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Abstract Upscaling dispersion, mixing, and reaction processes from the pore to the Darcy scale is
directly related to the understanding of the dynamics of pore-scale particle velocities, which are at the
origin of hydrodynamic dispersion and non-Fickian transport behaviors. With the aim of deriving a
framework for the systematic upscaling of these processes from the pore to the Darcy scale, we present
a detailed analysis of the evolution of Lagrangian and Eulerian statistics and their dependence on the
injection condition. The study is based on velocity data obtained from computational fluid dynamics
simulations of Stokes flow and advective particle tracking in the three-dimensional pore structure obtained
from high-resolution X-ray microtomography of a Berea sandstone sample. While isochronously sampled
velocity series show intermittent behavior, equidistant series vary in a regular random pattern. Both
statistics evolve toward stationary states, which are related to the Eulerian velocity statistics. The
equidistantly sampled Lagrangian velocity distribution converges on only a few pore lengths. These
findings indicate that the equidistant velocity series can be represented by an ergodic Markov process. A
stochastic Markov model for the equidistant velocity magnitude captures the evolution of the Lagrangian
velocity statistics. The model is parameterized by the Eulerian velocity distribution and a relaxation length
scale, which can be related to hydraulic properties and the medium geometry. These findings lay the basis
for a predictive stochastic approach to upscale solute dispersion in complex porous media from the pore to
the Darcy scale.

1. Introduction
Understanding the dynamics of pore-scale flow and transport is a central issue for the modeling and upscal-
ing of porous media phenomena and processes from the pore to the Darcy scale such as hydrodynamic
dispersion, the filtration of bacteria and colloids, and the mixing of dissolved chemicals and reactions
between them. The sound upscaling of these processes and their modeling on the Darcy scale contribute
to the understanding of the hydrodynamics of porous media and play an important role in environmental
and industrial applications such as groundwater and soil remediation, the assessment of geological gas and
waste storage, geothermal energy, and petroleum production.

Pore-scale flow heterogeneity is the cause of hydrodynamic dispersion but also of preasymptotic non-Fickian
transport. These phenomena are directly linked to Lagrangian velocity statistics. In fact, dispersion in het-
erogeneous flows such as turbulent flow and flow through heterogeneous porous media is quantified in
terms of the covariance of Lagrangian velocities (Dagan, 1987; Taylor, 1921). Preasymptotic behaviors such
as early and late solute arrivals compared to Fickian predictions and nonlinear scaling of solute dispersion
(Berkowitz & Scher, 2001; Becker & Shapiro, 2003; De Anna et al., 2013; Gouze et al., 2008; Kang et al.,
2014; Levy & Berkowitz, 2003; Scher et al., 2002) can be traced back to particle retention in low-velocity
zones and fast transport in regions of high velocities, which give rise to broad distributions of solute resi-
dence times. The Fickian limit may be approached only at time values that are much larger than the largest
residence times (Dentz et al., 2004; Bijeljic & Blunt, 2006). The concept of residence or transition times in
the modeling of pore-scale particle motion was employed in the pioneering studies of de Josselin de Jong
(1958) and Saffman (1959). The models proposed by these authors are similar to time-domain and continu-
ous time random walk approaches (Delay et al., 2005; Berkowitz et al., 2006; Noetinger et al., 2016; Painter
& Cvetkovic, 2005) in that they consider particle motion through transitions over the characteristic pore
lengths characterized by random time increments that depend on the distribution of pore-scale velocities.
Recent experimental and numerical studies have shown that the occurrence of non-Fickian particle disper-
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Figure 1. (left panel) Numerical cross section cropped in the Berea sandstone sample used for the flow simulations.
White and black colors denote the pore space and the solid phase, respectively. (right panel) 3-D sample volume with
20 particle streamlines. Dark gray and light gray colors denote the pore space and the solid phase, respectively. The
color scale of the streamlines denotes the velocity magnitude; from white for low-velocity values to blue for
high-velocity values. The streamline colored from black to red is the one for which the space and time velocity series is
reported in Figure 2.

sion due to long advective residence times is directly linked to intermittency in the Lagrangian velocity time
series (Carrel et al., 2018; De Anna et al., 2013; Holzner et al., 2015; Kang et al., 2014; Morales et al., 2017).
Thus, the understanding of these phenomena requires a sound characterization and understanding of the
dynamics of Lagrangian and Eulerian pore-scale velocities, which have been the subject of a series of recent
studies (De Anna et al., 2013; Gjetvaj et al., 2015; Holzner et al., 2015; Jin et al., 2016; Meyer & Bijeljic, 2016;
Morales et al., 2017; Matyka et al., 2016; Siena et al., 2014).

It is frequently assumed that the velocity statistics obtained in experiments and numerical simulations are
stationary, implying that they do not evolve in time. The experimental particle tracking velocimetry data
of Morales et al. (2017) have shown that the distribution of initial particle velocities can in fact differ from
the stationary velocity distribution depending on the injection volume and injection mode. This means that
the velocity distribution evolves in time, depending on the initial particle placement within the sample. The
dependence of the Lagrangian velocity statistics on the initial particle velocity distribution was studied by
Le Borgne et al. (2007) for Darcy-scale flow and by Dentz et al. (2016) in a theoretical work and analyzed
by Hyman et al. (2015) and Kang et al. (2017) for particle motion in random fracture networks. Based on
experimental particle tracking velocimetry data from three-dimensional bead packs, Morales et al. (2017)
analyzed particle velocities sampled equidistantly along particle trajectories, which removes the intermit-
tency observed for isochronous velocity series. These authors model the mean and displacement variance
as well as the velocity increment statistics based on a Markov model for equidistant velocities. The evolu-
tion of equidistant velocity series reflects the spatial organization of a steady flow field in that they vary on
the characteristic heterogeneity length scales. Shapiro and Cvetkovic (1988) and Cvetkovic et al. (1991) pro-
posed to analyze equidistant velocities as a basis to systematically quantify flow and travel time statistics in
heterogeneous media (see, also, Gotovac et al., 2009; Le Borgne et al., 2007).

The presented study is based on pore-scale velocity data obtained for flow in a three-dimensional Berea
sandstone sample, whose structure has been imaged by high-resolution X-ray microtomography (Figure 1).
We systematically quantify the evolution of particles moving along streamlines both in time (isochronous
sampling) and distance (equidistant sampling) and study the effect of the injection conditions. We pro-
vide explicit relations between the different statistics and discuss the issues of ergodicity and stationarity
of the measured velocity series in time and distance, and the impact of the finiteness of the rock sample
under consideration. The insights gained from this analysis lay the basis for the stochastic description of
the equidistantly sampled velocity series in terms of an ergodic Markov chain. We consider three different
stochastic models and study their capability of predicting the evolution of the Lagrangian velocity statistics.
The impact of diffusion on pore-scale particle motion is discussed in section 5 (see, also, Bijeljic & Blunt,
2006; Dentz et al., 2018; Most et al., 2016).

