A bromeliad species reveals invasive ant presence in urban areas of French Guiana

Stanislas Talaga, Jacques H.C. Delabie, Olivier Dézerald, Alex Salas-Lopez, Frédéric Petitclerc, Céline Leroy, Bruno Herault, Régis Céréghino, Alain Dejean

To cite this version:

Stanislas Talaga, Jacques H.C. Delabie, Olivier Dézerald, Alex Salas-Lopez, Frédéric Petitclerc, et al.. A bromeliad species reveals invasive ant presence in urban areas of French Guiana. Ecological Indicators, Elsevier, 2015, 58, pp.1-7. 10.1016/j.ecolind.2015.05.027 . hal-02095569

HAL Id: hal-02095569
https://hal.umontpellier.fr/hal-02095569
Submitted on 11 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A bromeliad species reveals invasive ant presence in urban areas of French Guiana

Stanislas Talaga, Jacques H.C. Delabie, Olivier Dézerald, Alex Salas-Lopez, Frédéric Petitclerc, Céline Leroy, Bruno Hérault, Régis Cérégino, Alain Dejean

A CNRS, École des Forêts de Guyane (UMR-CNRS 8172), Campus agronomique, BP 316, 97387 Kourou cedex, France
b U.P.A. Laboratório de Mirmeologia, Convênio UESC/CEPLAC, C.P. 7, 45600-970 Itabuna, Bahia, Brazil
c IRD, UMR AMAP (botAnique et bioinforMatique de l’Architecture des Plantes), Boulevard de la Lironde, TA A-51/IP2, F-34398 Montpellier Cedex 5, France
d CIRAD, École des Forêts de Guyane (UMR-CIRAD 93), Campus agronomique, BP 316, 97387 Kourou cedex, France
e Université de Toulouse, UPS, INP, Laboratoire Écologie Fonctionnelle et Environnement, 118 route de Narbonne, 31062 Toulouse, France
f CNRS, Ecolab (UMR-CNRS 5245), 118 Route de Narbonne, 31062 Toulouse, France

ABSTRACT

Tank bromeliads, frequently associated with ants, are considered 'biodiversity amplifiers' for both aquatic and terrestrial organisms, and thus have a high ecological value. The focal species of this study, Aechmea aquilega, sheltered the colonies of 12 ant species in a Guianese rural habitat where Odontomachus haematodus, associated with 60% of these plants, was the most frequent. Unexpectedly, the ant species richness was higher in a compared urban habitat with 21 species, but two synanthropic and four invasive ants were noted among them. Consequently, we conducted baiting surveys (on the ground, on trees and on trees bearing A. aquilega) as well as complementary surveys using different sampling modes in urban areas to test if A. aquilega is a surrogate revealing the presence of certain invasive ants. During the baiting survey, we recorded four Neotropical and eight introduced invasive ants out of a total of 69 species. Of these 12 invasive species, five were noted by baiting A. aquilega (including two only noted in this way). A bootstrap simulation permitted us to conclude that A. aquilega significantly concentrates certain species of invasive ants. This was confirmed by complementary surveys, where we did not record further species. We conclude that baiting on trees bearing large epiphytes in human-modified, Neotropical areas is a relevant complement to the early detection of invasive ants.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Global trade has greatly contributed to the dispersal of plants and animals whose introduction into new habitats generally results in their death or a low rate of survival as they are unable to adapt. Still, some of them have become invasive, constituting an important threat to biodiversity in their introduced range because they can eliminate native species through resource pre-emption and/or direct competition, and, so, disrupt ecosystem functions. This has economic repercussions due to the costs of control measures (Clavero and Garcia-Berthou, 2005; Shogren and Tscherhart, 2005).

