K. Alim, S. Parsa, D. A. Weitz, and M. P. Brenner, Local pore size correlations determine flow distributions in porous media, Physical Review Letters, vol.119, issue.14, 2017.

G. K. Batchelor, Dynamics of fluids in porous media, 1972.

M. W. Becker and A. M. Shapiro, Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock, Water Resources Research, vol.39, issue.1, 2003.

R. Benke and S. Painter, Modeling conservative tracer transport in fracture networks with a hybrid approach based on the Boltzmann transport equation, Water resources research, vol.39, issue.11, p.1324, 2003.

B. Berkowitz, A. Cortis, M. Dentz, and H. Scher, Modeling non-Fickian transport in geological formations as a continuous time random walk, Reviews of Geophysics, vol.44, 2006.

B. Berkowitz and H. Scher, The role of probabilistic approaches to transport theory in heterogeneous media, Dispersion in heterogeneous geological formations, vol.42, pp.241-263, 2001.

B. Bijeljic and M. J. Blunt, Pore-scale modeling and continuous time random walk analysis of dispersion in porous media, Water resources research, vol.42, 2006.

B. Bijeljic, P. Mostaghimi, and M. J. Blunt, Signature of non-Fickian solute transport in complex heterogeneous porous media, Physical Review Letters, vol.107, issue.20, pp.204-502, 2011.

B. Bijeljic, A. H. Muggeridge, and M. J. Blunt, Pore-scale modeling of longitudinal dispersion, Water Resources Research, vol.40, 2004.

M. Carrel, V. L. Morales, M. Dentz, N. Derlon, E. Morgenroth et al., Pore-scale hydrodynamics in a progressively bioclogged three-dimensional porous medium: 3-D particle tracking experiments and stochastic transport modeling, Water Resources Research, vol.54, pp.2183-2198, 2018.

V. Cvetkovic, C. Carstens, J. Selroos, and G. Destouni, Water and solute transport along hydrological pathways, Water resources research, vol.48, 2012.

V. Cvetkovic, H. Cheng, and X. Wen, Analysis of nonlinear effects on tracer migration in heterogeneous aquifers using Lagrangian travel time statistics, Water Resources Research, vol.32, issue.6, pp.1671-1680, 1996.

V. Cvetkovic, G. Dagan, and A. Shapiro, An exact solution of solute transport by one-dimensional random velocity fields, Stochastic Hydrology and Hydraulics, vol.5, issue.1, pp.45-54, 1991.

G. Dagan, Theory of solute transport by groundwater, Annual Review of Fluid Mechanics, vol.19, pp.183-215, 1987.

P. De-anna, T. Le-borgne, M. Dentz, A. M. Tartakovsky, D. Bolster et al., Flow intermittency, dispersion, and correlated continuous time random walks in porous media, Physical review letters, vol.110, issue.18, pp.184-502, 2013.
URL : https://hal.archives-ouvertes.fr/insu-01121092

P. De-anna, B. Quaife, G. Biros, and R. Juanes, Prediction of velocity distribution from pore structure in simple porous media, Physical Review Fluids, vol.2, issue.124, p.103, 2017.

G. De-josselin-de-jong, Longitudinal and transverse diffusion in granular deposits, Eos Transactions American Geophysical Union, vol.39, pp.67-74, 1958.

F. Delay, P. Ackerer, and C. Danquigny, Simulating solute transport in porous or fractured formations using random walk particle tracking, Vadose Zone Journal, vol.4, pp.360-379, 2005.

M. Dentz, A. Cortis, H. Scher, and B. Berkowitz, Time behavior of solute transport in heterogeneous media: Transition from anomalous to normal transport, Advances in Water Resources, vol.27, issue.2, pp.155-173, 2004.

M. Dentz, M. Icardi, and J. J. Hidalgo, Mechanisms of dispersion in a porous medium, Journal of Fluid Mechanics, vol.841, pp.851-882, 2018.

M. Dentz, P. K. Kang, A. Comolli, T. Le-borgne, and D. R. Lester, Continuous time random walks for the evolution of Lagrangian velocities, Physical Review Fluids, vol.1, issue.7, p.74004, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01416941

L. Devroye, Non-uniform random variate generation, 1986.

C. Gardiner, Stochastic methods, 2010.

F. Gjetvaj, A. Russian, P. Gouze, and M. Dentz, Dual control of flow field heterogeneity and immobile porosity on non-Fickian transport in berea sandstone, Water Resources Research, vol.51, pp.8273-8293, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01278285

H. Gotovac, V. Cvetkovic, and R. Andricevic, Flow and travel time statistics in highly heterogeneous porous media, Water resources research, vol.45, 2009.

P. Gouze, T. Le-borgne, R. Leprovost, G. Lods, T. Poidras et al., Non-Fickian dispersion in porous media: 1. Multiscale measurements using single-well injection withdrawal tracer tests, Water Resources Research, vol.44, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00373695

M. Holzner, V. L. Morales, M. Willmann, and M. Dentz, Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow, Physical Review E, vol.92, issue.1, 2015.

J. D. Hyman, S. L. Painter, H. Viswanathan, N. Makedonska, and S. Karra, Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks, Water Resources Research, vol.51, pp.7289-7308, 2015.

C. Jin, P. A. Langston, G. E. Pavlovskaya, M. R. Hall, and S. P. Rigby, Statistics of highly heterogeneous flow fields confined to three-dimensional random porous media, Physical Review E, vol.93, p.13122, 2016.