The paper is organized as follows. Section 2 presents the methodology underlying this study. It details the
flow and particle transport equations, summarizes briefly the acquisition and segmentation of the rock
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sample, and explains the numerical solution method for the flow and particle tracking problems. Section 3
provides a comprehensive analysis of the statistics of the Lagrangian velocity magnitude both in time and
distance. Then, we discuss the relations among them as well as their evolution toward stationarity. Section
4 investigates the capability of Markov models for predicting the stochastic dynamics of Lagrangian veloci-
ties. The conclusions on the stochastic description of the spatially sampled Lagrangian velocity dynamics as
an ergodic Markov chain and the implications on the upscaling of preasymptotic hydrodynamic transport
are given in section 5.

2. Methodology
In this paper, we analyze the statistical properties of Lagrangian velocities for purely advective transport in
pore-scale flows. Pore-scale flow in general is governed by the Navier-Stokes equation. For the pore-scale
flow scenarios under consideration here, the Reynolds number Re = vc𝓁p∕𝜈, with a characteristic pore
velocity vc, a characteristic pore length 𝓁p, and the kinematic viscosity 𝜈, is smaller than 1. Thus, the
pore-scale flow velocity or Eulerian velocity v(x) can be obtained by solving the Stokes equation

∇2v(x) = 1
𝜈
∇p(x), (1)

where p(x) is the fluid pressure. Conservation of volume is expressed by ∇ · v(x) = 0. We specify con-
stant pressure at the inlet and outlet boundaries and no slip at the void-solid boundaries and the remaining
domain boundaries. The porous rock sample and numerical solution of the pore-scale flow problem are
described in sections 2.1 and 2.2.1 below.

The trajectory x(t, a) of a particle that is initially located at x(t = 0, a) = a is given by the advection equation

dx(t, a)
dt

= v[x(t, a)]. (2)

The Lagrangian velocity in the following is denoted by v(t, a) = v[x(t, a)] and its magnitude by vt(t, a) =||v[x(t, a)]||. The initial velocity magnitude is denoted by v(t = 0, a) = v0(a). The Eulerian velocity mag-
nitude is denoted by ve(x) = ||v[x]||. The distribution of initial particle positions is denoted by 𝜌(a). We
consider here two different initial distributions at the inlet plane at x1 = 0. The uniform distribution spreads
particles uniformly in the pore space; this means

𝜌(a) =
IΩ0

(a)
V0

, (3)

whereΩ0 denotes the domain in which particles are injected and V0 its volume. The indicator function IΩ0
(a)

is equal to 1 if a ∈ Ω0 and 0 otherwise. This injection condition represents the initial condition of a spatially
uniform concentration distribution. The flux-weighted initial distribution distributes particles weighted by
their initial velocity as

𝜌(a) =
v0(a)IΩ0

(a)

∫Ω0
v0(a)da

. (4)

This injection condition represents a constant finite concentration pulse in the injection plane, such that
the number of injected particles is proportional to the local flow velocity. The numerical particle tracking
method is described in section 2.2.2. Before, however, we discuss the methodology of streamwise velocity
sampling for the statistical analysis of Lagrangian velocity magnitudes.

2.1. Rock Sample
The analysis of the velocity field was performed using a volume of 0.95 mm3 cropped into a digital rep-
resentation of a Berea sandstone (Upper Berea Sandstone unit, Ohio, USA) core sample of length 10 mm
and diameter 6 mm. The Berea sandstone is a (quarried) sedimentary rock composed of well-sorted quartz
grains held together by silica-rich cement displaying intermediate porosity and permeability values as well
as intermediate pore-scale structural heterogeneity (tortuosity, pore size distribution, etc.) of the pore net-
work compared to standard reservoir rocks, while showing remarkable macroscopic homogeneity. Because
of this, it is a “rock standard” which is widely used as a proxy of mildly heterogeneous rock for experimen-
tal works by academic and petroleum industry, and thus, results can be easily compared (e.g., Bijeljic et al.,
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2004, 2011; Gjetvaj et al., 2015). Furthermore, the characteristics of the pore size distribution compared to
both the imagery technique resolution and the image size limitation for Navier-Stokes simulations make
this material ideal for investigating a mildly heterogeneous natural material. The image was acquired at
the BM5 beamline at the European Synchrotron Radiation Facility (Grenoble, France) using X-ray microto-
mography. The 3-D volume was reconstructed from 3,495 X-ray projections using the single distance phase
retrieval algorithm (Paganin et al., 2002; Sanchez et al., 2012). Since the Berea sandstone is a monocrys-
talline rock, we were able to relate the gray scale X-ray absorption directly to the porosity and transform the
images into binary images (void and solid) using segmentation processes (Smal et al., 2018). The details of
the data processing can be found in Gjetvaj et al. (2015). The cubic subset of 3003 voxels was fine-grained
(each voxel was divided by 3 in each direction) giving 9003 voxels of volume 1.05 𝜇m3. The characteristic
pore length is 𝓁p = 1.5 · 10−4 m.

2.2. Numerical Simulations
2.2.1. Flow
Details of the flow simulation can be found in Gjetvaj et al. (2015). For completeness, we summarize them
in this section. Generating the computational mesh that discretizes the geometry usually encounters two
main problems. The first one is to create a mesh that is equivalent to the real digitized images, while the
second is to make it fine enough to get a high resolution of the flow field. In order to avoid the smoothing
and averaging procedure that often takes place in the OpenFOAM mesh creation, we use an algorithm that
generates a mesh composed of cubes that fit exactly the voxels of the digitized sample. To obtain a fine
resolution, we divide every 3-D cell of the mesh in 27 cubes resulting in a size of 1.05 𝜇m3 for each cell.

Then we compute the single-phase pore-scale flow by solving the Stokes and continuity equations for con-
stant viscosity and density. The equations are solved via a finite volume scheme using the SIMPLE algorithm
of OpenFOAM. This algorithm, based on a pressure-velocity coupling, solves the Stokes equation iteratively
and allows us to obtain steady state pressure and velocity fields. Convergence is reached when the difference
between the current and the previous step is smaller than a criterion.