Ants are among the most widespread and harmful invasive taxa because they occupy a central place in the functioning of ecosystems. This is due to their abundance as they constitute one of the largest fractions of the animal biomass and play different roles in food webs since they can be herbivores, generalists, scavengers or predators. In natural conditions, ants coexist in well-organized communities regulated by competition and predation at both the intra- and inter-specific level. Yet, among invasive ants, so-called 'unicolonic species' form spatially vast and competitively dominant supercolonies over large geographical distances (Holway et al., 2002; Moffett, 2012). Thanks to their huge colonies, they lower the species richness and abundance of native ants through exploitation and interference competition so that they can disrupt the arthropod community structure with subsequent repercussions on the entire ecosystem (Holway et al., 2002).

Therefore, a major challenge is to develop predictive management strategies based on understanding the processes behind these invasions. The period just following the introduction of a potentially invasive species is central to that understanding. This is particularly true for insects which, due to their small size, are
difficult to detect, so that their presence is generally discovered once the invasive process is already well underway or completed. Because most invasive taxa, including ants, are first introduced into urban areas through maritime harbors or airports and along roads (Holway et al., 2002; Laurance et al., 2009), the early detection of ants in cities is a critical component of environmental management. Yet, the ecological requirements of some potentially invasive ants means that their occurrence can be missed when researchers use a conventional sampling technique, especially when these ants first congregate in certain habitats where, in fact, they can be likened to the ‘Trojan Horse’.

Because epiphytes abound in the trees that grow in some Neotropical cities and because epiphytes favor the installation of numerous ant species (Davidson and Epstein, 1989; Dejean et al., 1995; Blüthgen et al., 2000), we hypothesized that large epiphytic plants which commonly form habitats for insects can be “surrogates” for the occurrence of invasive ants prior to their spread. “Surrogacy”, or how easily recorded taxa predict the presence of other taxa, can constitute a useful tool in conservation planning (Warman et al., 2004) and could also be used to detect the recent introduction of potentially invasive ants (see also Addison and Samways, 2006, for artificial surrogate habitats).

Tank bromeliads (Bromeliaceae) are flowering plants comprising of 59 genera and some 3140 species native mainly to the Neotropics (Givnish et al., 2011). The interlocking leaves of tank bromeliads form wells that collect rainwater (from a few milliliters to a few liters), leaf litter and other organic detritus. The rosettes of these plants permit numerous opportunistic ant species to profit from the moist habitat. Most ant–bromeliad associations are not species-specific (Blüthgen et al., 2000), but specialized associations do exist (Dejean et al., 1995). In this context, the aim of this study was to evaluate whether tank bromeliads can reveal ant invasions in Neotropical cities. Tank bromeliads are frequently found in human-modified, Neotropical areas, particularly when those areas are close to the seaside, rivers, or lakes, or situated at high, humid altitudes (Richardson et al., 2000; Serramero Lopez et al., 2009; Cach-Pérez et al., 2013; here Aechmea aquilega). So, we first sought to assess whether they point to the presence of synanthropic and invasive ants in urbanized areas of French Guiana, all situated along the coast. Second, we determined if these ant species are outcompeted by native species in a surrounding rural area. Third, we looked for new approaches permitting us to improve the conventional baiting sampling technique so as to detect as effectively as possible the presence of invasive ants by extending the survey to include trees, particularly those bearing an A. aquilega cluster. Further surveys using different sampling techniques rounded out this approach.

2. Materials and methods

2.1. The focal taxa

A. aquilega, found from Costa Rica to Brazil, usually forms massive clumps of epiphytes on old trees, but can also grow as a geophyte. This large species (60–120-cm in height; Mori et al., 1997) has tightly interlocking leaves that form a highly compartmented rosette creating a tank (or phytotelm) that collects water and organic detritus and provides a habitat for aquatic micro- and macro-organisms (Carrié et al., 2014).

2.2. Study areas and field surveys

2.2.1. Ants associated with A. aquilega

Between 2011 and 2013, we studied the ants associated with 45 mature A. aquilega in an urban area (each randomly selected in a city block of Sinnamary, French Guiana; 05°22’39’’N 52°57’35’’W), and 26 others in a rural habitat situated 5 km away, along 6 km of a dirt road (route de l’Anse) lined with 10–30 m–tall trees. In both areas, A. aquilega abound as epiphytes, with most individuals growing at a height of 3–6 m on different tree species. The sampling area in each environment extended over a surface of ca. 45 ha.

