M. K. Bonner, D. S. Poole, T. Xu, A. Sarkeshik, J. R. Yates et al., Mitotic spindle proteomics in Chinese hamster ovary cells, PLoS ONE, vol.6, p.20489, 2011.

G. Sauer, R. Korner, A. Hanisch, A. Ries, E. A. Nigg et al., Proteome analysis of the human mitotic spindle, Mol Cell Proteomics, vol.4, pp.35-43, 2005.

E. Karsenti and I. Vernos, The mitotic spindle: a self-made machine, Science, vol.294, pp.543-550, 2001.

T. Wittmann, A. Hyman, and A. Desai, The spindle: a dynamic assembly of microtubules and motors, Nat Cell Biol, vol.3, pp.28-34, 2001.

P. Wadsworth, W. L. Lee, T. Murata, and T. I. Baskin, Variations on theme: spindle assembly in diverse cells, Protoplasma, vol.248, pp.439-485, 2011.

L. Carvalho and C. P. Heisenberg, The yolk syncytial layer in early zebrafish development, Trends in cell biology, vol.20, pp.586-92, 2010.

L. Carvalho, J. Stuhmer, J. S. Bois, Y. Kalaidzidis, V. Lecaudey et al., Control of convergent yolk syncytial layer nuclear movement in zebrafish, Development, vol.136, pp.1305-1320, 2009.

B. Bonneau, N. Popgeorgiev, J. Prudent, and G. Gillet, Cytoskeleton dynamics in early zebrafish development: A matter of phosphorylation?, Bioarchitecture, vol.1, pp.216-236, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00780591

J. M. Saffin, M. Venoux, C. Prigent, J. Espeut, F. Poulat et al., ASAP, a human microtubule-associated protein required for bipolar spindle assembly and cytokinesis, Proc Natl Acad Sci U S A, vol.102, pp.11302-11309, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00966570

M. Venoux, J. Basbous, C. Berthenet, C. Prigent, A. Fernandez et al., ASAP is a novel substrate of the oncogenic mitotic kinase Aurora-A : phosphorylation on Ser625 is essential to spindle formation and mitosis, Hum Mol Genet, vol.17, pp.215-239, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00202612

G. Eot-houllier, M. Venoux, S. Vidal-eychenie, M. T. Hoang, D. Giorgi et al., Plk1 regulates both ASAP localization and its role in spindle pole integrity, J Biol Chem, vol.285, pp.29556-68, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00527800

J. Basbous, D. Knani, N. Bonneaud, D. Giorgi, J. M. Brondello et al., Induction of ASAP (MAP9) contributes to p53 stabilization in response to DNA damage, Cell Cycle, vol.11, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00705749

E. A. Otto, T. W. Hurd, R. Airik, M. Chaki, W. Zhou et al., Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy, Nat Genet, vol.42, pp.840-50, 2010.

Q. Liu, G. Tan, N. Levenkova, T. Li, E. N. Pugh et al., The proteome of the mouse photoreceptor sensory cilium complex, Molecular & cellular proteomics : MCP, vol.6, pp.1299-317, 2007.

J. S. Andersen, C. J. Wilkinson, T. Mayor, P. Mortensen, E. A. Nigg et al., Proteomic characterization of the human centrosome by protein correlation profiling, Nature, vol.426, pp.570-574, 2003.

A. Gherman, E. E. Davis, and N. Katsanis, The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia, Nature genetics, vol.38, pp.961-963, 2006.

K. Jeong, J. Y. Jeong, H. O. Lee, E. Choi, and H. Lee, Inhibition of Plk1 induces mitotic infidelity and embryonic growth defects in developing zebrafish embryos, Dev Biol, vol.345, pp.34-48, 2010.

A. Amsterdam, R. M. Nissen, Z. Sun, E. C. Swindell, S. Farrington et al., Identification of 315 genes essential for early zebrafish development, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.12792-12799, 2004.

M. Venoux, K. Delmouly, O. Milhavet, S. Vidal-eychenie, G. D. Rouquier et al., Gene organization, evolution and expression of the microtubule-associated protein ASAP (MAP9)
URL : https://hal.archives-ouvertes.fr/hal-00322423

, BMC Genomics, vol.9, p.406, 2008.

S. Mathavan, S. G. Lee, A. Mak, L. D. Miller, K. R. Murthy et al.,

, Transcriptome analysis of zebrafish embryogenesis using microarrays, PLoS Genet, vol.1, pp.260-76, 2005.

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, T. F. Schilling et al., Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I, Developmental cell, vol.203, pp.771-80, 1995.

B. Thisse and C. Thisse, Fast Release Clones: A High Throughput Expression Analysis

, ZFIN Direct Data Submission

M. Adams, R. J. Simms, Z. Abdelhamed, H. R. Dawe, K. Szymanska et al., A meckelin-filamin A interaction mediates ciliogenesis. Human molecular genetics, Human molecular genetics, vol.22, pp.417-449, 2011.

L. K. Cole and L. S. Ross, Apoptosis in the developing zebrafish embryo, Developmental biology, vol.240, pp.123-165, 2001.