P. K. Kang, P. De-anna, J. P. Nunes, B. Bijeljic, M. J. Blunt et al., Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media, Geophysical Research Letters, vol.41, pp.6184-6190, 2014.

P. K. Kang, M. Dentz, T. L. Borgne, S. Lee, and R. Juanes, Anomalous transport in disordered fracture networks: Spatial Markov model for dispersion with variable injection modes, Advances in Water Resources, vol.106, pp.80-94, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01502757

A. Koponen, M. Kataja, and J. Timonen, Tortuous flow in porous media, Physical Review E, vol.54, issue.1, p.406, 1996.

M. Kree and E. Villermaux, Scalar mixtures in porous media, Physical Review Fluids, vol.2, issue.10, 2017.

R. Kubo, M. Toda, and N. Hashitsume, Statistical physics II, non-equilibrium statistical mechanics, 1991.

P. Langevin, Sur la théorie du mouvement brownien, Comptes rendus de l'Académie des Sciences, vol.146, pp.530-533, 1908.

L. Borgne, T. De-dreuzy, J. R. Davy, P. Bour, and O. , Characterization of the velocity field organization in heterogeneous media by conditional correlation, Water Resources Research, vol.43, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00138043

L. Borgne, T. Dentz, M. Carrera, and J. , Lagrangian statistical model for transport in highly heterogeneous velocity fields, Physical Review Letters, vol.101, issue.9, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00372030

M. Levy and B. Berkowitz, Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, Journal of contaminant hydrology, vol.64, issue.3, pp.203-226, 2003.

X. Liang, N. Lu, L. Chang, T. H. Nguyen, and A. Massoudieh, Evaluation of bacterial run and tumble motility parameters through trajectory analysis, Journal of Contaminant Hydrology, vol.211, pp.26-38, 2018.

J. Lumley, The mathematical nature of the problem of relating Lagrangian and Eulerian statistical functions in turbulence. Mécanique de la Turbulence, vol.108, pp.17-26, 1962.

M. Matyka, J. Golembiewski, and Z. Koza, Power-exponential velocity distributions in disordered porous media, Physical Review E, vol.93, p.13110, 2016.

D. W. Meyer and B. Bijeljic, Pore-scale dispersion: Bridging the gap between microscopic pore structure and the emerging macroscopic transport behavior, Physical Review E, vol.94, issue.1, p.13107, 2016.

V. L. Morales, M. Dentz, M. Willmann, and M. Holzner, Stochastic dynamics of intermittent pore-scale particle motion in three-dimensional porous media: Experiments and theory, Geophysical Research Letters, vol.44, pp.9361-9371, 2017.

S. Most, B. Bijeljic, and W. Nowak, Evolution and persistence of cross-directional statistical dependence during finite-Péclet transport through a real porous medium, Water Resources Research, vol.52, pp.8920-8937, 2016.

P. Mostaghimi, B. Bijeljic, and M. Blunt, Simulation of flow and dispersion on pore-space images, SPE Journal, vol.17, issue.04, pp.1-131, 2012.

B. Noetinger, D. Roubinet, A. Russian, T. Le-borgne, F. Delay et al., Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale, Transport in Porous Media, vol.115, pp.345-385, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01449131

D. Paganin, S. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object, Journal of microscopy, vol.206, issue.1, pp.33-40, 2002.

S. Painter and V. Cvetkovic, Upscaling discrete fracture network simulations: An alternative to continuum transport models, Water Resources Research, vol.41, 2005.

D. W. Pollock, Semianalytical computation of path lines for finite-difference models, Ground Water, vol.26, issue.6, pp.743-750, 1988.

S. B. Pope, Turbulent flows, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00338511

H. Risken, The Fokker-Planck equation, 1996.

P. Saffman, A theory of dispersion in a porous medium, Journal of Fluid Mechanics, vol.6, issue.03, pp.321-349, 1959.

S. Sanchez, P. E. Ahlberg, K. M. Trinajstic, A. Mirone, and P. Tafforeau, Three-dimensional synchrotron virtual paleohistology: A new insight into the world of fossil bone microstructures, Microscopy and Microanalysis, vol.18, issue.5, pp.1095-1105, 2012.

H. Scher, G. Margolin, R. Metzler, J. Klafter, and B. Berkowitz, The dynamical foundation of fractal stream chemistry: The origin of extremely long retention times, Geophysical Research Letters, vol.29, issue.5, p.1061, 2002.

A. M. Shapiro and V. D. Cvetkovic, Stochastic analysis of solute arrival time in heterogeneous porous media, Water Resources Research, vol.24, issue.10, pp.1711-1718, 1988.

M. Siena, M. Riva, J. Hyman, C. L. Winter, and A. Guadagnini, Relationship between pore size and velocity probability distributions in stochastically generated porous media, Physical Review E, vol.89, issue.1, p.13018, 2014.

P. Smal, P. Gouze, and O. Rodriguez, An automatic segmentation algorithm for retrieving sub-resolution porosity from X-ray tomography images, vol.166, pp.198-207, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01849382

G. I. Taylor, Diffusion by continuous movements, Proceedings of the london mathematical society, vol.20, pp.196-211, 1921.

G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Physical Review, vol.36, issue.5, pp.823-841, 1930.