A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J Clin Invest, vol.122, pp.787-795, 2012.

J. W. Pollard, Trophic macrophages in development and disease, Nat Rev Immunol, vol.9, pp.259-270, 2009.

J. Xue, S. V. Schmidt, J. Sander, A. Draffehn, W. Krebs et al., Transcriptome-based network analysis reveals a spectrum model of human macrophage activation, Immunity, vol.40, pp.274-288, 2014.

P. Italiani and D. Boraschi, New Insights Into Tissue Macrophages: From Their Origin to the Development of Memory, Immune Netw, vol.15, pp.167-176, 2015.

T. A. Wynn, A. Chawla, and J. W. Pollard, Macrophage biology in development, homeostasis and disease, Nature, vol.496, pp.445-455, 2013.

B. Chazaud, Macrophages: supportive cells for tissue repair and regeneration, Immunobiology, vol.219, pp.172-178, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00877510

S. Gordon, A. Pluddemann, M. Estrada, and F. , Macrophage heterogeneity in tissues: phenotypic diversity and functions, Immunol Rev, vol.262, pp.36-55, 2014.

F. O. Martinez, L. Helming, R. Milde, A. Varin, B. N. Melgert et al., Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences, Blood, vol.121, pp.57-69, 2013.

M. Van-der-vaart, H. P. Spaink, and A. H. Meijer, Pathogen recognition and activation of the innate immune response in zebrafish, Adv Hematol, vol.2012, p.159807, 2012.

V. Torraca, S. Masud, H. P. Spaink, and A. H. Meijer,

, Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model, vol.7, pp.785-797, 2014.

J. P. Levraud, N. Palha, C. Langevin, and P. Boudinot, Through the looking glass: witnessing host-virus interplay in zebrafish, Trends Microbiol, vol.22, pp.490-497, 2014.

A. H. Meijer and H. P. Spaink, Host-pathogen interactions made transparent with the zebrafish model, Curr Drug Targets, vol.12, pp.1000-1017, 2011.

F. Ellett and G. J. Lieschke, Zebrafish as a model for vertebrate hematopoiesis, Curr Opin Pharmacol, vol.10, pp.563-570, 2010.

S. A. Renshaw and N. S. Trede, A model 450 million years in the making: zebrafish and vertebrate immunity, Dis Model Mech, vol.5, pp.38-47, 2012.

A. M. Forrester, J. N. Berman, and E. M. Payne, Myelopoiesis and myeloid leukaemogenesis in the zebrafish, Adv Hematol, vol.2012, p.358518, 2012.

P. Herbomel, B. Thisse, and C. Thisse, Ontogeny and behaviour of early macrophages in the zebrafish embryo, Development, vol.126, pp.3735-3745, 1999.

G. J. Lieschke, A. C. Oates, B. H. Paw, M. A. Thompson, N. E. Hall et al., Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning, Dev Biol, vol.246, pp.274-295, 2002.

P. Herbomel, B. Thisse, and C. Thisse, Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process, Dev Biol, vol.238, pp.274-288, 2001.

A. J. Pagan, C. T. Yang, J. Cameron, L. E. Swaim, F. Ellett et al., Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment, Cell Host Microbe, vol.18, pp.15-26, 2015.

J. Y. Bertrand, A. D. Kim, E. P. Violette, D. L. Stachura, J. L. Cisson et al., Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo, Development, vol.134, pp.4147-4156, 2007.

E. Dzierzak and N. A. Speck, Of lineage and legacy: the development of mammalian hematopoietic stem cells, Nat Immunol, vol.9, pp.129-136, 2008.

K. Kissa and P. Herbomel, Blood stem cells emerge from aortic endothelium by a novel type of cell transition, Nature, vol.464, pp.112-115, 2010.

J. Y. Bertrand, N. C. Chi, B. Santoso, S. Teng, D. Y. Stainier et al., Haematopoietic stem cells derive directly from aortic endothelium during development, Nature, vol.464, pp.108-111, 2010.

E. Murayama, K. Kissa, A. Zapata, E. Mordelet, V. Briolat et al., Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development, Immunity, vol.25, pp.963-975, 2006.

K. Kissa, E. Murayama, A. Zapata, A. Cortes, E. Perret et al., Live imaging of emerging hematopoietic stem cells and early thymus colonization, Blood, vol.111, pp.1147-1156, 2008.

E. Colucci-guyon, J. Y. Tinevez, S. A. Renshaw, and P. Herbomel, Strategies of professional phagocytes in vivo: unlike macrophages, neutrophils engulf only surface-associated microbes, J Cell Sci, vol.124, pp.3053-3059, 2011.

S. H. Lam, H. L. Chua, Z. Gong, T. J. Lam, and Y. M. Sin, Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study, Dev Comp Immunol, vol.28, pp.9-28, 2004.

J. M. Davis, H. Clay, J. L. Lewis, N. Ghori, P. Herbomel et al., Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos, Immunity, vol.17, pp.693-702, 2002.

J. M. Davis and L. Ramakrishnan, The role of the granuloma in expansion and dissemination of early tuberculous infection, Cell, vol.136, pp.37-49, 2009.

C. J. Cambier, K. K. Takaki, R. P. Larson, R. E. Hernandez, D. M. Tobin et al., Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids, Nature, vol.505, pp.218-222, 2014.

S. Akira and K. Takeda, Toll-like receptor signalling, Nat Rev Immunol, vol.4, pp.499-511, 2004.

M. Van-der-vaart, J. J. Van-soest, H. P. Spaink, and A. H. Meijer, Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system, Dis Model Mech, vol.6, pp.841-854, 2013.