Flow is solved by imposing pressure boundary conditions at the inlet and at the outlet. No-slip conditions are
implemented at the interfaces of the solid phase and at the boundaries of the domain. We also add 20 layers
at the inlet and at the outlet of the domain to minimize boundary effects. Once convergence is reached, we
extract the velocity field. The velocity values are obtained at each interface of the voxelized mesh, in the
normal direction. The computed Eulerian mean velocity is ⟨ve⟩ = 8.05 · 10−4 m/s. The characteristic pore
length and the Eulerian mean velocity define the characteristic time scale 𝜏c = 𝓁p∕⟨ve⟩.
2.2.2. Particle Tracking
The numerical solution of equation (2) for the particle trajectories, or, equivalently, streamlines of the
pore-scale flow field, requires the interpolation of the flow velocities, which are defined at the faces of the
finite volume voxels. Linear interpolation of each velocity component between opposing faces is volume
preserving; this means ∇ ·u(x) inside each voxel. Linear interpolation has been used for particle tracking in
Darcy-scale heterogeneous flow fields on a routine basis (Pollock, 1988). However, Mostaghimi et al. (2012)
found that the linear interpolation does not respect the no-slip boundary condition at the void-solid inter-
face. Thus, in the void voxels in contact with the solid voxels these authors replaced the linear by a quadratic
velocity interpolation, which is the implementation employed here to interpolate velocity values in the void
voxels. Particle trajectories are simulated until exiting the physical domain or reaching a given distance
or a given elapsed time (Figure 1). The particle tracking solver probes the velocity statistics using regular
sampling in space or time along the streamline as described in section 3.1.

In order to study particle displacements larger than the longitudinal sample size, particles are reinjected at
the inlet boundary when they leave the flow domain at the outlet. The reinjection is processed as follows.
When a given particle reaches the end of the domain at x1 = L, its velocity magnitude vL(a) = vt(t, a)|x1(t,a)=L
is computed. Then, the pore space Ωv0

at the inlet plane where the flow velocity magnitude values are v0 =||u(x)|x1=0|| ∈ [vL(a) −Δv, vL(a) +Δv] is identified and the particle is reinjected randomly in Ωv0
, Δv ≈ vL(a)

200
.

This procedure guarantees continuity of velocity and velocity statistics at reinjection and makes sure that
particle velocities do not decorrelate artificially. As reported in the following the evolution of Lagrangian
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Figure 2. Time and space velocity magnitude series of a particle traveling
through the sample. The series are computed following the streamline
sampled either in time or in space. Velocity values sampled at constant time
step display intermittency, whereas low- and high-velocity values last for
comparable values of distance corresponding to about one pore length 𝓁p.
The characteristic time is 𝜏c = 𝓁p∕⟨ve⟩.

velocity statistics toward their respective steady state is not affected by
reinjection in the sense that there is no noticeable acceleration due to a
potential artificial decorrelation.

3. Lagrangian and Eulerian Velocity Statistics
In this section we introduce and discuss the Eulerian and Lagrangian
velocity statistics used to analyze and understand pore-scale particle
motion. We define velocity statistics sampled isochronously and equidis-
tantly along streamlines and the relations between them. We first give
a brief account of the literature on Lagrangian velocities and their use.
The concept of isochronously sampled particle velocities was used by
Taylor (1921) to quantify diffusion by continuous movements, more
specifically by turbulent motion. A detailed statistical characterization
of isochronous Lagrangian and Eulerian velocities was introduced by
Lumley (1962). Shapiro and Cvetkovic (1988) proposed and analyzed the
statistics of Lagrangian velocities sampled equidistantly along the mean
flow direction. Le Borgne et al. (2007) considered the evolution of the
probability density function (PDF) of such Lagrangian velocities, and
Gotovac et al. (2009) used them as the basis to analyze flow and travel time

statistics in heterogeneous porous media. Cvetkovic et al. (1991) compared isochronously and equidistantly
sampled Lagrangian velocities for one-dimensional steady flow, Cvetkovic et al. (2012) for spatiotempo-
rally varying flow. Recently, the statistics of isochronously sampled Lagrangian velocity were analyzed for
pore-scale particle motion (De Anna et al., 2013; Kang et al., 2014; Meyer & Bijeljic, 2016; Siena et al., 2014),
which are directly related to the particle dispersion (Kubo et al., 1991; Taylor, 1921). Dentz et al. (2016) and
Morales et al. (2017) considered particle velocities sampled equidistantly along trajectories, which reflects
the spatial organization of pore-scale flow. In the following we detail different methods to sample velocity
statistics and their properties.

3.1. Streamwise Velocity Sampling
We consider two sampling methods to characterize particle velocities along the streamlines: isochronous
and equidistant. First, the t(ime)-Lagrangian velocity magnitude or speed is defined as vt(t, a) ≡ ||v[x(t, a)]||.
The velocity time series {vt(iΔt, a)}∞i=0, with Δt being a constant time increment, is obtained by isochronous
sampling along a particle trajectory. Meyer and Bijeljic (2016) modeled the Lagrangian velocity time series
as Markov processes in order to quantify particle motion in heterogeneous velocity fields. Yet, isochronous
velocity series in steady heterogeneous flow fields have been shown to display intermittency (De Anna et al.,
2013; Kang et al., 2014). Figure 2 shows an isochronously sampled velocity series. It is characterized by
long periods of low-velocity values and short peaks of high-velocity values. The origin of this intermittent
behavior lies in the spatial organization of the flow.

The steady Eulerian velocity field varies on a length scale of the order of the average pore length 𝓁p. Thus,
significant changes of the flow velocity along a trajectory occur at times 𝓁p∕v. This explains the temporal
persistence of low-velocity magnitudes and high frequency of change of high flow velocities. In order to
account for the spatial organization of the velocity field, we consider particle velocities sampled equidistantly
along trajectories (Dentz et al., 2016; Morales et al., 2017). The travel distance s(t) along a particle trajectory
is given by

ds(t, a)
dt

= vt(t, a). (5)

Performing the variable transform t → s in (2) gives the following set of equations describing the particle
trajectory:

dx(s, a)
ds

= v[x(s, a)]||v[x(s, a)]|| , dt(s, a)
ds

= 1
vs(s, a)

. (6)
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Figure 3. Autocorrelation function of the s-Lagrangian velocity vs(s).

The s-Lagrangian velocity magnitude is defined by vs(s) ≡ ||v[x(s, a)]||.
The initial speed is denoted by vs(s = 0, a) = v0(a). The velocity series
{vs(iΔs, a)}, with Δs being a constant space increment, is obtained by
equidistant sampling along particle trajectories. Unlike for isochronous
sampling, here velocities are sampled independently of their magnitude
since this velocity value does not impact the sampling distance. Note that
the system of equations (6) describes particle motion as a process in which
the particle position is incremented by a constant value and the particle
time by a variable transition time. In this sense it describes a time-domain
random walk (Noetinger et al., 2016).

