A. E. Blanc-potard and A. , MgtC: a key player in intramacrophage survival, Trends Microbiol, vol.15, pp.252-256, 2007.

A. Blanc-potard and E. A. Groisman, The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival, EMBO J, vol.16, pp.5376-5385, 1997.

T. D. Lawley, K. Chan, L. J. Thompson, C. C. Kim, and G. R. Govoni, Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse, PLoS Pathog, vol.2, p.11, 2006.

J. A. Thompson, M. Liu, S. Helaine, and D. W. Holden, Contribution of the PhoP/Q regulon to survival and replication of Salmonella enterica serovar Typhimurium in macrophages, Microbiology, vol.157, pp.2084-2093, 2011.

N. Buchmeier, A. Blanc-potard, S. Ehrt, D. Piddington, and L. Riley, A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica, Mol Microbiol, vol.35, pp.1375-1382, 2000.

J. Lavigne, O. 'callaghan, D. Blanc-potard, and A. , Requirement of MgtC for Brucella suis intramacrophage growth: a potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg 2+ environment, Infect Immun, vol.73, pp.3160-3163, 2005.

J. P. Grabenstein, H. S. Fukuto, L. E. Palmer, and J. B. Bliska, Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages, Infect Immun, vol.74, pp.3727-3741, 2006.

K. E. Maloney and M. A. Valvano, The mgtC Gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages, Infect Immun, vol.74, pp.5477-5486, 2006.

P. Retamal, M. Castillo-ruiz, and G. C. Mora, Characterization of MgtC, a virulence factor of Salmonella enterica serovar Typhi, PLoS One, vol.4, p.5551, 2009.

E. Lee, M. H. Pontes, and E. A. Groisman, A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium's own F 1 F o ATP synthase, Cell, vol.154, pp.146-156, 2013.

E. G. Vé-scovi, F. C. Soncini, and E. A. Groisman, Mg 2+ as an extracellular signal: environmental regulation of Salmonella virulence, Cell, vol.84, pp.165-174, 1996.

D. Zhou, Y. Han, L. Qin, Z. Chen, and J. Qiu, Transcriptome analysis of the Mg 2+ -responsive PhoP regulator in Yersinia pestis, FEMS Microbiol Lett, vol.250, pp.85-95, 2005.

S. B. Walters, E. Dubnau, I. Kolesnikova, F. Laval, and M. Daffe, The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis, Mol Microbiol, vol.60, pp.312-330, 2006.

Y. Yang, G. Labesse, S. Carrè-re-kremer, K. Esteves, and L. Kremer, The C-terminal domain of the virulence factor MgtC is a divergent ACT domain, J Bacteriol, vol.194, pp.6255-6263, 2012.

A. Blanc-potard and B. Lafay, MgtC as a horizontally-acquired virulence factor of intracellular bacterial pathogens: evidence from molecular phylogeny and comparative genomics, J Mol Evol, vol.57, pp.479-486, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00412900

T. P. Stinear, T. Seemann, P. F. Harrison, G. A. Jenkin, and J. K. Davies, Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis, Genome Res, vol.18, pp.729-741, 2008.

D. M. Tobin and L. Ramakrishnan, Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis, Cell Microbiol, vol.10, pp.1027-1039, 2008.

L. Ramakrishnan, The new paradigm of immunity to tuberculosis. Advances in experimental medicine and biology, pp.251-266, 2013.

A. H. Meijer, M. Van-der-vaart, and H. P. Spaink, Real-time imaging and genetic dissection of hostmicrobe interactions in zebrafish, Cell Microbiol, vol.16, pp.39-49, 2014.

V. Torraca, S. Masud, H. P. Spaink, and A. H. Meijer, Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model, Dis Model Mech, vol.7, pp.785-797, 2014.

M. H. Larsen, K. Biermann, S. Tandberg, T. Hsu, J. William et al., Genetic manipulation of Mycobacterium tuberculosis, Current Protocols in Microbiology, 2007.

C. K. Stover, V. F. De-la-cruz, T. R. Fuerst, J. E. Burlein, and L. A. Benson, New use of BCG for recombinant vaccines, Nature, vol.351, pp.456-460, 1991.

R. L. Lamason, M. Mohideen, J. R. Mest, A. C. Wong, and H. L. Norton, SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans, Science, vol.310, pp.1782-1786, 2005.

S. A. Renshaw, C. A. Loynes, D. Trushell, S. Elworthy, and P. W. Ingham, A transgenic zebrafish model of neutrophilic inflammation, Blood, vol.108, pp.3976-3978, 2006.

M. Westerfield, The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio), 2007.

L. Alibaud, J. Pawelczyk, L. Gannoun-zaki, V. K. Singh, and Y. Rombouts, Increased phagocytosis of Mycobacterium marinum mutants defective in lipooligosaccharide production, J Biol Chem, vol.289, pp.215-228, 2014.

