E. Metchnikoff, Leçons Sur La Pathologie Comparée de L ' Inflammation: Faites à L ' Institut Pasteur En Avril et Mai 1891 / Par E ´ lie Metchnokoff, vol.120, 1892.

R. S. Flannagan, G. Cosio, and S. Grinstein, Antimicrobial mechanisms of phagocytes and bacterial evasion strategies, Nat Rev Microbiol, vol.7, p.19369951, 2009.

C. F. Urban, S. Lourido, and A. Zychlinsky, How do microbes evade neutrophil killing?, Cell Microbiol, vol.8, p.16939535, 2006.
DOI : 10.1111/j.1462-5822.2006.00792.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1462-5822.2006.00792.x

B. M. Babior, J. T. Curnutte, and B. S. Kipnes, Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes, J Clin Invest, vol.56, p.239968, 1975.
DOI : 10.1172/jci108150

URL : http://www.jci.org/articles/view/108150/files/pdf

A. W. Segal, How neutrophils kill microbes, Annu Rev Immunol, vol.23, p.15771570, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115653

URL : http://europepmc.org/articles/pmc2092448?pdf=render

A. Sheshachalam, N. Srivastava, T. Mitchell, P. Lacy, and G. Eitzen, Granule protein processing and regulated secretion in neutrophils, Front Immunol, vol.5, p.25285096, 2014.
DOI : 10.3389/fimmu.2014.00448

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2014.00448/pdf

F. C. Fang, Antimicrobial actions of reactive oxygen species, MBio, vol.2, 2011.
DOI : 10.1128/mbio.00141-11

URL : https://mbio.asm.org/content/2/5/e00141-11.full.pdf

C. N. Paiva and M. T. Bozza, Are reactive oxygen species always detrimental to pathogens?, Antioxid Redox Signal, vol.20, p.23992156, 2014.
DOI : 10.1089/ars.2013.5447

URL : http://europepmc.org/articles/pmc3924804?pdf=render

D. Chakravortty and M. Hensel, Inducible nitric oxide synthase and control of intracellular bacterial pathogens, Microbes Infect, vol.5, p.12787738, 2003.
DOI : 10.1016/s1286-4579(03)00096-0

C. T. Yang, C. J. Cambier, J. M. Davis, C. J. Hall, and P. S. Crosier, Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages, Cell Host Microbe, vol.12, p.22980327, 2012.

S. M. Eswarappa, V. D. Negi, S. Chakraborty, C. Sagar, B. K. Chakravortty et al., Division of the Salmonella-containing vacuole and depletion of acidic lysosomes in Salmonella-infected host cells are novel strategies of Salmonella enterica to avoid lysosomes, Infect Immun, vol.78, pp.68-79, 2010.

J. Pieters, Mycobacterium tuberculosis and the macrophage: maintaining a balance, Cell Host Microbe, vol.3, p.18541216, 2008.

K. Ray, B. Marteyn, P. J. Sansonetti, and C. M. Tang, Life on the inside: the intracellular lifestyle of cytosolic bacteria, Nat Rev Microbiol, vol.7, p.19369949, 2009.

L. G. Tilney and D. A. Portnoy, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, J Cell Biol, vol.109, p.2507553, 1989.

S. Mostowy, Autophagy and bacterial clearance: a not so clear picture, Cell Microbiol, vol.15, p.23121192, 2013.
DOI : 10.1111/cmi.12063

URL : http://europepmc.org/articles/pmc3592990?pdf=render

C. Nathan, Neutrophils and immunity: challenges and opportunities, Nat Rev Immunol, vol.6, p.16498448, 2006.
DOI : 10.1038/nri1785

V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, and Y. Uhlemann, Neutrophil extracellular traps kill bacteria, Science, vol.303, p.15001782, 2004.
DOI : 10.1126/science.1092385

A. J. Pagan, C. T. Yang, J. Cameron, L. E. Swaim, and F. Ellett, Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment, Cell Host Microbe, vol.18, p.26159717, 2015.

V. Torraca, S. Masud, H. P. Spaink, and A. H. Meijer, Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model, Dis Model Mech, vol.7, p.24973749, 2014.