The s-Lagrangian velocity series shown in Figure 2 does not display inter-
mittent patterns. The signal seems stationary and is characterized by a
characteristic correlation scale 𝓁v. To determine this correlation distance,
we consider the velocity covariance function for an injection into the flux,
which is defined as

v(s) =
1
L ∫ ∫

L

0
𝜌(a)

[
vs(s′ + s, a) − 𝜇

] [
vs(s′, a) − 𝜇

]
ds′da, (7)

where 𝜌(a) is given by (4) and 𝜇 is the mean velocity

𝜇 = 1
L ∫ ∫

L

0
𝜌(a)vs(s′, a)ds′da. (8)

The velocity autocorrelation function v(s) = v(s)∕v(0) is shown in Figure 3. The correlation length is
defined as

𝓁v =

∞

∫
0

v(s)ds. (9)

We find that the velocity correlation length 𝓁v equals the average pore length, 𝓁p = 1.5 · 10−4m. Note that
the sample size is about (6𝓁p)3 and that the average streamline length is around 10.5𝓁p which corresponds
to an average tortuosity of 1.75.

The first series of Figure 2 illustrates the traditional temporal velocity sampling used for the computation
of the velocity PDF. The statistics of the velocity magnitude vt(t, a) can be characterized by isochronous
sampling along a single streamline labeled by a. This sampling mode defines the streamwise t-Lagrangian

Figure 4. Streamwise t-Lagrangian PDF ̂(v) (full circles), s-Lagrangian
PDF (v) (open circles), and the flux-weighting relation (17) (solid line).
PDF = probability density function.

velocity PDF ̂(v,T, a)

̂(v,T, a) = 1
T ∫

T

0
𝛿[v − vt(t, a)]dt, (10)

which in general depends on the sampling time T. In the following, the
statistics obtained by isochronous sampling are marked by a hat. The
statistics of the velocity series vs(s, a) illustrated in the bottom panel of
Figure 2 is characterized by equidistant sampling,

(v,L, a) = 1
L ∫

L

0
𝛿[v − vs(s, a)]ds, (11)

where L is the sampling length. The PDF (v,L, a) is referred to in the
following as streamwise s-Lagrangian velocity PDF. The relation between
the streamwise s- and t-Lagrangian velocity PDFs defined in (11) and (10)
is obtained by the variable change s → t according to the map (5), which
gives

(v,L, a) = vT(L)
L

̂[v,T(L), a], (12)
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Figure 5. (left panel) Spatial evolution of the ensemble s-Lagrangian PDF P(v, s) from the flux-weighted initial
particle distribution p0(v) (pink open circles) to the steady s-Lagrangian PDF P(v) (red solid line) at distances
s = 0, 1∕5, 2∕5, 5𝓁p. (right panel) Spatial evolution of the ensemble s-Lagrangian PDF P(v, s) from the uniform initial
particle distribution p0(v) (navy blue open circles) to the steady s-Lagrangian PDF P(v) (red solid line) at distances
s = 0, 4∕3, 4, 8𝓁p. The results were computed using 107 particles. PDF = probability density function.

where T(L) is the time that the particle needs to travel the distance L along the streamline and

T(L) =

L

∫
0

ds
vs(s)

. (13)

Thus, the streamwise s- and t-Lagrangian PDFs are linked through flux weighting. This relation is purely
kinematic and holds always. Figure 4 illustrates the streamwise s- and t-Lagrangian statistics as well as
the flux-weighting relation for the rock sample under consideration. The velocity statistics along a single
streamline are computed for a distance of L ≈ 108𝓁p and corresponding duration of T(L) ≈ 9 · 107𝜏c, where
𝜏c is the time for a particle to travel the distance 𝓁p by the average Eulerian velocity ⟨ve⟩.
Therefore, under ergodic conditions, the velocity statistics sampled between an ensemble of particles and
along a single streamline are equivalent. Ergodicity can only be achieved if first, the sampling distance or
sampling time along a streamline is large enough for the particle to experience the full velocity spectrum,
and second, if the ensemble of particles is large enough to contain the full velocity statistics. The stationary
s- and t-Lagrangian ensemble statistics are defined by

P(v) = lim
V0→∞

1
V0 ∫Ω0

v0(a)⟨v0(a)⟩𝛿[v − vs(s, a)]da, (14)

P̂(v) = lim
V0→∞

1
V0 ∫Ω0

𝛿[v − vt(t, a)]da, (15)

respectively. In practice, the initial volume V0 is of course finite. In order to achive ergodicity, it needs to be
chosen large enough to contain the significant velocity statitics; see also Appendix A. Thus, ergodicity can
be expressed as

P(v) = lim
L→∞

(v,L, a) ≡ (v), P̂(v) = lim
T→∞

̂(v,T, a) ≡ ̂(v). (16)

Under ergodic conditions, the flux-weighting relation (12) implies for the stationary ensemble statistics

P(v) = v⟨ve⟩ P̂(v), (17)

where ⟨ve⟩ is the mean Eulerian velocity magnitude. We now consider the relation between the Lagrangian
PDFs and the Eulerian velocity PDF sampled over an infinite domain

Pe(v) = ∫ 𝛿[v − ve(x)]dx. (18)
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Figure 6. (left panel) Temporal evolution of the ensemble t-Lagrangian PDF P̂(v, t) from the flux-weighted initial
particle distribution p0(v) (red open circles) to the steady t-Lagrangian PDF P̂(v)(navy blue solid line) at times
t = 0, 5, 50, 500, 104 𝜏c. (right panel) Temporal evolution of the ensemble t-Lagrangian PDF P̂(v, t) from the uniform
initial particle distribution p0(v) (light blue open circles) to the steady t-Lagrangian PDF P̂(v) (navy blue solid line) at
times t = 0, 103, 104 𝜏c. The results were computed using 106 particles. PDF = probability density function.

The stationary Lagrangian PDF P̂(v) = Pe(v) because of volume conservation as discussed in section B2.
Thus, expression (17) implies for the stationary s-Lagrangian PDF

P(v) = v⟨ve⟩Pe(v). (19)

This is a key relationship for the prediction of particle velocity statistics because the Eulerian velocity PDF
can be determined independently from transport.

A detailed discussion on the relations between s-Lagrangian and t-Lagrangian statistics for finite sampling
domains is given in Appendix A. There it is shown that the Lagrangian statistics for the rock sample under
consideration are stationary and ergodic.