G. Dobson, D. E. Minnikin, S. M. Minnikin, J. H. Parlett, and M. Goodfellow, Systematic analysis of complex mycobacterial lipids, Chemical Methods in Bacterial Systematics. Goodfellow M. and Minnikin D.E, pp.237-265, 1995.

C. Rang, A. E. Felix, C. Heitz, A. Tasse, and L. , Dual role of the MgtC virulence factor in host and non-host environments, Mol Microbiol, vol.63, pp.605-622, 2007.

H. Clay, J. M. Davis, D. Beery, A. Huttenlocher, and S. E. Lyons, Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish, Cell Host Microbe, vol.2, pp.29-39, 2007.

S. Mostowy, L. Boucontet, M. Moya, M. J. Sirianni, A. Boudinot et al., The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy, PLoS Pathog, vol.9, p.1003588, 2013.

T. K. Prajsnar, V. T. Cunliffe, S. J. Foster, S. A. Renshaw, E. Colucci-guyon et al., A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens, Role of M. marinum MgtC in Phagocytosis PLOS ONE, vol.10, pp.3053-3059, 2008.

L. E. Bermudez, K. Shelton, and L. S. Young, Comparison of the ability of Mycobacterium avium, M. smegmatis and M. tuberculosis to invade and replicate within HEp-2 epithelial cells, vol.76, pp.240-247, 1995.

B. Flesselles, N. N. Anand, J. Remani, S. M. Loosmore, and M. H. Klein, Disruption of the mycobacterial cell entry gene of Mycobacterium bovis BCG results in a mutant that exhibits a reduced invasiveness for epithelial cells, FEMS Microbiol Lett, vol.177, pp.237-242, 1999.

A. E. Miki, T. Felix, C. Rang, C. Figueroa-bossi, and N. , Interplay between MgtC and PagC in Salmonella enterica serovar Typhimurium, Microb Pathog, vol.45, pp.236-240, 2008.

C. Astarie-dequeker, J. Nigou, C. Passemar, and C. Guilhot, The role of mycobacterial lipids in host pathogenesis, Drug Discov Today Dis Mech, vol.7, pp.33-41, 2010.

G. Tabouret, C. Astarie-dequeker, C. Demangel, W. Malaga, and P. Constant, Mycobacterium leprae phenolglycolipid-1 expressed by engineered M. bovis BCG modulates early interaction with human phagocytes, PLoS Pathog, vol.6, p.1001159, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01376090

H. Ren, L. G. Dover, S. T. Islam, D. C. Alexander, and J. M. Chen, Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum, Mol Microbiol, vol.63, pp.1345-1359, 2007.

C. Rousseau, O. Neyrolles, Y. Bordat, S. Giroux, and T. D. Sirakova, Deficiency in mycolipenateand mycosanoate-derived acyltrehaloses enhances early interactions of Mycobacterium tuberculosis with host cells, Cell Microbiol, vol.5, pp.405-415, 2003.

C. Astarie-dequeker, L. Guyader, L. Malaga, W. Seaphanh, F. Chalut et al., Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids, PLoS Pathog, vol.5, p.1000289, 2009.

L. S. Schlesinger and M. A. Horwitz, Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes, J Exp Med, vol.174, pp.1031-1038, 1991.

C. Vilcheze, V. Molle, S. Carrere-kremer, J. Leiba, and L. Mourey, Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis, PLoS Pathog, vol.10, p.1004115, 2014.

L. M. Stamm, J. H. Morisaki, L. Gao, R. L. Jeng, and K. L. Mcdonald, Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility, J Exp Med, vol.198, pp.1361-1368, 2003.

C. A. Collins, A. De-maziere, S. Van-dijk, F. Carlsson, and J. Klumperman, Atg5-independent sequestration of ubiquitinated mycobacteria, PLoS Pathog, vol.5, p.1000430, 2009.

I. Smith, Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence, Clin Microbiol Rev, vol.16, pp.463-496, 2003.

C. Yang, C. J. Cambier, J. M. Davis, C. J. Hall, and P. S. Crosier, Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages, Cell Host Microbe, vol.12, pp.301-312, 2012.

M. Fine, M. Smith, C. Carson, S. Mutha, and S. Sankey, Prognosis and outcomes of patients with community-acquired pneumonia: A meta-analysis, JAMA, vol.275, pp.134-141, 1996.

R. W. Stokes, N. , R. Brooks, D. E. Beveridge, T. J. Doxsee et al., The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages, Infect Immun, vol.72, pp.5676-5686, 2004.

S. B. Snapper, R. E. Melton, S. Mustafa, T. Kieser, and W. R. Jacobs, Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis, Mol Microbiol, vol.4, pp.1911-1919, 1990.

V. K. Sambandamurthy, X. Wang, B. Chen, R. G. Russell, and S. Derrick, A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis, Nat Med, vol.8, pp.1171-1174, 2002.

L. Alibaud, Y. Rombouts, X. Trivelli, A. Burguiè-re, and S. Cirillo, A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos, Mol Microbiol, vol.80, pp.919-934, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641589