We used a ladder to reach the selected A. aquilega individuals and removed them from their substrates using a hack saw and then placed each of them into a plastic bag which was sealed to avoid contamination during transport to the laboratory. There, each individual was carefully inspected and taken apart; each leaf was torn from the base starting from the outermost leaf and working inward, allowing us to collect entire ant colonies installed between the leaves among the detritus accumulated by the plant.

2.2.2. Baiting survey to test if A. aquilega is a surrogate helpful in detecting invasive ants

To detect as effectively as possible the presence of invasive ants, we used a conventional sampling technique consisting of baiting ants with, each time, a series of two 2-ml Eppendorf colorless microtubes (one containing pieces of cotton imbibed with diluted honey and the other containing pieces of canned sardines in oil). Each time, after 30 and then 60 min, the ants occupying the baits and those patrolling all around were collected using an aspirator.

The survey was conducted in Cayenne (4°55’59”N; 52°19’59”W), Kourou (05°09’30”N; 52°38’34”W) and Sinnamary, three cities in the littoral zone of French Guiana (white sand deposits) and situated along a river. Less than 95 km (as the crow flies) separate Cayenne from Sinnamary, with Kourou located almost midway. First, we placed 30 pairs of baits on the ground separated by an interval of more than 20 m in Cayenne (the airport; the heliport; the tarmac of the harbor; the marina; and at the base of the building of the Customs Office in the harbor), in different city blocks of the Vieux Bourg of Kourou (areas not far from the marina) and Sinnamary (in different city blocks; more than 100 m from each other). Second, in Kourou and Sinnamary, we used the same type of sampling technique, placing the baits at more than 2 m in height on the trunks of 30 tall trees (>15 m), mostly mango (Mangifera indica) and mombin (Spondias mombin), both Anacardiaceae, and Inga spp. (Mimosoideae). These trees were chosen haphazardly in different city blocks. Third, to verify the ability of A. aquilega to concentrate invasive ant species, the same survey was conducted in Sinnamary on 30 other large trees bearing an A. aquilega cluster (almost all were mango trees) and situated in different city blocks than the previous trees or in different distant parcels of the same block (with a distance of more than 75 m between two trees). A complementary survey was conducted in the three cities. We firstly prospected by sight along the grassy roadsides of different city blocks, totalizing in each city more than 5 km. Only the workers of infrequent species were gathered (using an aspirator) for further identification. Second, we sampled ants from 20 plots (6 m × 3 m; 18 m²) situated in grassy areas in different city blocks. Sampling was standardized by spending one man-hour per plot carefully searching for ants in all suitable microhabitats: the leaf litter including all hollow, rotten twigs; dead wood; humus and the bare ground. Third, we conducted a baiting survey on trees smaller than in the previous survey (i.e., 5–12 m in height). Also, in the Vieux Bourg in Kourou, we baited the only nine reachable mango trees bearing an A. aquilega cluster.

Voucher specimens of the ants were identified and deposited in the Laboratório de Mirmecologia collection (acronym: CPDC), Coca Research Centre (Ihixus, Bahia, Brazil).

2.3. Statistical comparisons

We compared the ant diversity in the two habitats using Shannon’s diversity t-test (PaST software; diversity statistics), and the
ant communities using the Permutational Multivariate Analysis of Variance (PERMANOVA; R software; R Development Core Team, 2013).

The aim of the baiting survey was to test the relative contribution of each of the 10 baiting situations to the total number of invasive ant species recorded in the area. Using R software, we conducted a bootstrap simulation where we “sampled” with replacements the 10 baiting situations. From these simulations, we counted the number of species, and the procedure was repeated 10,000 times. We then split the 10,000 simulations into two groups, one where the A. aquilega situation was sampled at least once and a second where it was not sampled at all. Finally, we tested the differences in species number between these two groups with a non-parametric Wilcoxon rank sum test with the continuity correction.