3.2. Evolution of the Lagrangian Velocity Statistics and Stationarity
In the previous sections, we have seen that the s-Lagrangian and t-Lagrangian velocity statistics evolve
asymptotically to different steady state distributions, which are related through flux weighting according
to (A16). In this section, we study in detail the evolution of the respective statistics from uniform and
flux-weighted initial conditions. Note that since the Lagrangian and Eulerian quantities are related through
equations (A6) and (A14), studying the Lagrangian statistics evolution includes studying the Eulerian
statistics evolution. In the following we only refer to Lagrangian distributions.
3.2.1. Evolution of the s-Lagrangian Velocity Statistics
The s-Lagrangian velocity distribution for an arbitrary initial particle distribution 𝜌(a) is defined by

p(v, s) = ∫ 𝛿
[
v − vs(s, a)

]
𝜌(a)da. (20)

The initial velocity distribution is p0(v) = p(v, t = 0). We consider the uniform and flux-weighted initial
particle distributions (3) and (4). For an ergodic injection domain Ω0, p0(v) = Pe(v) for the uniform injec-
tion and p0(v) = P(v) is equal to the stationary s-Lagrangian PDF for the flux-weighted injection. While the
injection domain here is not large enough to be ergodic, the initial distribution under flux-weighted condi-
tions is close to the stationary s-Lagrangian PDF as shown in Figure 5. Figure 5 shows the evolution of p(v, s)
for the uniform and flux-weighted initial particle distributions (3) and (4). The PDF evolves from both initial
distributions toward its steady state P(v). For the flux-weighted initial particle distribution, p0(v) is skewed
toward high-velocity values compared to p0(v) for the uniform injection with a high probability weight at
low velocities. For both initial distributions, the steady state P(v) is reached after a distance of s ≈ 7𝓁p. We
note that the high-velocity part of the PDF converges faster to the steady state than the low-velocity part.
3.2.2. Evolution of the t-Lagrangian Velocity Statistics
The t-Lagrangian velocity PDF for an arbitrary initial particle distribution is defined by

p̂(v, t) = ∫ 𝛿[v − vt(t, a)]𝜌(a)da. (21)
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The initial velocity distribution is p̂0(v) = p̂(v, t = 0), which is identical to the initial s-Lagrangian velocity
PDF p0(v). As in the previous section, we consider the uniform and flux-weighted initial particle distribu-
tions (3) and (4). As pointed out there, p0(v) = Pe(v), the stationary t-Lagrangian PDF under uniform and
p0(v) = P(v) under flux-weighted injection. The uniform initial condition approximates the stationary dis-
tribution but is not equal to it because the injection domain is not ergodic (see Figure 6). Figure 6 shows
the evolution of p̂(v, t) for the uniform and flux-weighted initial conditions (3) and (4). As expected, p̂(v, t)
evolves toward the steady state distribution P̂(v) from both initial distributions. The time for convergence
toward the steady state is t > 104𝜏c. Since the average time needed to reach the outlet of the sample is on
the order of 6𝜏c we use the reinjection procedure to keep all particles in the domain. As for the s-Lagrangian
statistics, also here, the high-velocity part of p̂(v, t) converges faster than the low-velocity part.

3.3. Synthesis
In summary, we distinguish between s-Lagrangian statistics, which are sampled equidistantly along par-
ticle trajectories, and t-Lagrangian statistics, which are sampled isochronously along particle trajectories.
Moreover, we distinguish velocity PDFs that are sampled along single streamlines and velocity PDFs that
are obtained by sampling from an ensemble of particles, as well as mixed sampling between particles and
along streamlines. We find that the streamwise and ensemble sampled statistics eventually converge after
a given streamwise travel distance or streamwise travel time. The convergence of streamwise and ensemble
statistics to the same steady state distributions indicates that the underlying velocity process is stationary.
The steady s- and t-Lagrangian statistics are related by flux-weighting according to (19).

Stationary conditions are achieved for the t-Lagrangian velocity statistics in case of a uniform injection into
an ergodic subdomain Ω0. For the s-Lagrangian statistics this corresponds to a flux-weighted injection. In
the case of ergodic conditions, the s- and t-Lagrangian steady state statistics P(v) and P̂(v) can be obtained
by volumetric sampling over an ergodic subdomain because of their relations to the Eulerian velocity PDFs
(Dentz et al., 2016). In the following, we model the s-Lagrangian velocity series as a stationary and ergodic
Markov process in order to capture the evolution of the s-Lagrangian velocity statistics and its dependence
on the initial conditions.

4. Markov Model
We model the s-Lagrangian velocity series vs(s) as a stationary and ergodic Markov process. This means that
the process vs(s) is fully characterized by the velocity transition probability r(v, s − s′ |v′ ), which denotes the
PDF of vs(s) given that vs(s

′ ) = v′ . Both r(v, s|v′ ) and p(v, s) satisfy the Chapman-Kolmogorov equation

p(v, s) =

∞

∫
0

r(v, s − s′|v′)p(v′, s′)dv′. (22)

The steady state distribution is an Eigenfunction of r(v, s|v′ ),

P(v) =

∞

∫
0

r(v, s|v′)P(v′)dv′. (23)

Furthermore, the transition probability converges to the steady state distribution in the limit of s ≫ 𝓁p,

lim
s→∞

r(v, s|v′) = P(v). (24)

This implies that lims→∞p(v, s) = P(v), independent of the initial condition p0(v). Note also that the joint
PDF P(v, s − s′

, v′ ) of v and v′ under stationary conditions is given by

p(v, s − s′, v′) = r(v, s − s′|v′)P(v′). (25)

Note that Gotovac et al. (2009) studied the statistical properties of the inverse Lagrangian velocity 1∕vs(s),
which is termed slowness. Evolution equations for the PDF of slowness can be deduced from the Markov
model for vs(s) by variable transformation. In the following, we first construct the transition probability
empirically from the direct numerical simulations. This is then used to propagate the s-Lagrangian velocity
statistics from uniform initial conditions. Second, we use a Markov model based on a Bernoulli process for
the persistence of velocities. Third, we employ an Ornstein-Uhlenbeck (OU) process for vs(s). The simulated
results of these Markov models are then compared to the simulation data presented in the previous sections.
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Figure 7. Spatial velocity transition matrices computed with 106 particles and respectively with a spatial lag of
Δs =

lp
150 , Δs =

lp
3 , Δs = lp, and Δs =

8lp
3 (upper left to lower right).