E. Colucci-guyon, J. Y. Tinevez, S. A. Renshaw, and P. Herbomel, Strategies of professional phagocytes in vivo: unlike macrophages, neutrophils engulf only surface-associated microbes, J Cell Sci, vol.124, p.21868367, 2011.

M. Nguyen-chi, Q. T. Phan, C. Gonzalez, J. F. Dubremetz, and J. P. Levraud, Transient infection of the zebrafish notochord with E. coli induces chronic inflammation, Dis Model Mech, vol.7, p.24973754, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088301

J. Travnickova, T. Chau, V. Julien, E. Mateos-langerak, J. Gonzalez et al., Primitive macrophages control HSPC mobilization and definitive haematopoiesis, Nat Commun, vol.6, p.25686881, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02087021

N. Van-rooijen, A. Sanders, and T. K. Van-den-berg, Apoptosis of macrophages induced by liposomemediated intracellular delivery of clodronate and propamidine, J Immunol Methods, vol.193, pp.93-99, 1996.

E. M. Walton, M. R. Cronan, R. W. Beerman, and D. M. Tobin, The Macrophage-Specific Promoter mfap4 Allows Live, Long-Term Analysis of Macrophage Behavior during Mycobacterial Infection in Zebrafish, PLoS One, vol.10, p.26445458, 2015.

F. Ellett, L. Pase, J. W. Hayman, A. Andrianopoulos, and G. J. Lieschke, ) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish, Blood, vol.117, p.21084707, 2011.

N. Palha, F. Guivel-benhassine, V. Briolat, G. Lutfalla, and M. Sourisseau, Real-time whole-body visualization of Chikungunya Virus infection and host interferon response in zebrafish, PLoS Pathog, vol.9, p.24039582, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01109454

Y. Li, A. Karlin, J. D. Loike, and S. C. Silverstein, Determination of the critical concentration of neutrophils required to block bacterial growth in tissues, J Exp Med, vol.200, p.15353554, 2004.

P. M. Elks, M. Van-der-vaart, V. Van-hensbergen, E. Schutz, and M. J. Redd, Mycobacteria counteract a TLR-mediated nitrosative defense mechanism in a zebrafish infection model, PLoS One, vol.9, p.24967596, 2014.

L. Pase, J. E. Layton, C. Wittmann, F. Ellett, and C. J. Nowell, Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish, Curr Biol, vol.22, p.22940471, 2012.

C. J. Hall, M. V. Flores, S. H. Oehlers, L. E. Sanderson, and E. Y. Lam, Infection-responsive expansion of the hematopoietic stem and progenitor cell compartment in zebrafish is dependent upon inducible nitric oxide, Cell Stem Cell, vol.10, p.22305569, 2012.

S. Lepiller, V. Laurens, A. Bouchot, P. Herbomel, and E. Solary, Imaging of nitric oxide in a living vertebrate using a diamino-fluorescein probe, Free Radic Biol Med, vol.43, p.17640572, 2007.

M. G. Morash, S. E. Douglas, A. Robotham, C. M. Ridley, and J. W. Gallant, The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents, Dis Model Mech, vol.4, p.21729875, 2011.

M. Ogrunc, D. Micco, R. Liontos, M. Bombardelli, L. Mione et al., Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation, Cell Death Differ, vol.21, p.24583638, 2014.

S. Altenhofer, K. A. Radermacher, P. W. Kleikers, K. Wingler, and H. H. Schmidt, Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement, Antioxid Redox Signal, vol.23, p.24383718, 2015.

M. Vejrazka, R. Micek, and S. Stipek, Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells, Biochim Biophys Acta, vol.1722, p.15716123, 2005.

P. Niethammer, C. Grabher, A. T. Look, and T. J. Mitchison, A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish, Nature, vol.459, p.19494811, 2009.

Y. Li, A. Karlin, J. D. Loike, and S. C. Silverstein, A critical concentration of neutrophils is required for effective bacterial killing in suspension, Proc Natl Acad Sci U S A, vol.99, p.12060772, 2002.

R. Malka, B. Wolach, R. Gavrieli, E. Shochat, and V. Rom-kedar, Evidence for bistable bacteria-neutrophil interaction and its clinical implications, J Clin Invest, vol.122, p.22820292, 2012.

C. F. Urban, U. Reichard, V. Brinkmann, and A. Zychlinsky, Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms, Cell Microbiol, vol.8, p.16548892, 2006.