H. Y. Jeon and H. Lee, Depletion of Aurora-A in zebrafish causes growth retardation due to mitotic delay and p53-dependent cell death, Febs J, 2013.

H. Zhong, S. Xin, Y. Zhao, J. Lu, S. Li et al., Genetic approach to evaluate specificity of small molecule drug candidates inhibiting PLK1 using zebrafish, Mol Biosyst, vol.6, pp.1463-1471, 2010.

R. Giet and D. M. Glover, Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis, The Journal of cell biology, vol.152, pp.669-82, 2001.

C. B. Kimmel and R. D. Law, Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncytial layer, Developmental biology, vol.108, pp.86-93, 1985.

L. Solnica-krezel and W. Driever, Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly, Development, vol.120, pp.2443-55, 1994.

S. E. Lepage and A. E. Bruce, Zebrafish epiboly: mechanics and mechanisms, Int J Dev Biol, vol.54, pp.1213-1241, 2010.

L. Solnica-krezel, Gastrulation in zebrafish --all just about adhesion? Current opinion in genetics, & development, vol.16, pp.433-474, 2006.

S. Du, B. W. Draper, M. Mione, C. B. Moens, and A. Bruce, Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A, Developmental biology, vol.362, pp.11-23, 2012.

C. B. Arrington and H. J. Yost, Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo, Development, vol.136, pp.3143-52, 2009.

N. Popgeorgiev, B. Bonneau, K. F. Ferri, J. Prudent, J. Thibaut et al., The apoptotic regulator Nrz controls cytoskeletal dynamics via the regulation of Ca2+ trafficking in the zebrafish blastula, Developmental cell, vol.20, pp.663-76, 2011.

P. P. Tam, M. Kanai-azuma, and Y. Kanai, Early endoderm development in vertebrates: lineage differentiation and morphogenetic function. Current opinion in genetics, & development, vol.13, pp.393-400, 2003.

Y. Kikuchi, A. Agathon, J. Alexander, C. Thisse, S. Waldron et al., casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish, Genes & development, vol.15, pp.1493-505, 2001.

S. Chen and D. Kimelman, The role of the yolk syncytial layer in germ layer patterning in zebrafish, Development, vol.127, pp.4681-4690, 2000.

S. Long, N. Ahmad, and M. Rebagliati, The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry, Development, vol.130, pp.2303-2319, 2003.

J. J. Essner, J. D. Amack, M. K. Nyholm, E. B. Harris, and H. J. Yost, Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut, Development, vol.132, pp.1247-60, 2005.

X. Wang and H. J. Yost, Initiation and propagation of posterior to anterior (PA) waves in zebrafish left-right development. Developmental dynamics : an official publication of the American Association of, Anatomists, vol.237, pp.3640-3647, 2008.

H. Hashimoto, M. Rebagliati, N. Ahmad, O. Muraoka, T. Kurokawa et al., The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during leftright patterning in zebrafish, Development, vol.131, pp.1741-53, 2004.

A. Muto, A. L. Calof, A. D. Lander, and T. F. Schilling, Multifactorial Origins of Heart and Gut Defects in nipbl-Deficient Zebrafish, a Model of Cornelia de Lange Syndrome, PLoS biology, vol.9, p.1001181, 2011.

A. A. Bazzini, M. T. Lee, and A. J. Giraldez, Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish, Science, vol.336, pp.233-240, 2012.

A. J. Giraldez, R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson et al., MicroRNAs regulate brain morphogenesis in zebrafish, Science, vol.308, pp.833-841, 2005.

A. J. Giraldez, Y. Mishima, J. Rihel, R. J. Grocock, S. Van-dongen et al.,

, Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs, Science, vol.312, pp.75-84, 2006.

B. Thisse, S. Pflumio, M. Fürthauer, B. Loppin, V. Heyer et al., Expression of the zebrafish genome during embryogenesis, ZFIN Direct Data Submission

M. Petronczki, P. Lenart, and J. M. Peters, Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1, Developmental cell, vol.14, pp.646-59, 2008.

E. Arnaud, K. F. Ferri, J. Thibaut, Z. Haftek-terreau, A. Aouacheria et al., The zebrafish bcl-2 homologue Nrz controls development during somitogenesis and gastrulation via apoptosis-dependent and -independent mechanisms, Cell death and differentiation, vol.13, pp.1128-1165, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00314230

E. Aamar and I. B. Dawid, Sox17 and chordin are required for formation of Kupffer's vesicle and left-right asymmetry determination in zebrafish. Developmental dynamics : an official publication of the American Association of, Anatomists, vol.239, pp.2980-2988, 2010.

E. G. Hagos and S. T. Dougan, Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish, BMC Dev Biol, vol.7, p.22, 2007.

X. Fan, E. G. Hagos, B. Xu, C. Sias, K. Kawakami et al., Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish, Developmental biology, vol.310, pp.363-78, 2007.

