from energies only. The en-
ergy difference is not smooth along both BS vectors around a
CI but its square is regular64. Based on an eigenvector anal-
ysis of the square energy difference of the CI, this has led to
the design of a procedure for generating BS vectors, from en-
ergies and their derivatives only, with no direct involvement of
wavefunctions65. This strategy was first proposed by Köppel
and Schubert for a two-dimensional model37 and further ex-
ploited in more general situations in Ref.65. More recently, we
have reinvestigated various formulations of this approach and
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x(1) (GDV) x(2) (DCV)

FIG. 9. The two vectors of the BS at the MS-4-SA-4-
XMCQDPT2(12,11)/TZVP level of theory: the gradient difference
vector (GDV) and the derivative coupling vector (DVC). The vectors
were obtained with a numerical approach66 via finite differences with
a step of 0.005 Å (note that this procedure produces orthogonal BS
vectors by construction).

have shown that if one relies on the calculation of a large num-
ber of single points, the method is very robust with respect to
numerical differentiation66. We have then used the numerical
approach of Ref. 66 to obtain the BS of benzopyran : the two
vectors, x(1) and x(2), shown on Fig. 9.

Let us stress again here (see also Appendix A) that, in a
general situation, both BS vectors (x(1) and x(2), also often
denoted g and h, see Ref.30) have no reason to be orthogonal
nor to have the same length (except for a Jahn-Teller prob-
lem). They are defined only up to some gauge angle related
to the arbitrary rotation within a degenerate pair among all
possible choices of so-called crude adiabatic states. There
will always exist a specific rotation providing orthogonal BS
vectors, hence made unique up to arbitrary permutation and
signs, as shown by Yarkony in Ref.30 (they will coincide with
symmetry-specific ones in the case of asymmetry-induced
conical intersection). Reversely, rotating two vectors of differ-
ent lengths through an angle that is not a multiple of 90◦ pro-
duces nonorthogonal vectors. As first pointed out by Köppel
and Schubert in Ref.37, which we further addressed recently in
Ref.66, a possible pair of BS vectors can be generated via the
diagonalization of the Hessian of the square energy difference.
Being eigenvectors of a symmetric matrix, they are orthogo-
nal and thus coincide with the unique (up to permutation and
signs) pair of orthogonal BS vectors. From a geometric point
of view, they correspond to the semi-major and semi-minor
axes of the ellipse corresponding to isovalues of the energy
difference in the vicinity of the conical intersection.

Interestingly, the GD vector corresponds mainly to an “out-
of-plane” motion and the DC vector corresponds mainly to an
“in-plane” motion, although the molecule has no real planar
geometry. This “quasi-symmetry” is all the more surprising
given that the XMCQDPT2 geometry of CI is rather twisted
(i.e. even less planar than the CASSCF one: see Fig. 6).

Besides the fact that the molecule has no specific symmetry,
the CI point is located far from the FC point. To illustrate
this, let us define an effective ”reaction coordinate” along the
vector x(0) joining FC to CI,

x(0) = xCI − xFC , (1)

where xCI and xFC are the Cartesian coordinates of the CI and
FC (identical to M0) points in the body-fixed (BF) frame, re-
spectively. Tab. II provides the normalized overlaps between
the four vectors, x(0), gFC (the S1 potential energy gradient at
FC), x(1) (the gradient difference vector at CI), and x(2) (the
derivative coupling vector at CI). Each vector here is canon-
ically identified to the collection of its Cartesian components
in the BF frame. The small overlap between x(0) and the two
vectors x(1) and x(2) defining the two-dimensional branching
space indicates that the path leading from FC to CI must be
somewhat curved. The vector gFC is related to the velocity
of the wavepacket when leaving the Franck-Condon region,
and the width of the absorption spectrum is determined by the
slope of the PES along this direction67. The strong overlap
between x(1) and gFC allows us to come to the conclusion
that the subspace built by x(1), x(2) and x(0) is sufficient to
produce a minimal model, relevant for the first step of the dy-
namics, which is the main goal of the present work.

Normalized overlap x(0) gFC x(1) x(2)

x(0) 1.0000 -0.0439 0.1240 -0.2130
gFC -0.0439 1.0000 -0.7448 -0.1767
x(1) 0.1240 -0.7448 1.0000 0.0000
x(2) -0.2130 -0.1767 0.0000 1.0000

TABLE II. Normalized overlaps (scalar products between normal-
ized vectors) between four important vectors: x(0), the vector joining
FC to CI, gFC, the S1 potential energy gradient at FC, x(1), the gra-
dient difference vector at CI, and x(2) the derivative coupling vector
at CI.