3. Results

3.1. Comparing the ant fauna associated with A. aquilega between a rural and an urban area

In all cases, we noted the presence of ants between the base of the A. aquilega and the bark of the host trees. A total of 56 out of the 71 A. aquilega sampled (79%) sheltered, between their leaves, ant colonies belonging to 28 species and five subfamilies (Fig. 1 and Supplementary Appendix A).

A comparison of the percentages of occurrence of these ant species illustrated the difference in their distribution between the rural and urban areas (12 versus 21 species, respectively; Fig. 1). Indeed, the difference in ant species richness was significant (Shannon’s diversity t-test: t = 3.66; df = 280; P = 0.0003) and the ant assemblages were significantly different between the two sites (PERMANOVA: N = 54; F = 15.05; P = 0.0001).

Odontomachus haematodus was by far the most frequent species in the rural area where it occupied 60% of all the sampled plants sheltering ants. We noted that elementary nests (the colonies are composed of multiple nests) of this species were installed both between the leaves of several adjacent A. aquilega individuals and between their shoots and the bark of the host trees.

3.2. Baiting survey to test if A. aquilega is a surrogate helpful in detecting invasive ants

During the baiting survey, we recorded 69 ant species, including 12 well-known invasive species, four of which are Neotropical and are invasive in human-disturbed areas of their native range and elsewhere where they were introduced through human transport; the eight others were introduced (Table 1 and Supplementary Appendix A). Among the introduced invasive ants, five species were recorded during baiting on the ground (i.e. Monomorium florica; Paratrechina longicornis; Tapinoma melanocephalum; Tetramorium lanuginosum; and Tetramorium simillimum); two of them, M. florica and T. melanocephalum, were also recorded on trees. Cardiocondyla obscurior was only detected through baiting on trees, and two more species, Pheidole megacephala and Tech nomyrmex vitiensis, only by baiting on trees bearing an A. aquilega cluster; the latter trees sheltered five invasive species, four of them introduced (Table 1).

Furthermore, the probability of detecting an introduced invasive ant species was particularly high on trees bearing an A. aquilega cluster compared to the other situations. Each time the “A. aquilega situation” was included in the simulated sample, the number of invasive species was significantly higher than simulations where the “A. aquilega situation” was not included (Fig. 2; Wilcoxon rank sum test: W = 2,251,583; N = 10,000; P < 2.2e−16).

The complementary survey permitted us to again note Pa. longicornis and T. melanocephalum among the introduced invasive ants, plus a tramp species, Cardiocondyla wrightoni (Seifert, 2003).

4. Discussion

4.1. Comparing the ant fauna associated with A. aquilega between a rural and an urban area

Overall, one can note a convergence between the ant assemblage found in the rural area studied and that of Venezuelan tank bromeliads (Fig. 1; Blüthgen et al., 2000) as O. haematodus was the most frequent species, Cyphomyrmex spp. abounded, and Dolichoderus laminitus, Neoponera villosa, and species of the genera Nyländeria, Pheidole and Platythyrea were also recorded. The dominance of O. haematodus is reminiscent of the N. villosa association with Aechmea bracteata in Mexico (Dejean, 1990). Because these two ponerine ant species can also nest in rotten logs or branches lying on the ground, a convergence likely exists where a kind of “local tradition” causes the queens to select these bromeliads as nesting sites. This type of local tradition has also been noted in Odontomachus hastatus and social wasps (Wenzel, 1996; Dejean et al., 1998; Gibernau et al., 2007), experimental studies having shown that such host plant selection is related to an imprinting process (Djéto-Lordon and Dejean, 1999).
Table 1

Comparison of ant species recorded in three French Guianese cities using baits (30 pairs of baits each time). *: synanthropic species; †: introduced tramp species (not invasive); ‡: introduced invasive species; **: Neotropical invasive species; #: two associated ant species (parabiosis) which build ant-gardens containing several epiphytes, including the tank bromeliad *Aechmea mertensii; †: baits on trees bearing *Aechmea aquilegia in Kourou; total: 69 ant species.