4.1. Empirical Transition Probability
In this section, we use empirically computed transition probabilities for the modeling of velocity series
in space. This approach is conceptually similar to the work of Benke and Painter (2003) and Painter and
Cvetkovic (2005) for fractured rock. In order to determine the velocity transition probability r(v, s − s′ |v′ ),
we discretize the velocity interval [v𝓁 , vu] between minimum and maximum velocities v𝓁 and vu sampled in
the domain into n bins of width Δvi = vi + 1 − vi, where v𝓁 = v1 and vu = vn such that

v𝑗 = v1 +
𝑗−1∑
i=1

Δv𝑗 . (26)

The empirical transition probability is given by mixed streamwise and ensemble sampling as

Ti𝑗(Δs) = 1
V0 ∫Ω0

1
L∫

L

0
I(v𝑗 ≤ v(s′′ + Δs, a) < v𝑗 + Δv𝑗)|vi≤v(s′′ ,a)<vi+Δvi

𝜌(a)ds′′da, (27)

where I(·) is 1 if its argument is true and 0 otherwise, and Δs = s − s′ . The empirical transition probability
and the conditional probability density r(v, s − s′ |v′ ) are related in terms of the stationary joint PDF (25) as

Ti𝑗(Δs) =

v𝑗+Δv𝑗

∫
v𝑗

vi+Δvi

∫
vi

p(v,Δs, v′)dvdv′
/

∫
vi+Δvi

vi

P(v′)dv′. (28)

Note that the empirical determination of the transition probability requires stationary initial conditions. As
the initial velocity distribution p0(v) here is not stationary, as discussed in the previous section, sampling
should start once stationary conditions are achieved at approximately s = 7𝓁p (see Figure A1). In practice,
mixed sampling along the trajectories of lengths s ≫ 𝓁p guarantees stationary conditions.
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Figure 8. Evolution of the ensemble spatial Lagrangian velocity PDF P(v, s)
for direct particle tracking (open circles) and Markov model (solid lines)
simulations from the uniform initial particle distribution p0(v) (blue) to the
steady s-Lagrangian PDF P(v) (red) at distances s = 0, 8∕3, 16∕3, 8𝓁p. The
results were respectively computed with 107 and 108 particles for the direct
simulation and the model. PDF = probability density function.

Figure 7 shows the transition matrix Tij(Δs) computed using 106 parti-
cle trajectories for different lags Δs, and n = 100 logarithmically spaced
velocity bins such that vi+1 = vi exp(1∕n). The smaller the Δs, the higher
the correlation and the more diagonal is the matrix. In principle, any
Δs would provide a good estimate for the transition matrix Tij(Δs) if the
velocity correlation were exponential because in this case, the slope of
the correlation function would equal its value everywhere and it could
be uniquely characterized by the correlation length 𝓁p. This is not the
case here. Figure 3 shows that the correlation function drops for small
distances Δs ≪ 𝓁p faster than for larger distances. This means that for
small Δs an exponential fit simulates a shorter correlation length than
the actual full correlation function. This implies that a transition matrix
determined at short Δs sees only this sharp drop and thus underesti-
mates the true correlation. The lag distance Δs needs to be large enough
such that the correlation information can be sampled. This means here
Δs ≥ 𝓁p. For estimating the evolution of the s-Lagrangian statistics we
choose Δs = 8𝓁p∕3.

Figure 8 compares the predictions of the velocity Markov model with
the data from the direct numerical simulations for the uniform injection
mode. The Markov model based on the empirical transition matrix Tij(Δs)
reproduces the full evolution of the s-Lagrangian velocity statistics p(v, s),
which reaches the steady state distribution after the same distance as the

data form the direct numerical simulations. Thus, the evolution of the s-Lagrangian velocities can be well
represented as a Markov process. In the following section, we consider a Bernoulli process as a Markov
relaxation model for this evolution.

4.2. Bernoulli Process
We model the evolution of the Lagrangian velocity vs(s) by a Bernoulli process such that after each step of
lengthΔs the velocity either remains the same as at the previous step with probability pB(Δs) = exp(−Δs∕𝓁c)
or changes randomly with probability 1 − pB(Δs) according to the steady state PDF P(v). The character-
istic length scale 𝓁c of velocity changes is determined below. The transition probability r(v,Δs|v′ ) is given
explicitly by Dentz et al. (2016)

r(v,Δs|v′) = exp(−Δs∕𝓁c)𝛿(v − v′) + [1 − exp(−Δs∕𝓁c)]P(v). (29)

Inserting the latter into the Chapman-Kolmogorov equation (22) gives

p(v, s + Δs) = exp(−Δs∕𝓁c)p(v, s) + [1 − exp(−Δs∕𝓁c)]P(v)∫
∞

0
p(v′, s)dv′. (30)

In the limit Δs → 0, we obtain the evolution equation (Dentz et al., 2016)

𝜕p(v, s)
𝜕s

= − 1
𝓁c

[
p(v, s) − P(v)

]
, (31)

whose solution for the initial condition p0(v) is

p(v, s) = P(v) + exp(−s∕𝓁c)
[
p0(v) − P(v)

]
. (32)

Thus, we obtain for the mean velocity ⟨vs(s), the explicit analytical expression

⟨vs(s)⟩ = (⟨v0⟩ − ⟨vs⟩) exp(−s∕𝓁c) + ⟨vs⟩, (33)

where ⟨v0⟩ is the average initial velocity and ⟨vs⟩ the average s-Lagrangian steady state velocity. We use this
expression to estimate the characteristic length scale from the direct numerical simulations as shown in
Figure 9. We find 𝓁c = 2.5𝓁p, which is of the order or the pore length.

Figure 10 compares the evolution of p(v, s) obtained from the direct numerical simulations with the pre-
diction (32) of the Bernoulli model for uniform injection conditions. The Bernoulli model converges to the
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Figure 9. Evolution of the mean s-Lagrangian velocity ⟨vs(s)⟩ (circles) for a
uniform initial distribution and expression (33) (solid line) with
𝓁c = 2.5𝓁p.

steady state distribution after s ≈ 3𝓁c but does not reproduce the veloc-
ity PDFs at intermediate distances. Note that the Bernoulli model uses
the same convergence rate 𝓁−1

c for all velocities. While this model rep-
resents the evolution of the high-velocity part of p(v, s) relatively well,
the low-velocity part evolves faster than the data from the direct numeri-
cal simulations. This indicates that the convergence rate may be velocity
dependent. In the next section, we model this behavior with an alternative
Markov model for vs(s).