As already pointed out, the dynamics of ultra-fast photo-
chemical processes is governed by non-adiabatic transitions
that are intense around conical intersections where adiabatic
PESs cross18,20,21. Quantum-chemistry calculations produce
adiabatic energies and non-adiabatic coupling vectors, but a
quasi-diabatic representation is often more suitable for the
numerical treatment in quantum-dynamics simulations28. In
diabatic representations, the large non-adiabatic or derivative
couplings that occur in the adiabatic representation, with pos-
sible singularities, are replaced by smooth potential coupling
terms. In Ref. 40, we had developed a model based on
CASSCF calculations that could be viewed as a generaliza-
tion of the vibronic-coupling model (VCH) model formulated
by Köppel and coworkers35,53,54. In this approach, we had in-
cluded more quasi-diabatic than adiabatic states to introduce
more anharmonicity and simply describe the transition state
between FC and CI. The presence of additional anharmonicity
due to the stabilization of the zwitterionic states at the post-
CASSCF level prompted us to switch to another approach.
The latter is closer, to some extent, to the approach developed
by Köppel and coworkers for instance for the photoinduced
ring-opening of furan38,39: here, the diagonal parts of the di-
abatic potential matrix are expressed as Taylor expansions
along some active coordinates. This allows one to describe
the strong anharmonicity of the potential and the complexity
of the path leading from FC to CI. The off-diagonal element
of the diabatic potential matrix is simply a linear term with
respect to a unique “coupling” coordinate. This approach can
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be viewed as an approximate treatment of the concept of reg-
ularized diabatic states36,37. However, there is in our problem
a noticeable difference : the molecule has no specific sym-
metry, while this usually helps to determine the “coupling”
coordinate.

Our goal is to build a new type of model that describes the
first part of the photochemical process from FC to CI, preserv-
ing the subspace built by the three vectors {x(0),x(1),x(2)}
and simplifying as much as possible the expression of the
Hamiltonian operator. Since symmetry cannot help us to de-
fine the coupling coordinate, we have to make a choice that
will also specify the two quasi-diabatic states (see Appendix
A). In the aim of designing the simplest possible form for the
diabatic Hamiltonian, we apply two transformations: 1) rota-
tion of the diabatic states to impose zero coupling at FC, and
2) rotation of the rectilinear coordinates to confine the cou-
pling only along one coordinate in the spirit of the effective
mode transformation68 (note that the third vector, namely the
gradient average, denoted s by Yarkony30, complementing the
g−h branching plane plane with the gradient of the intersec-
tion space so as to obtain the three directions required for a lin-
ear expansion of the potential energy surfaces around the con-
ical intersection, is absent from our description because we
consider the optimized conical intersection, i.e., the minimum
of the intersection seam, which requires s be parallel to g−h).
The procedure is described in appendix A. It results in the con-
struction of a new set of rectilinear coordinates, which form a
basis for the 3-dimensional subspace B = {X0,X1,X2} (the
three basis vectors are now normalized and orthogonal; see
Appendix A for their detailed definitions). By construction,
the diabatic coupling only depends on X2. Also by construc-
tion, B contains the BS at CI and the effective vector leading
from FC to CI. The three figures are shown on Fig. 10.

X0 X1 X2

FIG. 10. Two different view of the vectors X0, X1, and X2 at CI
(from above and side).

From now onwards, we will express the nuclear geometries

in the reduced basis with FC as the origin of the frame:

X = (X0, X1, X2) ,

X0 = X0 · x ,
X1 = X1 · x ,
X2 = X2 · x ,

QFC = (QFC, 0, QFC, 1, QFC, 2) = (0, 0, 0) Å ,

QCI = (QCI, 0, QCI, 1, QCI, 2) = (2.54, 0, 0) Å , (2)

where x represents any point in the full-dimensional space,
and X its projection onto the three-dimensional subspace. The
notation Q is used instead of X when it corresponds to the
coordinates of a specific point such as FC or CI. Note that the
origin of the frame attached to B = {X0,X1,X2} is the FC
point.