<table>
<thead>
<tr>
<th>Ant species</th>
<th>Cayenne bendot</th>
<th>Cayenne hollywood</th>
<th>Cayenne marina</th>
<th>Cayman castries</th>
<th>Kourou city</th>
<th>Summary city</th>
<th>Kourou trees</th>
<th>Summary trees</th>
<th>†: A. aquilegia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azteca cf. charitex</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Azteca subterreus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Azteca sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brachymyrmex patagonicus*</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brachymyrmex sp.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Camponotus atriceps*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Camponotus blanda</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Camponotus crassus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Camponotus fascigatus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Camponotus femoratus*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Camponotus (Myrmapi, sp.)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Camponotus melicetitis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Camponotus reingert</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Camponotus rufipes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Camponotus senex</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Camponotus sexguattentris*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cardiocondyla minuta†</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cardiocondyla obscurior§</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cephalotes pallidipes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cephalotes sp.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Camponotus atkinsoni</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Camponotus carinatus</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Camponotus cernigolus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Camponotus etocus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Camponotus levius#</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Camponotus sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Camponotus teniscula</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cyphomyrmex transversus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Daconis amorgerum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dolichoderus lamintus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dolichoderus voragineus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Doromyrmex brunneus*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Doromyrmex pyramius*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ecitonoma brunneus*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Myrmecocystus floridensis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Neoponeura villosa</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nylanderia fulva**</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nylanderia sp.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Oecophylla smaragdula*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Papiromyrmex longicornis*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pheidole fallax*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pheidole diligenz group sp.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pheidole padilla*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pheidole macrodactylus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pheidole cf. micros</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pheidole radoszkowii</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pheidole flavescens group sp.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pheidole flavescens group sp.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pheidole sp.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pheidole symamata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pseudomyrmex carcasensis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pseudomyrmex gracilis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pseudomyrmex oculatus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pseudomyrmex simplex</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudomyrmex sp.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudomyrmex terrivarious</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solenopsis (Diplorhopit) sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Solenopsis gemmativa**</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solenopsis globularia*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Solenopsis sarettiana**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tapinoma melanocephalum§</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tapinoma sp.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Technomyrmex velatus**</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tetramorium giganteum§</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tetramorium simillimum*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wasmannia aurantiaca**</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wasmannia rochui</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

No. of species | 9 | 9 | 9 | 9 | 10 | 10 | 16 | 22 | 19 | 22 | 28

Total No. of invasive species | 2 | 2 | 4 | 3 | 4 | 2 | 5 | 4 | 1 | 0 | 1

No. of introduced invasive species | 1 | 1 | 3 | 1 | 3 | 1 | 2 | 3 | 1 | 4 |
The much lower level of *O. haematodus* occurrence in the urban area is likely due to anthropogenic disturbances which placed native ants at a disadvantage while favoring synanthropic species, particularly invasive species (Fig. 1 and Supplementary Appendix A). The latter likely lowered native ant richness and abundance through exploitation and interference competition (see Holway et al., 2002). Note that *O. haematodus* colonies, as was observed here, can develop in cities, even nesting in wall crevices or under flower pots (Delabie et al., 1995). Also, this ant species was recently introduced into the Gulf Coast of the USA (MacGown et al., 2014). Note that in the rural area only *Tec. vitiensis* was recorded as an *A. aquilega* associate among the known invasive ants, indicating the beginning of a possible spread.

Three of the species recorded, namely *Wasmannia auropunctata* (Neotropical), *Tec. vitiensis* and *Ph. megacephala* (both of which are introduced species), are invasive ants particularly known for their negative ecological and agricultural impact (Holway et al., 2002; Bolton, 2007; Delabie et al., 2011; Wetterer, 2012).