A. Bernut, J. L. Herrmann, K. Kissa, J. F. Dubremetz, J. L. Gaillard et al., Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation, Proc Natl Acad Sci U S A, vol.111, pp.943-952, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088315

P. Niethammer, C. Grabher, A. T. Look, and T. J. Mitchison, A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish, Nature, vol.459, pp.996-999, 2009.

S. Tauzin, T. W. Starnes, F. B. Becker, P. Y. Lam, and A. Huttenlocher, Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration, J Cell Biol, vol.207, pp.589-598, 2014.

F. Ellett, L. Pase, J. W. Hayman, A. Andrianopoulos, and G. J. Lieschke, mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish, Blood, vol.117, pp.49-56, 2011.

J. R. Mathias, B. J. Perrin, T. X. Liu, J. Kanki, A. T. Look et al., Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish, J Leukoc Biol, vol.80, pp.1281-1288, 2006.

P. Martin and S. J. Leibovich, Inflammatory cells during wound repair: the good, the bad and the ugly, Trends Cell Biol, vol.15, pp.599-607, 2005.

L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J Exp Med, vol.204, pp.1057-1069, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00136917

L. Li, B. Yan, Y. Q. Shi, W. Q. Zhang, and Z. L. Wen, Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration, J Biol Chem, vol.287, pp.25353-25360, 2012.

A. London, E. Itskovich, I. Benhar, V. Kalchenko, M. Mack et al., Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages, J Exp Med, vol.208, pp.23-39, 2011.

A. L. Mescher, A. W. Neff, and M. W. King, Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs, PLoS One, vol.8, p.80477, 2013.

J. W. Godwin, A. R. Pinto, and N. A. Rosenthal, Macrophages are required for adult salamander limb regeneration, Proc Natl Acad Sci U S A, vol.110, pp.9415-9420, 2013.

L. K. Mathew, S. Sengupta, A. Kawakami, E. A. Andreasen, C. V. Lohr et al., Unraveling tissue regeneration pathways using chemical genetics, J Biol Chem, vol.282, pp.35202-35210, 2007.

D. C. Lebert, J. M. Squirrell, J. Rindy, E. Broadbridge, Y. Lui et al., Matrix metalloproteinase 9 modulates collagen matrices and wound repair, Development, vol.142, pp.2136-2146, 2015.

T. Hasegawa, T. Nakajima, T. Ishida, A. Kudo, and A. Kawakami, A diffusible signal derived from hematopoietic cells supports the survival and proliferation of regenerative cells during zebrafish fin fold regeneration, Dev Biol, vol.399, pp.80-90, 2015.

T. A. Petrie, N. S. Strand, C. T. Yang, J. S. Rabinowitz, and R. T. Moon, Macrophages modulate adult zebrafish tail fin regeneration, Development, vol.141, pp.2581-2591, 2014.

F. Porcheray, S. Viaud, A. C. Rimaniol, C. Leone, B. Samah et al., Macrophage activation switching: an asset for the resolution of inflammation, Clin Exp Immunol, vol.142, issue.3, pp.481-489, 2005.

R. Shechter, O. Miller, G. Yovel, N. Rosenzweig, A. London et al., Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus, Immunity, vol.38, pp.555-569, 2013.

L. E. Sanderson, A. T. Chien, J. W. Astin, K. E. Crosier, P. S. Crosier et al., An inducible transgene reports activation of macrophages in live zebrafish larvae, Dev Comp Immunol, vol.53, pp.63-69, 2015.

M. Nguyen-chi, B. Laplace-builhe, J. Travnickova, L. , P. Tejedor et al., Identification of polarized macrophage subsets in zebrafish, eLife, vol.4, p.7288, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01834168

C. J. Hall, R. H. Boyle, J. W. Astin, M. V. Flores, S. H. Oehlers et al., Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating beta-oxidation-dependent mitochondrial ROS production, Cell Metab, vol.18, pp.265-278, 2013.

C. Gray, C. A. Loynes, M. K. Whyte, D. C. Crossman, S. A. Renshaw et al., Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish, Thromb haemost, vol.105, pp.811-819, 2011.

E. M. Walton, M. R. Cronan, R. W. Beerman, and D. M. Tobin, The Macrophage-Specific Promoter mfap4 Allows Live, Long-Term Analysis of Macrophage Behavior during Mycobacterial Infection in Zebrafish, PloS one, vol.10, p.138949, 2015.

N. Palha, F. Guivel-benhassine, V. Briolat, G. Lutfalla, M. Sourisseau et al., Real-time whole-body visualization of Chikungunya Virus infection and host interferon response in zebrafish, PLoS pathog, vol.9, p.1003619, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01109454

T. K. Prajsnar, R. Hamilton, J. Garcia-lara, G. Mcvicker, A. Williams et al., A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model, Cell microbiol, vol.14, pp.1600-1619, 2012.

J. Travnickova, T. Chau, V. Julien, E. Mateos-langerak, J. Gonzalez et al., Primitive macrophages control HSPC mobilization and definitive haematopoiesis, Nat commun, vol.6, p.6227, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02087021

N. Van-rooijen and A. Sanders, Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications, J immunol methods, vol.174, pp.83-93, 1994.

M. A. Thompson, D. G. Ransom, S. J. Pratt, H. Maclennan, M. W. Kieran et al., The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis, Dev biol, vol.197, pp.248-269, 1998.

J. Rhodes, A. Hagen, K. Hsu, M. Deng, T. X. Liu et al., Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish, Dev cell, vol.8, pp.97-108, 2005.