B. Hamiltonian operator

The choice of our coordinates allows us to split our active
subspace into one “diabatic subspace” built by X0 and X1 and
one coupling coordinate, X2. It leads to write the off-diagonal
element of the diabatic potential matrix as a single linear term
in X2 :

H1 2(X) = x(2)′ · (X−QCI) = x
(2)
2

′
(X2 −QCI, 2) , (3)

where x(2)2

′
= X2 ·x(2)′ identifies to ‖x(2)′‖, i.e. the length of

x(2)′ (since x(2)a
′

= Xa · x(2)′ = 0 for a 6= 2 by construction;
see Appendix A).

The expression is identical to the term in the off-diagonal
element in Eq. (5) of Ref. 39 except that in Ref. 39, the choice
of the coupling coordinate has been made following symmetry
considerations, which is not the case here. Our specific choice
of X0, which is perpendicular to the coupling coordinate, X2,
allows us to neglect the impact of the coupling H1 2(X) along
the coordinate X0. We assume the following expression for
the two diagonal matrix elements, i = 1, 2,

Hi i(X) = P4
i (X0, X1)

+ pi,5(X0 −QCI, 0)5 + pi,6(X0 −QCI, 0)6

+ Ci(X1, X2) . (4)

P4
i (X0, X1) is a fourth-order polynomial in both X0 and X1.

We added higher-order terms in X0, pi,5(X0 − QCI,0)5 and
pi,6(X0 − QCI,0)6 in order to account for the strong anhar-
monicity we observed with post-CASSCF calculations. The
first two lines correspond to the two PESs for the subspace
{X0,X1} without any coupling between the two electronic
states (X2 = 0). The last term, Ci(X1, X2), contains terms in
X2 as well as the correlation betweenX1 andX2. This results
in 17 parameters for each quasi-diabatic PES. The parameters
defining the polynomial P4

i , as well as the parameters pi,5 and
pi,6, are obtained by a fit of the ab initio adiabatic energies on
a two-dimensional grid (containing 315 points) inX0 andX1,
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whereX2 = 0. On this grid, the termsCi(X1, X2) are equal to
zero, therefore the adiabatic and the diabatic potentials coin-
cide and a direct linear fit of the ab initio adiabatic energies on
the 2D-grid can be used (a simple method of least squares on
a two-dimensional grid can be used). The parameters of the
grid are given in Tab. III. Note that, at this level, we do not
use the grid along X2. We give higher weights to the points
in the most relevant regions, especially, around FC and CI.
In addition, pi,6 and the parameters for the fourth-order terms
are enforced to remain positive, in order to avoid holes in the
fitted PESs.

X0 X1 X2

Number of grid points 21 15 15
Grid spacing (Å) 0.2 0.05 0.05
Grid length (Å) [-0.6;3.4] [-0.35;0.35] [-0.35;0.35]

TABLE III. Parameters of the (X0, X1, X2)-grid for the potential.

The functions C1(X1, X2) and C2(X1, X2) are extracted
from local derivatives around FC by a semi-analytical proce-
dure. The basis vector X2 is totally included in the branching
space: it is parallel to x(2)′ but not orthogonal to x(1)′ be-
cause x(1)′ and x(2)′ are not orthogonal (while x(1)′′ ∝ X1

and x(2)′ ∝ X2 are; see Appendix). Thus, the first-order
terms along X2 are directly obtained from the vectors of the
branching space. More precisely, keeping first- and second-
order terms only and assuming that there is no coupling term
betweenX0 andX2 (as in Ref. 39), the functionsC1(X1, X2)
and C2(X1, X2) read

C1(X1, X2) = f̆1, 12X1X2

+ f̆1, 22X
2
2 , (5)

and

C2(X1, X2) = 2x
(1)
2

′
X2

+ f̆2, 12X1X2

+ f̆2, 22X
2
2 , (6)

where x(1)2

′
= X2 · x(1)′ ∝ x(2)′ · x(1)′. In other words,

the linear term along X2 in C2(X1, X2) reflects the non-
orthogonality of x(1)′ and x(2)′. It corresponds to an ex-
pansion along the gradient difference at both CI and FC
(QCI, 1 = QFC, 1 = 0 and QCI, 2 = QFC, 2 = 0). Since
QFC corresponds to a minimum of H1 1(X), in particular
along X1, we have enforced the linear term to be carried by
H2 2(X), which is the reason why there is a 2x