4.2. Baiting survey

First, ground baiting permitted us to gather four invasive Neotropical species. *Wasmannia auropunctata* is invasive in many tropical areas where it was introduced; this species, also noted during baiting on trees including those bearing *A. aquilega*, is known to spread in human-disturbed areas of its native range where it can displace other ants (Orivel et al., 2009). *Nylanderia fulva*, a Formicinae native to South America, has invaded the southern USA where it is capable of detoxifying the venom of the introduced fire-ant, *Solenopsis invicta* (LeBrun et al., 2014). Native to Central and South America, *Solenopsis geminata* is now widespread in the Tropics (Holway et al., 2002). Also, *Solenopsis saevissima*, with supercolonies extending over dozens of kilometers, has
negative ecological impacts and has been noted outside its native range (Taber, 2000; Wetterer, 2014a; Lenoir et al., 2015).

Second, during ground baiting, we recorded the five following introduced invasive species. Monomorium floricola, also noted on trees including those bearing A. aquilega, is a widespread arbo-
real species native to tropical Asia which can be a house pest (Wetterer, 2010a) or affect the structure of arboreal ant assem-
blages (Conceição et al., 2014). Paratrechina longicornis and Ta. melanocephalum (the latter was also noted on trees bearing A. aquile-
ga), which have spread worldwide including into cold regions due to
their ability to live in houses, are native to the Old World Trop-
ics (Wetterer et al., 2008, 2009). Tetramorium lanuginosum, which was
also noted on trees, and Tet. similimum are widespread invasive
species, the former is native to tropical East Asia, the latter to Africa
(Wetterer and Wetterer, 2004; Wetterer, 2010b). This is the first
report of Tet. lanuginosum in continental South America although
this species has been reported in Central and North America, the
Galapagos and several Caribbean islands (Wetterer, 2010b).

Third, Ca. obscuroir was noted only during tree baiting (Table 1).
Native to Southeast Asia, this species is widespread in the Tropics
and Subtropics (Seifert, 2003). Note that the other Cardiocondyla
species recorded, Ca. minutior and Ca. wrougtoni (Table 1 and Sup-
plementary Appendix B), both native to the Indo-Malayan region,
are tramp species widespread in the Tropics and Subtropics but not
yet reported as invasive (Seifert, 2003; Wetterer, 2014b).

Fourth, Tec. vitiensis and Ph. megacephala were only found on
trees bearing A. aquilega. Already noted in the French Guianan for-
est, Tec. vitiensis is a wide-ranging invasive species likely native to
Southeast Asia whose colony growth is favored by colony fission
into many nests and by the presence of reproductive worker-queen
intercasts in addition to typical queens (Bolton, 2007; Delabie et
al., 2011). Native to Africa, Ph. megacephala is one of the most
widespread invasive ants; its huge supercolonies have a massively
devastating effect on the native insect fauna (Holway et al., 2002;

Therefore, A. aquilega baiting provides new information on the
presence of invasive ant species as two such species were found
only in this way in the present study. Furthermore, of the 12 inva-
sive species noted in total, five were collected by baiting A. aquilega
and were at a density high enough to show that there is a signif-
ificant concentration of these species in association with this plant
(Fig. 2).

One can note that many invasive ants are ground-nesters, so that
A. aquilega might be considered inadequate for sheltering colonies
of such species. Yet, this is not the case; for example, Ph. megace-
pha, which is mostly a ground-nester, was noted only by baiting
A. aquilega and not in the other situations tested (Table 1 and Appendices A and B). This might be due to the fact that three native
invasive species, S. saevissima, S. geminata and W. auropunctata, are
present in all human-disturbed areas, rendering it difficult for an
imported species (in this case, Ph. megacephala) to establish itself.
The few native species able to nest in their presence have adapted
to the situation through the use of submissive behaviors and defen-
sive chemicals (Grangier et al., 2007; Roux et al., 2013; Dejean et
al., 2015). Nevertheless, Pa. longicornis and Ta. melanocephalum avoid
the pressure from these three native, invasive species thanks to their
ecological preferences as they mostly nest in direct contact or inside

