B. A. Brown-elliott, R. J. Wallace, and J. , Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria, Clin Microbiol Rev, vol.15, issue.4, pp.716-746, 2002.

R. G. Wallace, V. Silcox, and B. A. Brown, Taxonomy of rapidly growing mycobacteria, Clin Infect Dis, vol.18, issue.1, pp.121-122, 1994.

K. N. Olivier, Nontuberculous Mycobacteria in Cystic Fibrosis Study Group (2003) Nontuberculous mycobacteria. I: Multicenter prevalence study in cystic fibrosis, Am J Respir Crit Care Med, vol.167, issue.6, pp.828-834

B. E. Jönsson, Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis, J Clin Microbiol, vol.45, issue.5, pp.1497-1504, 2007.

A. L. Roux, Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in france, J Clin Microbiol, vol.47, issue.12, pp.4124-4128, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01857711

I. Sermet-gaudelus, Mycobacterium abscessus and children with cystic fibrosis, Emerg Infect Dis, vol.9, issue.12, pp.1587-1591, 2003.

H. Medjahed, J. L. Gaillard, and J. M. Reyrat, Mycobacterium abscessus: A new player in the mycobacterial field, Trends Microbiol, vol.18, issue.3, pp.117-123, 2010.

T. F. Byrd and C. R. Lyons, Preliminary characterization of a Mycobacterium abscessus mutant in human and murine models of infection, Infect Immun, vol.67, issue.9, pp.4700-4707, 1999.

E. Catherinot, Hypervirulence of a rough variant of the Mycobacterium abscessus type strain, Infect Immun, vol.75, issue.2, pp.1055-1058, 2007.

A. R. Cullen, C. L. Cannon, E. J. Mark, and A. A. Colin, Mycobacterium abscessus infection in cystic fibrosis. Colonization or infection?, Am J Respir Crit Care Med, vol.161, issue.2, pp.641-645, 2000.

E. Catherinot, Acute respiratory failure involving an R variant of Mycobacterium abscessus, J Clin Microbiol, vol.47, issue.1, pp.271-274, 2009.

S. T. Howard, Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype, Microbiology, vol.152, pp.1581-1590, 2006.

M. Cortes, Conditional gene expression in Mycobacterium abscessus, PLoS ONE, vol.6, issue.12, p.29306, 2011.

H. Medjahed and J. M. Reyrat, Construction of Mycobacterium abscessus defined glycopeptidolipid mutants: Comparison of genetic tools, Appl Environ Microbiol, vol.75, issue.5, pp.1331-1338, 2009.

F. Ripoll, Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus, PLoS ONE, vol.4, issue.6, p.5660, 2009.

M. A. Zerihun, M. J. Hjortaas, K. Falk, and D. J. Colquhoun, Immunohistochemical and Taqman real-time PCR detection of mycobacterial infections in fish, J Fish Dis, vol.34, issue.3, pp.235-246, 2011.

J. M. Jacobs, C. B. Stine, A. M. Baya, and M. L. Kent, A review of mycobacteriosis in marine fish, J Fish Dis, vol.32, issue.2, pp.119-130, 2009.

G. C. Kang, A. W. Gan, A. Yam, A. B. Tan, and S. C. Tay, Mycobacterium abscessus Hand infections in immunocompetent fish handlers: Case Report, J Hand Surg Am, vol.35, issue.7, pp.1142-1145, 2010.

J. M. Davis, Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos, Immunity, vol.17, issue.6, pp.693-702, 2002.

A. M. Van-der-sar, B. J. Appelmelk, C. M. Vandenbroucke-grauls, and W. Bitter, A star with stripes: Zebrafish as an infection model, Trends Microbiol, vol.12, issue.10, pp.451-457, 2004.

H. Clay, H. E. Volkman, and L. Ramakrishnan, Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death, Immunity, vol.29, issue.2, pp.283-294, 2008.

T. K. Prajsnar, V. T. Cunliffe, S. J. Foster, and S. A. Renshaw, A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens, Cell Microbiol, vol.10, issue.11, pp.2312-2325, 2008.

J. P. Levraud, Real-time observation of listeria monocytogenes-phagocyte interactions in living zebrafish larvae, Infect Immun, vol.77, issue.9, pp.3651-3660, 2009.

L. Alibaud, A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos, Mol Microbiol, vol.80, issue.4, pp.919-934, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641589

A. C. Vergunst, A. H. Meijer, S. A. Renshaw, O. 'callaghan, and D. , Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection, Infect Immun, vol.78, issue.4, pp.1495-1508, 2010.

R. D. Berg and L. Ramakrishnan, Insights into tuberculosis from the zebrafish model, Trends Mol Med, vol.18, issue.12, pp.689-690, 2012.

D. M. Tobin, The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans, Cell, vol.140, issue.5, pp.717-730, 2010.

J. M. Davis and L. Ramakrishnan, The role of the granuloma in expansion and dissemination of early tuberculous infection, Cell, vol.136, issue.1, pp.37-49, 2009.

K. N. Adams, Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism, Cell, vol.145, issue.1, pp.39-53, 2011.

H. E. Volkman, Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant, PLoS Biol, vol.2, issue.11, p.367, 2004.

T. Adékambi, Amoebal coculture of "Mycobacterium massiliense" sp. nov. from the sputum of a patient with hemoptoic pneumonia, J Clin Microbiol, vol.42, issue.12, pp.5493-5501, 2004.

T. Adékambi, P. Berger, D. Raoult, and M. Drancourt, rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov, Int J Syst Evol Microbiol, vol.56, pp.133-143, 2006.

A. Sánchez-chardi, Demonstration of cord formation by rough Mycobacterium abscessus variants: Implications for the clinical microbiology laboratory, J Clin Microbiol, vol.49, issue.6, pp.2293-2295, 2011.