(1)
2

′
X2 term in

C2(X1, X2) rather than ±x(1)2

′
X2 terms in both C1(X1, X2)

and C2(X1, X2).
Since we made the choice of Qref = QFC to determine

the angle θ and thus the quasi-diabatic states (see Appendix
A), the coupling between the two electronic states is zero by
construction at this geometry. This allows us to obtain the
parameters f̆i, ab analytically, the corresponding terms being
understood as a second-order Jahn-Teller correction (see for
instance Eq. (4.5) in Ref. 69):

f̆1, ab =
1

2

∂2H11(QFC)

∂Xa∂Xb

=
1

2

(
∂2ε1(QFC)

∂Xa∂Xb
− 2

x
(2)
a

′
x
(2)
b

′

ε2(QFC)− ε1(QFC)

)
, (7)

f̆2, ab =
1

2

∂2H22(QFC)

∂Xa∂Xb

=
1

2

(
∂2ε2(QFC)

∂Xa∂Xb
+ 2

x
(2)
a

′
x
(2)
b

′

ε2(QFC)− ε1(QFC)

)
, (8)

where ε1 and ε2 denote the adiabatic potential energies. The
adiabatic second derivatives at FC appearing in the above
equations were obtained in a first step by finite difference us-
ing the ab initio adiabatic energies around this point. Since we
assumed that a linear model is valid for the coupling (see Eq.
(3)), x(2)2

′
is directly provided by the numerical calculation of

the branching space at CI66 (let us remind that x(2)a
′

= 0 for
a 6= 2 by construction; see Appendix A).

At this level, we stress that, for a molecule with a specific
symmetry (like the planar molecule in Ref. 39), the linear and
cross terms in Eqs. (5) and (6) would have disappeared. The
second-order Jahn-Teller “corrections” in Eqs. (5) and (6) can
be viewed to some extent as a sort of local regularization. On
the other hand, in the approach based on regularized diabatic
states36,37 by Köppel and coworkers, the correction due to the
regularization scheme has a more global character. The main
difference between the present approach and the model devel-
oped in Ref. 39 is, besides the problem of symmetry, the fact
that in Ref. 39 the coupling term x

(2)
2

′
(symbolized by λ in

Ref. 39) is obtained by a non-linear fit (see Eq. (7) in Ref.
39). Here, the non-linear fit of Ref. 39 is avoided. This non-
linear fit would have been very complicated due to the lack of
symmetry. We do not enforce a global correction (or regular-
ization) due to the presence of the coupling, rather we enforce
a correct topography at FC and around the minimum of the
conical intersection.

Our model is based on the idea that the quasi-diabatic po-
tential energy surfaces can be fitted by simple functions in X2

and that there is a relative decoupling between X2 and the
subspace {X0, X1} along the path from FC to CI.

IV. RESULTS

A. Potential energy surfaces

To test the validity of the model, we will compare the two
potentials obtained after diagonalizing the Hamiltonian ma-
trix with the two ab initio adiabatic PESs. The criterion that
the model is correct is the ability to reproduce the ab initio
data for the adiabatic PESs. One of the main problems we
had to face was the presence of a very strong anharmonicity
in particular along the path leading from FC to CI. Fig. 11,
which gives the cuts through the ab initio and model S0 and
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S1 PESs along the effective X0 coordinate, proves that this
anharmonicity is now correctly described. In addition, Fig.
12 provides similar figures but along X1 and X2 and around
FC (Fig. 12 (a) and (b)) and around CI ((Fig. 12 (c) and
(d)). The most important result is the fact that we can re-
produce correctly the topography around CI since it is linked
to the NAC. A more global picture is provided by the two-
dimensional cuts depicted in Figs. 2, 3 and 4 of section II of
the supporting material. The figures show that the very com-
plex and anharmonic topographies of the to ab initio PESs are
correctly described. The very sinuous valley from FC (at X0