5. Conclusion

This survey, mostly conducted in cities where introduced
invasive ants are known to nest before spreading to slightly human-
disturbed and then undisturbed natural areas (Holway et al., 2002),
has highlighted the complementarity between baiting ants on the
ground and on urban trees, particularly those bearing A. aquile-
lega clusters. Because A. aquilega ‘concentrates’ certain invasive
ants, this global strategy will likely permit researchers to record as
exhaustively as possible introduced invasive ants in the areas
studied before these ants spread. It appears, therefore, that baiting
surveys aiming to detect invasive ant presence in Neotropical cities
need to take into account the complementarity between detecting
invasive ant species presence on the ground and on trees, particu-
larly those bearing large tank bromeliads and other epiphytes.

Acknowledgments

We are grateful to Andrea Vockey-Dejean for proofreading the
manuscript, Alexis Carteron and Frédéric Azémard for technical
help, the Laboratoire Environnement de Petit Saut for furnishing
logistical assistance, and the municipality of Sinnamary (through
the Department of the Environment) for permitting us to work
inside the city limits. Financial support for this study was pro-
vided by an ‘Investissement d’Avenir’ grant managed by the French
Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-0025).
ST’s financial support was provided by a PhD fellowship from the
Université Antilles-Guyane, ASL and OD’s financial support was pro-
vided by a PhD fellowship from the Centre National de la
Recherche Scientifique (CNRS) and the Fond Social Européen (FSE).
JHCD acknowledges his research grant from CNPq.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.ecolind.2015.
05.027

References

Addison, P., Samways, M.J., 2006. Surrogate habitats demonstrate the invasion
Blüthgen, N., Verhaegh, M., Goitía, W., Blüthgen, N., 2000. Ant nests in tank bromeli-
35, 1–150.
Cach-Pérez, M.J., Andrade, J.L., Chilpa-Galván, N., Tamayo-Chim, M., Orellana, R.,
Reyes-García, C., 2013. Climatic and structural factors influencing epiphytic bromeliad
community assemblage along a gradient of water-limited environ-
Carrias, J.F., Cérégino, R., Brouard, O., Pélozuell, L., Dejean, A., Couté, A., Corbara, B.,
Leroy, C., 2014. Two coexisting tank-bromeliads host distinct aeglal communities
Clavero, M., García-Berthou, E., 2005. Invasive species are a leading cause of animal
Structural changes in arboreal ant assemblages (Hymenoptera: Formicidae) in an
age sequence of cocoa plantations in the south-east of Bahia, Brazil. Austr.
Dejean, A., 1990. Influence de l’environnement prémaginal et précœque dans le choix
du site de nidification de Pachycondyla (=Neoponera) villos Fabr. (Formicidae, Ponerinae).
Behav. Proc. 21, 107–125.
Dejean, A., Corbara, B., Cérégino, R., Lepomce, M., Roux, O., Rossi, V., Delabie, J.H.C.,
Compín, A., 2015. Traits allowing some ant species to nest syntopically with the
fire ant Solenopsis saevissima in its native range. Insect Sci., http://dx.doi.org/10.
1111/1744-7917.12078.
Dejean, A., Olmsted, I., Snelling, R.R., 1995. Tree-epiphyte-ant relationships in the
low inundated forest of Sian Ka’an Biosphere Reserve, Quintana Roo, Mexico.
Biota tropica. 57–70.
(Hymenoptera: Formicidae: Dolichoderinae) on South America. Fla. Entomol.
94, 688–689.
structure of house-inesting ants in southern Bahia, Brazil (Hymenoptera:
Formicidae). Fla. Entomol. 78, 264–270.