S. Yousefi, C. Mihalache, E. Kozlowski, I. Schmid, and H. U. Simon, Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps, Cell Death Differ, vol.16, p.19609275, 2009.

K. D. Metzler, T. A. Fuchs, W. M. Nauseef, D. Reumaux, and J. Roesler, Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity, Blood, vol.117, p.20974672, 2011.

V. Papayannopoulos, Neutrophil extracellular traps in immunity and disease, Nat Rev Immunol, vol.18, p.28990587, 2017.

S. J. Klebanoff, Role of the superoxide anion in the myeloperoxidase-mediated antimicrobial system, J Biol Chem, vol.249, p.4366184, 1974.

C. C. Winterbourn and A. J. Kettle, Redox reactions and microbial killing in the neutrophil phagosome, Antioxid Redox Signal, vol.18, p.22881869, 2013.

M. Schieber and N. S. Chandel, ROS function in redox signaling and oxidative stress, Curr Biol, vol.24, p.24845678, 2014.

R. Schreck, P. Rieber, and P. A. Baeuerle, Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1, EMBO J, vol.10, p.2065663, 1991.

B. Geering and H. U. Simon, Peculiarities of cell death mechanisms in neutrophils, Cell Death Differ, vol.18, p.21637292, 2011.

L. Alibaud, Y. Rombouts, X. Trivelli, A. Burguiere, and S. L. Cirillo, A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos, Mol Microbiol, vol.80, p.21375593, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641589

Y. P. Ko, A. Kuipers, C. M. Freitag, I. Jongerius, and E. Medina, Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface, PLoS Pathog, vol.9, p.24348255, 2013.

A. Bernut, J. L. Herrmann, K. Kissa, J. F. Dubremetz, and J. L. Gaillard, Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation, Proc Natl Acad Sci U S A, vol.111, p.24567393, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088315

M. Keatinge, H. Bui, A. Menke, Y. C. Chen, and A. M. Sokol, Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death, Hum Mol Genet, vol.24, pp.6640-6652, 2015.

S. A. Renshaw, C. A. Loynes, D. M. Trushell, S. Elworthy, and P. W. Ingham, A transgenic zebrafish model of neutrophilic inflammation, Blood, vol.108, p.16926288, 2006.

C. Hall, M. V. Flores, T. Storm, K. Crosier, and P. Crosier, The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish, BMC Dev Biol, vol.7, p.17477879, 2007.

K. Ellis, J. Bagwell, and M. Bagnat, Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis, J Cell Biol, vol.200, p.23460678, 2013.

A. L. Robertson, G. R. Holmes, A. N. Bojarczuk, J. Burgon, and C. A. Loynes, A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism, Sci Transl Med, vol.6, pp.225-229, 2014.

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, Stages of embryonic development of the zebrafish, Dev Dyn, vol.203, p.8589427, 1995.

J. Boudeau, A. L. Glasser, E. Masseret, B. Joly, and A. Darfeuille-michaud, Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease, Infect Immun, vol.67, p.10456892, 1999.

B. Chassaing, N. Rolhion, A. De-vallee, S. Y. Salim, and M. Prorok-hamon, Crohn disease-associated adherent-invasive E. coli bacteria target mouse and human Peyer's patches via long polar fimbriae, J Clin Invest, vol.121, p.21339647, 2011.

J. E. Somerville, L. Cassiano, B. Bainbridge, M. D. Cunningham, and R. P. Darveau, A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide, J Clin Invest, vol.97, p.8567955, 1996.

D. L. Stachura, O. Svoboda, C. A. Campbell, R. Espin-palazon, and R. P. Lau, The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance, Blood, vol.122, p.24128862, 2013.

K. M. Brothers, Z. R. Newman, and R. T. Wheeler, Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth, Eukaryot Cell, vol.10, p.21551247, 2011.

F. Ellett and G. J. Lieschke, Computational quantification of fluorescent leukocyte numbers in zebrafish embryos, Methods Enzymol, vol.506, p.22341237, 2012.

D. Aggad, M. Mazel, P. Boudinot, K. E. Mogensen, and O. J. Hamming, The two groups of zebrafish virus-induced interferons signal via distinct receptors with specific and shared chains, J Immunol, vol.183, p.19717522, 2009.