=0 and X1 = 0) to CI (at X0 =2.54 a.u. and X1 = 0 ) on S0

along X0 and X1 = 0 is very well reproduced (see Figs. 2
(a) and (c) in section II of the supporting material). We also
see that the local minimum of the open form of the molecule
after CI corresponds to the second quasi-diabatic states (the
quasi-diabatic states are depicted on Figs. 2, 3 and 4 (e) and
(f)). In view of Figs. 3 (a), (b), (c), and (d) in section II of the
supporting material, we observe that the curvature of the paths
from FC to CI on both electronic states are also correctly de-
scribed. The curvature is generated by the coupling between
the two quasi-diabatic states only since there is no curvature
along X2 = 0 for the quasi-diabatic states (Figs. 3 (e), (f)).
This justifies retrospectively our assumptions in the model, i.e.
a relative decoupling between {X0 ; X1} and X2, as well as
a simple treatment for X2. Finally, Figs. 3 (a), (b), (c), and
(d) in section II of the supporting material are complementary
to (Fig. 12 (c) and (d) : we see that the topography around the
CI point is correct even in two-dimensions, which is the most
difficult region to reproduce. The root-mean square deviation
between the ab initio and model PESs is equal to 0.8580 and
0.6876 eV for S0 and S1, respectively. Now, if we define a
“relevant” region, where the process takes place and defined
by {[−0.4; 2.8], [−0.15; 0.15], [−0.15; 0.15]}, the root-mean
square deviation is equal to 0.0880 and 0.1230 eV for S0 and
S1, respectively: a difference that is perfectly acceptable for
what we need.

Figs. 5 in the supporting material provide the cuts through
the model PESs on a large range along the different co-
ordinates: here we depict values of the potential that are
very high in energy and that cannot be reached by the sys-
tem. On the other hand, we see no hole in the PESs.
To calculate the vibrational ground in the electronic ground
state, we have applied the improved relaxation method70,71 of
the Heidelberg Multi-Configuration Time-Dependent Hartree
(MCTDH) package72. This method is very sensitive to the
presence of any hole in the PESs. Since we could converge
correctly the vibrational ground state, we are confident that
no hole is present at least on the coordinate range used for the
dynamics.

B. Absorption spectrum

The 3D theoretical absorption spectrum of benzopyran has
been calculated using the PES model developed in the present
paper, the Heidelberg MCTDH package27,73,74, and the kinetic
energy operator (KEO) obtained after a simple transformation

−1 0 1 2 3 4
0

1

2

3

4

5

6

X0 (Å)
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FIG. 11. Cuts through the ab initio and model S0 and S1 PESs along
the effective X0 coordinate (X1 = 0 ; X2 = 0) : in green and blue
the ab initio adiabatic energies at the XMCQDPT2 level of theory ;
in red and light blue the energies given by the model.
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FIG. 12. Cuts through the ab initio and model S0 and S1 PESs along
the coordinatesX1 andX2 : in green and blue the ab initio adiabatic
energies at the XMCQDPT2 level; in red and light blue the energies
given by the model. (a) and (b) are given for FC and (c) and (d) for
CI.

from the Cartesian coordinates to the three active coordinates
of the model (the masses that appear in the KEO are provided
automatically by the TANA program75,76: see Appendix B
for their actual values). The Multi-Configuration Time De-
pendent Hartree method is a time-dependent method in which
each degree of freedom is associated with a small number of
single particle functions (SPFs) which, through their time de-
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pendence, allow efficient description of the molecular dynam-
ical processes. The total MCTDH wave function is expanded
in products of single-particle functions

Ψ(Q1, . . . , Qf , t)=

n1∑
j1=1

· · ·
nf∑
jf=1

Aj1···jf (t)

f∏
κ=1

φ
(κ)
jκ

(Qκ, t)

=
∑
J

AJΦJ , (9)

where f is the number of degree of freedom of the system,
Q1, . . . , Qf are the nuclear coordinates, Aj1···jf denotes the
MCTDH expansion coefficients, and φ(κ)jκ

(Qκ, t) are the nκ
SPFs associated with each degree of freedom κ. The subse-
quent equation of motion for the coefficients and single par-
ticle functions are derived after replacing the wave function
ansatz into the time dependent Schrödinger equation. To
solve the equations of motion, the κ SPF are represented on a
primitive basis or discrete variable representation (DVR) grid
of Nκ points,