B. Feldman, M. A. Gates, E. S. Egan, S. T. Dougan, G. Rennebeck et al., Zebrafish organizer development and germ-layer formation require nodal-related signals, Nature, vol.395, pp.181-186, 1998.

T. Matsui and Y. Bessho, Left-right asymmetry in zebrafish. Cellular and molecular life sciences, CMLS, vol.69, pp.3069-77, 2012.

C. W. Wilson and D. Y. Stainier, Vertebrate Hedgehog signaling: cilia rule, BMC Biol, vol.8, p.102, 2010.

S. C. Goetz and K. V. Anderson, The primary cilium: a signalling centre during vertebrate development, Nature reviews Genetics, vol.11, pp.331-375, 2010.

S. R. May, A. M. Ashique, M. Karlen, B. Wang, Y. Shen et al., Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli, Dev Biol, vol.287, pp.378-89, 2005.

J. Jiang and C. C. Hui, Hedgehog signaling in development and cancer, Developmental cell, vol.15, pp.801-813, 2008.

A. P. Mcmahon, P. W. Ingham, and C. J. Tabin, Developmental roles and clinical significance of hedgehog signaling, Curr Top Dev Biol, vol.53, pp.1-114, 2003.

M. Bettencourt-dias and D. M. Glover, Centrosome biogenesis and function: centrosomics brings new understanding, Nat Rev Mol Cell Biol, vol.8, pp.451-63, 2007.

M. Bettencourt-dias, F. Hildebrandt, D. Pellman, G. Woods, and S. A. Godinho, Centrosomes and cilia in human disease, Trends in genetics : TIG, vol.27, pp.307-322, 2011.

Z. Carvalho-santos, P. Machado, P. Branco, F. Tavares-cadete, A. Rodrigues-martins et al., Stepwise evolution of the centriole-assembly pathway, J Cell Sci, vol.123, pp.1414-1440, 2010.

S. Kawauchi, A. L. Calof, R. Santos, M. E. Lopez-burks, C. M. Young et al., Multiple organ system defects and transcriptional dysregulation in the Nipbl(+/-) mouse, a model of Cornelia de Lange Syndrome, PLoS Genet, vol.5, p.1000650, 2009.

R. L. Lamason, M. A. Mohideen, J. R. Mest, A. C. Wong, H. L. Norton et al.,

, SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans, Science, vol.310, pp.1782-1788, 2005.

M. Westerfield, The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio), 2007.

M. E. Halpern, K. Hatta, S. L. Amacher, W. S. Talbot, Y. L. Yan et al., Genetic interactions in zebrafish midline development, Developmental biology, vol.187, pp.154-70, 1997.

M. Poulain and T. Lepage, Mezzo, a paired-like homeobox protein is an immediate target of Nodal signalling and regulates endoderm specification in zebrafish, Development, vol.129, pp.4901-4915, 2002.

J. Hellemans, G. Mortier, A. De-paepe, F. Speleman, and J. Vandesompele, qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data, Genome Biol, vol.8, p.19, 2007.

, Embryos were injected at the 1-cell stage with 1 pmol MOex5, 200 pg map9-YFP RNA or both. Map9-YFP-injected embryos developed normally up to mid-epiboly and later stages. 40% of MOex5 morphants showed defects at mid-epiboly and 20% were blocked at the sphere stage. Following co-injection of MOex5 and map9-YFP RNA, about 80% of embryos developed normally up to mid-epiboly, but died at ~9-10 hpf. (B) Representative images of embryos injected with map9-YFP RNA (at mid-epiboly, n=102), with MOex5 (showing developmental delay and defects before mid-epiboly, n=85) or with both MOex5 and map9-YFP RNA, Map9-YFP RNA can partially rescue the phenotypes of MOex5 morphants. (A)

, Morpholino-mediated depletion of map9 leads to increased apoptosis. (A-D) Zebrafish embryos were injected, or not (control), at the 1-cell stage with 1 pmol of MOex5 for observation at 8 hpf

, TUNEL-positive cells (green) were counted in injected (B, D) and control embryos (A, C) (n=10/assay). (E) Left panel, number of TUNEL-positive cells in the control and MOex5-injected embryos depicted in A-D, n= 5 embryos per assay

. Moex5, Number of TUNEL-positive cells in MOex5-and MOex5 + MOtp53-injected embryos (n=20 embryos per assay, total cell count ~564). (F) Map9 depletion does not induce tp53 expression. Embryos were injected at the 1-cell stage with 1 pmol of MOex5. RNA from 7 hpf map9 morphants and control embryos was used to quantify tp53 gene expression by RT-qPCR. Expression data were normalized to ?-actin. Experiments were made in quadruplicate, p.50

, MOex5 morphants at 7 hpf, and n=39/44 embryos at 24 hpf. (G) Co-injection of MOex5 (1 pmol) and

. Motp53, 5 pmol) does not rescue MOex5 effects. Embryo mortality was not rescued after tp53 depletion by morpholino. Embryo mortality after injection of a control MO (MOmis) was not significantly different compared to non-injected embryos. This experiment was made in duplicate