A. Pawlik, Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus, Mol Microbiol, vol.90, issue.3, pp.612-629, 2013.

A. L. Roux, Overexpression of proinflammatory TLR-2-signalling lipoproteins in hypervirulent mycobacterial variants, Cell Microbiol, vol.13, issue.5, pp.692-704, 2011.

N. Van-rooijen and A. Sanders, Liposome mediated depletion of macrophages: Mechanism of action, preparation of liposomes and applications, J Immunol Methods, vol.174, issue.1-2, pp.83-93, 1994.

H. Clay, Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish, Cell Host Microbe, vol.2, issue.1, pp.29-39, 2007.

C. L. Cosma, K. Klein, R. Kim, D. Beery, and L. Ramakrishnan, Mycobacterium marinum Erp is a virulence determinant required for cell wall integrity and intracellular survival, Infect Immun, vol.74, issue.6, pp.3125-3133, 2006.

N. J. Talati, N. Rouphael, K. Kuppalli, and C. Franco-paredes, Spectrum of CNS disease caused by rapidly growing mycobacteria, Lancet Infect Dis, vol.8, issue.6, pp.390-398, 2008.

M. R. Lee, CNS infections caused by Mycobacterium abscessus complex: Clinical features and antimicrobial susceptibilities of isolates, J Antimicrob Chemother, vol.67, issue.1, pp.222-225, 2012.

P. Herbomel, B. Thisse, and C. Thisse, Ontogeny and behaviour of early macrophages in the zebrafish embryo, Development, vol.126, issue.17, pp.3735-3745, 1999.

E. H. Runyon, Anonymous mycobacteria in pulmonary disease, Med Clin North Am, vol.43, issue.1, pp.273-290, 1959.

J. Recht, A. Martínez, S. Torello, and R. Kolter, Genetic analysis of sliding motility in Mycobacterium smegmatis, J Bacteriol, vol.182, issue.15, pp.4348-4351, 2000.

J. Recht and R. Kolter, Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis, J Bacteriol, vol.183, pp.5718-5724, 2001.

E. R. Rhoades, Mycobacterium abscessus Glycopeptidolipids mask underlying cell wall phosphatidyl-myo-inositol mannosides blocking induction of human macrophage TNF-alpha by preventing interaction with TLR2, J Immunol, vol.183, issue.3, pp.1997-2007, 2009.

M. S. Glickman, J. S. Cox, W. R. Jacobs, and J. , A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis, Mol Cell, vol.5, issue.4, pp.717-727, 2000.

J. Grosset, Mycobacterium tuberculosis in the extracellular compartment: An underestimated adversary, Antimicrob Agents Chemother, vol.47, issue.3, pp.833-836, 2003.

J. N. Weiser, The battle with the host over microbial size, Curr Opin Microbiol, vol.16, issue.1, pp.59-62, 2013.

S. S. Justice, D. A. Hunstad, L. Cegelski, and S. J. Hultgren, Morphological plasticity as a bacterial survival strategy, Nat Rev Microbiol, vol.6, issue.2, pp.162-168, 2008.

D. J. Horvath, Morphological plasticity promotes resistance to phagocyte killing of uropathogenic Escherichia coli, Microbes Infect, vol.13, issue.5, pp.426-437, 2011.

R. M. Corrales, Phosphorylation of mycobacterial PcaA inhibits mycolic acid cyclopropanation: Consequences for intracellular survival and for phagosome maturation block, J Biol Chem, vol.287, issue.31, pp.26187-26199, 2012.

D. E. Griffith, W. M. Girard, R. J. Wallace, and J. , Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients, Am Rev Respir Dis, vol.147, issue.5, pp.1271-1278, 1993.

C. Pierre-audigier, Age-related prevalence and distribution of nontuberculous mycobacterial species among patients with cystic fibrosis, J Clin Microbiol, vol.43, issue.7, pp.3467-3470, 2005.

J. R. Govan and V. Deretic, Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia, Microbiol Rev, vol.60, issue.3, pp.539-574, 1996.

J. R. Govan and J. A. Fyfe, Mucoid Pseudomonas aeruginosa and cystic fibrosis: Resistance of the mucoid from to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro, J Antimicrob Chemother, vol.4, issue.3, pp.233-240, 1978.

R. T. Phennicie, M. J. Sullivan, J. T. Singer, J. A. Yoder, and C. H. Kim, Specific resistance to Pseudomonas aeruginosa infection in zebrafish is mediated by the cystic fibrosis transmembrane conductance regulator, Infect Immun, vol.78, issue.11, pp.4542-4550, 2010.

K. Takaki, C. L. Cosma, M. A. Troll, and L. Ramakrishnan, An in vivo platform for rapid high-throughput antitubercular drug discovery, Cell Rep, vol.2, issue.1, pp.175-184, 2012.

C. K. Stover, New use of BCG for recombinant vaccines, Nature, vol.351, issue.6326, pp.456-460, 1991.

R. L. Lamason, SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans, Science, vol.310, issue.5755, pp.1782-1786, 2005.

S. A. Renshaw, A transgenic zebrafish model of neutrophilic inflammation, Blood, vol.108, issue.13, pp.3976-3978, 2006.

S. W. Jin, D. Beis, T. Mitchell, J. N. Chen, and D. Y. Stainier, Cellular and molecular analyses of vascular tube and lumen formation in zebrafish, Development, vol.132, issue.23, pp.5199-5209, 2005.

G. Charmantier, G. Grousset, E. Aujoulat, F. Castille, and R. , Digestive tract ontogeny of Dicentrarchus labrax: Implication in osmoregulation, Dev Growth Differ, vol.48, issue.3, pp.139-151, 2006.