ϕ
(κ)
jκ

(Qκ, t) =

Nκ∑
iκ=1

c
(κ)
iκjκ

(t)χ
(κ)
iκ

(Qκ) (10)

where in general the nκ of Equation (9) is such that nκ < Nκ.
Thus, the MCTDH method propagates a wave function on
a small time-dependent, variationally optimized basis set of
single-particle functions, which in turn are defined on a time-
independent primitive basis set. The primitive basis, its range
and the number of the SPFs used for the calculations of the
rovibrational states are summarized in Table IV. The spec-
trum is obtained by first calculating the vibrational ground
state in the electronic ground state and by a Fourier transform
of the autocorrelation function of the vibrational wavepacket
propagated on the excited state (Franck-Condon transition)
during T = 100 fs (nonadiabatic decay from S1 to S0 via
the conical intersection starts around 50 fs and is complete
in about 100 fs). We have also used a damping function, more
precisely a Gaussian function, cos(π/2 ∗ T ) exp (−t/τ) with
τ = 10 fs, multiplying to the autocorrelation function in the
Fourier transform, to convoluate the spectrum in order to com-
pare the theoretical spectrum with the experimental data.

Coords. Primitive Number of Range SPF
Basis Points basis

X0 HO 150 [-2 ; 4.6] 90, 90
X1 HO 70 [ -0.8 ; 0.8 ] 65 , 65
X2 HO 60 [-0.7 ; 0.7 ] 50 , 50

TABLE IV. Parameters of the primitive basis used for the calcula-
tion of absorption spectrum. HO stands for the Harmonic Oscillator
DVR. The units for the coordinates are angströms.

The theoretical spectrum is depicted in Fig. 13 (in blue).
The experimental absorption spectrum (in purple) is the one
of 2,2-diethylchromene (where the CH2 group is replaced by
C-(CH2-CH3)2) at 77 K in 3-methylpenthane. It presents two
bands. The band between 280 and 340 nm corresponds to
the absorption studied in the present work. The second one

between 240 and 280 nm corresponds to the excitation to an-
other electronic state, higher in energy, which is not included
in our model. Our spectrum appears in the correct domain of
the electronic state of interest: we did not have to shift arti-
ficially the spectrum for the comparison with the experiment.
In yellow, the spectrum obtained with the 12D model of Ref.
40 is depicted after having been shifted to lower transition en-
ergies to account for the lack of electron dynamic correlation
of CASSCF calculations.

FIG. 13. Theoretical absorption spectra of benzopyran (blue
line). Purple line: experimental absorption spectrum of 2,2-
diethylchromene (the CH2 group is replaced by C-(CH2-CH3)2) at
77 K in 3-methylpenthane. In yellow the spectrum with the 12D
model of Ref. 40 at the CASSCF level of theory shifted to smaller to
lower transition energies.

Not only the spectrum obtained with the present model is
now at the correct place, it presents several similitudes with
the experimental spectrum : there are four peaks, two being
shoulders on the left and right ; the widths between the peaks
are rather similar. Only the global width of the theoretical
spectrum is a little bit too large. This is not surprising since the
subspace built by our three active coordinates does not include
completely the potential energy gradient at the FC geometry
on S1 (see Tab. II), which is the most important quantity re-
lated to the width of the absorption spectrum. To obtain the
correct width, it would be necessary to add a fourth coordinate
to make sure that this gradient is fully included in the active
subspace.

V. CONCLUSIONS

We have developed a new model for the PESs that describe
the ring-opening of benzopyran taken as a model compound to
study the photochromic ring-opening reaction of indolinoben-
zospiropyran and its evolution toward its open-chain ana-
logue. This model has been improved with respect to some
aspects compared to what we had proposed in Ref.40.

The process we are looking at is very complex due to the
size of the system, the presence of motions of large ampli-
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tude, the fact that we have to deal with its reactivity and the
lack of any symmetry. Whereas in Ref. 40 we worked at the
CASSCF level of theory, we develop here a new model at the
XMCQDPT2 level.

Several important points are addressed. Accounting for
electron dynamic correlation drastically changes the global
picture originally sketched at the CASSCF level: zwitteri-
onic states are stabilized and one of them strongly interacts
with the first excited state S1 of the CASSCF picture. The
transition state, that was present between FC and CI, disap-
pears due to this interaction. A multi-state treatment including
the zwitterionic states becomes unavoidable. In other words,
the usual CASSCF//CASPT2 approach cannot give even the
correct qualitative picture of the process. Many other differ-
ences are observed: the stationary geometries are even more
“twisted” (i.e. less planar) for XMCQDPT2 calculations than
for CASSCF ones. The absorption of light corresponds to a
π → π∗ excitation as expected, but whereas, for CASSCF
calculations, the excited orbitals at the FC geometry on S1 are
mainly the π orbitals on the benzene moiety, for XMCQDPT2
calculations, it is the πpyr, i.e. the π orbitals on the pyran
moiety, that is mainly involved. In other words, we observe
a πpyr → πpyr∗ excitation, which partly explains the disap-
pearance of the TS, since no energy transfer is required from
the benzene to the pyran ring. It is expected that the fact that
the dynamic correlation is not a perturbative correction for the
process is not specific to this system. The same situation may
occur in many other molecules.