4.3. OU Process
In this section, we consider a velocity Markov model for the evolution of
vs(s) that is based on the OU process (Gardiner, 2010; Morales et al., 2017),

dw(s)
ds

= −𝓁−1
c w(s) +

√
2𝓁−1

c 𝜉(s), (34)

where 𝜉(s) is a Gaussian white noise characterized by zero mean, ⟨𝜉(t)⟩ =
0 and covariance ⟨𝜉(s)𝜉(s′ )⟩ = 𝛿(s − s′ ). The angular brackets denote the
noise average over all realizations of 𝜉(s). The OU process has originally
been considered for the modeling of the stochastic (in time) velocity fluc-
tuations of Brownian particles (Langevin, 1908; Risken, 1996; Uhlenbeck

& Ornstein, 1930), later also for particle velocities in turbulent flows (Pope, 2000). From a mathematical
point of view, the OU model is a stationary Gaussian Markov process. Its increments are Gaussian random
variables. Its distribution 𝜙(w, s) satisfies the Fokker-Planck equation (Risken, 1996)

𝜕𝜙(w, s)
𝜕s

− 𝓁−1
c
𝜕w𝜙(w, s)

𝜕w
− 𝓁−1

c
𝜕2𝜙(w, s)
𝜕w2 = 0. (35)

It relaxes from any initial distribution 𝜙0(w) to a Gaussian steady state distribution 𝜙(w), which has zero
mean and unit variance for the specific process (34). We use this process here to model the stochastic evolu-
tion of the particle velocity vs(s) and the relaxation of its statistics from any initial distribution p0(v) toward
the steady state P(v). This requires to map vs(s) onto w(s) through their steady state PDFs. This is done
through the Smirnov transform (Devroye, 1986)

w(s) = Φ−1(Π[vs(s)]) ≡ [vs(s)], vs(s) = Π−1(Φ[w(s)]), (36)

Figure 10. Evolution of the ensemble spatial Lagrangian velocity PDF
P(v, s) for both direct particle tracking (open circles) and Bernoulli process
(solid lines) simulations from the uniform initial particle distribution p0(v)
(blue) to the steady s-Lagrangian PDF P(v) (red) for distance
s = 0, 8∕3, 10𝓁p. The results were respectively computed with 107 and
5 · 108 particles for the direct simulation and the model. PDF = probability
density function.

where 𝛱(v) and 𝛷(w) are the cumulative distributions of v(s) and w(s),

Π(v) =

v

∫
0

P(v′)dv′, Φ(w) =

w

∫
−∞

𝜙(w′)dw′. (37)

The latter is given byΦ(w) = [1+erf(w∕
√

2)]∕2. As𝜙(s) is a unit Gaussian,
this map generates w(s) as the normal score of vs(s). This map guaran-
tees that p(v, s) evolves from any initial distribution p0(v) toward its steady
state P(v) on the relaxation scale 𝓁c, which is set equal to the one deter-
mined for the Bernoulli model in the previous section. Note that all the
normal scores w(s) evolve with the same rate 𝓁−1

c . Note that the transition
probability rw(w,Δs|w′ ) is given by the Gaussian distribution (Risken,
1996)

rw(w,Δs|w′) =
exp

(
−[w−w′ exp(−Δs∕𝓁c)]2

2[1−exp(−2Δs∕𝓁c)]

)
√

2𝜋
[
1 − exp(−2Δs∕𝓁c)

] . (38)

The transition probability for the velocity process r(v,Δs|v′ ) is given in
terms of rw(w,Δs|w′ ) according to the map (36)

r(v,Δs|v′) = rw[(v),Δs|(v′)]d(v)
dv

, (39)

which in general leads to velocity-dependent convergence rates for p(v, s).
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Figure 11. Evolution of the ensemble spatial Lagrangian velocity PDF
P(v, s) for direct particle tracking (open circles) and Ornstein-Uhlenbeck
process (solid lines) simulations from the uniform initial particle
distribution p0(v) (blue) to the steady s-Lagrangian PDF P(v) (red) at
distance s = 0, 4∕3, 4, 8, 10𝓁p. The results were respectively computed with
107 and 5 · 108 particles for the direct simulation and the model.
PDF = probability density function.

The process (34) is solved for an ensemble of particles. The initial values
w(s = 0) = w0 are obtained from vs(s = 0) = v0 by the map (36) as
w0 = 𝛷−1[𝛱(v0)], where the v0 are distributed according to p0(v). Once
w0 is obtained, the process (34) is solved numerically using an explicit
Euler scheme,

wn+1 = wn − 𝓁−1
c wnΔs +

√
2𝓁−1

c Δs𝜉n, (40)

where wn = w(nΔs) and 𝜉n is a Gaussian random variable with 0 mean
and unit variance. The value wn + 1 is transformed back to the velocity
vs(nΔs) via equation (36) at every step. The discretization of scheme (40)
is chosen such that Δs ≤ 𝓁c∕10.

Figure 11 compares the results of the velocity Markov model based on
the OU process with the data from the direct numerical simulations. The
Markov model is capable of predicting the evolution of p(v, s) in every
aspect at small, intermediate and large distances from the inlet. The veloc-
ity dependence of convergence rates in the OU-based Markov model for
vs(s) accurately captures the evolution of p(v, s) for all velocity classes.

4.4. Synthesis
In summary, based on the stationary and ergodic properties of the
s-Lagrangian velocity series, we model their stochastic dynamics as an
ergodic Markov chain. We consider three different Markov models. First
is a Markov model based on an empirical transition probability, which is

obtained from conditional equidistant velocity sampling along streamlines. This model naturally reproduces
the evolution of the s-Lagrangian velocity PDF and confirms the Markovian nature of the velocity transi-
tions. Second, we consider a Bernoulli velocity model, which at each step either persists at the velocity of
the previous step or changes to a new velocity, which is randomly sampled from the stationary s-Lagrangian
PDF. This model yields an evolution of the s-Lagrangian PDF from an initial to the stationary PDF. How-
ever, it uses the same convergence rate for all velocity classes, which does not capture the evolution at small
velocities. Third, we consider a velocity transition model that is based on an OU process for the normal
scores of the s-Lagrangian velocities. This process correctly predicts the full evolution of the s-Lagrangian
velocity PDF and is parameterized by the stationary Lagrangian velocity PDF and a characteristic relaxation
scale 𝓁c. The former is related to the Eulerian velocity PDF, a flow attribute; the latter is of the order of the
characteristic pore length. Thus, this stochastic velocity model can be parameterized in terms of hydraulic
and geometric characteristics of the porous medium.

5. Conclusions
We have presented a comprehensive analysis of Lagrangian pore-scale velocity series. Even though the study
is based on velocity data in the three-dimensional pore structure obtained from X-ray microtomography of a
Berea sandstone sample, the presented methods and results are valid for particle motion in steady pore-scale
flows in general. Our analysis has revealed the stochastic dynamics of particle velocities and led to the for-
mulation of a predictive modeling approach for the velocity evolution based on Markov processes for the
streamwise Lagrangian velocities. These results are part of the endeavor of setting up an upscaling frame-
work for hydrodynamic flow and transport from the pore to the Darcy scale. The past years have seen a
significant increase of experimental and numerical pore-scale studies along with improved imaging tech-
niques and computational resources. The presented methods for the statistical analysis of pore-scale velocity
data provide new tools for the interpretation of such experimental and numerical data and their use in the
upscaling of flow and transport.