After having adopted the MS-4-SA-4-
XMCQDPT2(12,11)/TZVP level of theory, we developed an
effective model for the PESs that can describe the absorption,
the path leading to the CI, found at the post-CASSCF level,
and the non-adiabatic couplings at CI. The approach of
the present work has some similarities with the treatment
based on regularized diabatic states36–39, but we had to face
the major problem of the lack of symmetry, which makes
the choice of the diabatic states and the coupling mode
less straightforward. To overcome this difficulty, we have
proposed to choose the coupling mode so that it is as much
decoupled as possible from the sinuous path from FC to CI.
We have also enforced the model to reproduce correctly the
topography at FC and around CI, which can be seen as a kind
of “local” regularization. The results are very encouraging,
the main weakness of the present model being probably
the low number of degrees of freedom (three here), which
cannot describe the open form precisely and the dissipation of
energy after reaction. However, the general strategy proposed
here may be of general interest and could be used for other
systems, several improvements of the model being easily
possible in particular by adding more degrees of freedom.
For the ring-opening process of spiropyran, we can already
predict, from our model, that the first step of the mechanism,
corresponding to the nonadiabatic decay via the conical
intersection, takes about 50 fs, in agreement with the shortest
time constant observed in previous experiments77 and in
recent experiments including the coherent control of the
process that will give rise to a future publication78.

VI. APPENDIX A

The branching-space (BS) vectors at a conical intersection
are defined up to a gauge rotation angle, which corresponds
to the arbitrary choice of a certain pair of degenerate adiabatic
states, Φ1 and Φ2, at the geometry of the conical intersection,
QCI. They are defined in principle as

x(1) =
1

2
〈Φ2;QCI|∂QHel(QCI)|Φ2;QCI〉

−1

2
〈Φ1;QCI|∂QHel(QCI)|Φ1;QCI〉 , (11)

and

x(2) = 〈Φ1;QCI|∂QHel(QCI)|Φ2;QCI〉 . (12)

In general situations, such vectors have no reason to be or-
thogonal in practice, except sometimes for symmetry reasons.
In our case, however, the two BS vectors of the branching
space calculated numerically using the procedure exposed in
Ref.66 and shown on Fig. 9 have been produced in such a way
that they are orthogonal.

Now, at the the conical intersection, QCI, equally accept-
able adiabatic states, Φ′i, can be defined up to a rotation with
an arbitrary angle, θ, independent from the coordinates,

|Φ1
′;QCI〉 = cos θ |Φ1;QCI〉+ sin θ |Φ2;QCI〉

|Φ2
′;QCI〉 = − sin θ |Φ1;QCI〉+ cos θ |Φ2;QCI〉 . (13)

The new pair of BS vectors are obtained from the following
similarity transformation,[

−x(1)′ x(2)′

x(2)′ x(1)′

]
=[

cos θ sin θ
− sin θ cos θ

]
·
[
−x(1) x(2)

x(2) x(1)

]
·
[

cos θ − sin θ
sin θ cos θ

]
,(14)

leading to

x(1)′ = cos 2θ x(1) − sin 2θ x(2)

x(2)′ = sin 2θ x(1) + cos 2θ x(2) . (15)

Any value of θ yields a possible pair of BS vectors that lift
degeneracy to first order. θ = 0 corresponds only to the re-
sult given by the numerical calculation providing arbitrary in
principle, but determined in practice, degenerate states.

We now consider diabatic states that coincide with the ro-
tated adiabatic states, Φ′i, at the conical intersection but not
necessarily elsewhere (crude adiabatic states). At the first or-
der, the off-diagonal term of the Hamiltonian matrix in this
diabatic basis set (by definition of the derivative coupling vec-
tor) reads

H1 2(X) = x(2)′ · (X−QCI) , (16)

where X denotes the set of coordinates of a running point. In
the applications of the vibronic-coupling (VCH) model35,53,54

or in the approach based on regularized diabatic states36–39,
due to using the symmetry of the systems, the term in Eq.
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(16), often involves a single (normal or curvilinear) coordi-
nate only (for instance a coordinate associated with an out-of-
plane mode of vibration for a planar molecule), or at least a
single irreducible representation. This simplifies significantly
the definition of the quasi-diabatic states upon fixing the afore-
mentioned angle θ.

Here, as already explained, we cannot exploit symmetry for
our molecule. In practice, choosing the rotating angle, θ, is
equivalent to setting a geometry, Qref , for which we wish the
coupling to vanish,

H1 2(Qref) = 0 . (17)

This is equivalent to defining one direction, x(0) defined such
as

x(0) = QCI −Qref , (18)

that is orthogonal to the derivative coupling vector for our
choice of quasi-diabatic states. In other words,

x(2)′ · x(0) = 0 . (19)

Thus, in view of Eq. (15), this yields

sin 2θ x(1) · x(0) + cos 2θ x(2) · x(0) = 0 , (20)

hence,

sin 2θ

cos 2θ
= −x(2) · x(0)

x(1) · x(0)
, (21)

leading to

2θ = arctan

(
−x(2) · x(0)

x(1) · x(0)

)
. (22)

This determines the value of θ and provides the two vectors
x(1)′ and x(2)′ using Eq. (15). Since x(1) and x(2) are not
normalized, x(1)′ and x(2)′ have no reason to be orthogonal,
even if the former were. A new vector, x(1)′′ (orthogonal to
x(2)′) can be generated by with the Gram-Schmidt procedure,

x(1)′′ = x(1)′ − x(1)′ · x(2)′

x(2)′ · x(2)′
x(2)′ − x(1)′ · x(2)′

x(0) · x(0)
x(0) . (23)

Now, a choice for the vector x(0) in Eq. (18) must be made.
Following the approach of Köppel and coworkers38,39, our
goal is to decouple as much as possible the direction of the
coupling in the Hamiltonian operator between the two quasi-
diabatic states, defined by x(2)′, from the rest of the “active”
subspace in which we will perform the dynamics. At the first
order, there is no coupling betweeen x(1)′′ and x(2)′ at the CI
point by construction. A natural choice is thus to choose x(0)

parallel to the vector X0 from FC to CI. In other words, we
choose the coupling vector, x(2)′, and thus the quasi-diabatic
states, so that by construction there is as little coupling as

possible between X0 and x(2)′. Our goal is to build a two-
dimensional subspace, {X0,X1} that is as decoupled as pos-
sible from the direction X2 ∝ x(2)′, so that H1 2(X) can be
written as a linear term along X2 only.

Mathematically, this means that, in Eq. (18), Qref = QFC.
Physically, it also means that the adiabatic and quasi-diabatic
states are identical at FC. We thus build the orthonormal basis
set B = {X0,X1,X2} such that

X0 =
x(0)

‖x(0)‖
, X1 =

x(1)′′

‖x(1)′′‖
, X2 =

x(2)′

‖x(2)′‖
. (24)

VII. APPENDIX B

The Body-Fixed (BF) KEO in terms of the three active (BF)
coordinates {X0,X1,X2} reads

T̂BF = −~2

2

2∑
i,j=0

Mi j
∂2

∂Xi∂Xj
, (25)

with

M =

 0.7245 0.1410 −0.0253
0.1410 0.1138 −0.0053
−0.0253 −0.0053 0.0886

 , (26)

in uma−1. As explained in Appendix A, the three vec-
tors {X0,X1,X2} were obtained from orthonormalizing the
three original vectors denoted {x(0),x(1),x(2)}. They cor-
respond to linear combinations of Cartesian basis vectors in
the BF frame, thus defining a rectangular transformation ma-
trix with constant coefficients. The standard full-dimensional
KEO has a similar expression to the one above, but with
derivatives with respect to all Cartesian coordinates and a re-
ciprocal mass matrix containing the inverse of the masses of
all atoms (repeated three times, once for each direction). The
three-dimensional KEO was obtained via a mere projection
of the full-dimensional one onto the three-dimensional space,
using the rectangular transformation matrix that connects both
types of derivatives.

VIII. SUPPLEMENTARY MATERIAL

See supplementary material for the description of the active
orbitals and a thorough comparison between the ab initio and
model potential energy surfaces.

ACKNOWLEDGMENTS

Numerous discussions with Prof. Hans-Dieter Meyer and
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