The evolution of the velocity statistics represents a key feature that needs to be accounted for both in the
interpretation of experimental and numerical velocity data and in the modeling and upscaling of particle
transport. For example, in particle tracking and particle imaging velocimetry, the measured velocity distri-
butions may be dependent on the initial preparation (this means on the seeding of the injection volume with
particles) and not be representative of the porous sample. Furthermore, data analysis often invokes station-
arity of the measured particle velocities, which in general, however, is not the case and depends again on
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the injection condition. Pore-scale velocity variability is at the origin of hydrodynamic dispersion and other
transport phenomena observed on the Darcy scale. The Kubo formula provides a measure for hydrodynamic
dispersion in terms of the time integral of the t-Lagrangian velocity covariance,

(t) =

t

∫
0

⟨v′t(t′)v′t(t)⟩dt′, (41)

where v′

t(t) denotes the fluctuation of the t-Lagrangian velocity around its mean. Dispersion in general
evolves in time and depends on the initial conditions (stationary or nonstationary) and the time evolution
of the velocity statistics. For example, dispersion at times smaller than the advection time 𝜏v is ballistic and
given by (t) = 𝜎2

0 t where 𝜎2
0 is the variance of the PDF of initial velocities p0(v), which clearly depends

on the initial velocity distribution. The asymptotic behavior is determined by the velocity correlation time
and velocity variance, which are related to the intermittent temporal velocity signals. The tailing of particle
breakthrough curves is determined by the occurrence of low velocities and their spatial persistence. Thus,
the retention phenomena also depends on the evolution of the velocity statistics and the initial prepara-
tion of the system. For example, a uniform initial particle distribution emphasizes more the low end of the
velocity spectrum than a flux-weighted. Thus, the corresponding breakthrough curves, or residence time
distributions in a sample, may be significantly different depending on the initial conditions.

These behaviors as they evolve in time hold a certain complexity, which is reflected in the intermittent
features of Lagrangian velocity time series. This complexity can be removed by applying a different sampling
protocol, namely, by sampling equidistantly along particle trajectories. This streamwise spatial point of view
provides a significant simplification of otherwise complex phenomena and thus opens new possibilities for
transport modeling and upscaling. The formulation of the s-Lagrangian velocity magnitude as an ergodic
Markov chain renders particle motion naturally as a (correlated) continuous time random walk (Berkowitz
et al., 2006; Dentz et al., 2016; Le Borgne et al., 2008) or time-domain random walk (Benke & Painter, 2003;
Painter & Cvetkovic, 2005), because streamwise particle motion can be modeled in terms of fixed spatial
steps Δs, which take the random time 𝜏 = Δs∕vs.

sn+1 = sn + Δs, tn+1 = tn + 𝜏n. (42)

The Markov property of the s-Lagrangian velocity is transferred to the transition times 𝜏 whose distribu-
tion evolves in time just like the s-Lagrangian velocity PDF. CTRW formulations that are based on a single
transition time distribution 𝜓(t) are not able to model the impact of nonstationary initial conditions from
the s-Lagrangian point of view, or stationary initial conditions from a t-Lagrangian point of view. Note that
the process (42) describes particle motion along a tortuous streamline. The motion in three-dimensional
Cartesian coordinates can be obtained either by an additional characterization of the direction vector
𝜔(s, a) = v[x(s, a)]∕ve[x(s, a)] in equation (6) as a stochastic process, or the projection of the stream-
wise motion on the mean flow direction in terms of the advective tortuosity (Koponen et al., 1996; Dentz
et al., 2018).

The OU process for the normal scores of the s-Lagrangian velocities correctly predicts the full evolution of
the s-Lagrangian velocity PDF and is parameterized by the stationary Lagrangian velocity PDF and the char-
acteristic correlation scale. The former is related to the Eulerian velocity PDF, a flow attribute; the latter is
of the order of the characteristic pore length. This stochastic velocity model can be parameterized in terms
of hydraulic and geometric characteristics of the porous medium. Thus, it is a predictive model in the sense
that it can be based on the characterization of transport independent quantities, which is an important step
for flow and transport upscaling from the pore to the Darcy scale. While significant progress has been made
(Alim et al., 2017; De Anna et al., 2017; Dentz et al., 2018), the relation between pore structure and pore veloc-
ity distribution still remains an open issue. In addition to the OU velocity model, we consider a Bernoulli
process, which reproduces the velocity evolution qualitatively but lacks the correct convergence rates for
low and intermediate velocities. Yet, due to its simplicity, it may serve to obtain fast qualitative estimates of
transport features related to the evolution of particle velocity statistics. Finally, note that the methodology
used here applies to transport in steady flow through heterogeneous media in general, for which a relaxation
of the Lagrangian velocity statistics toward a steady state can be observed such as Darcy-scale fractured and
porous media (Cvetkovic et al., 1996; Dentz et al., 2016; Kang et al., 2017; Le Borgne et al., 2007).
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We consider here purely advective particle motion and do not account for the effect of diffusion on parti-
cle motion. Thus, the derived stochastic framework is directly relevant for advection-dominated pore-scale
transport. In fact, practically relevant pore-scale Peclet numbers may range from 10−2 to 106 (Bear, 1972;
Bijeljic & Blunt, 2006). In the presented Markov models, velocity transitions occur essentially with a fixed
spatial frequency which is given by the inverse velocity correlation length. In the presence of diffusion, veloc-
ity transitions can also occur due to particle transitions between streamlines, a process that is related to a
constant frequency in time, namely, the inverse diffusion time over the characteristic velocity length scale.
Advective and diffusive velocity transitions may depend on a local Péclet number. Thus, the derived Markov
model provides a basis to account for the impact of velocity variability and diffusion on hydrodynamic dis-
persion. Furthermore, pore-scale flow variability has an impact on processes such as the filtration of colloidal
particles and bacteria (Liang et al., 2018) as well as mixing between dissolved chemicals (Kree & Villermaux,
2017), while these processes are also affected by other factors such as volume exclusion and interactions
with the solid matrix as well as diffusion; for example, the derived stochastic model for Lagrangian particle
velocities may serve as a starting point to account systematically for the effect of hydrodynamic variability.

In summary, the fact that the Lagrangian velocity statistics are stationary allows for the stochastic descrip-
tion of the s-Lagrangian velocity dynamics as an ergodic Markov chain. This stochastic framework
renders particle motion as a correlated continuous time random walk. The consequences of the stochas-
tic s-Lagrangian velocity dynamics for the prediction of preasymptotic spatial and temporal transport
characteristics and their systematic upscaling are studied elsewhere.

Appendix A: Equidistant and Isochronous Ensemble Statistics
In this section, we discuss the relations between the s- and t-Lagrangian ensemble statistics for finite
sampling domains.

A1. Equidistant Sampling: s-Lagrangian Statistics
The ensemble s-Lagrangian velocity PDF is obtained by sampling the velocity magnitude vs(s, a) at a given
streamline distance s in the flux-weighted ensemble of particles comprised in the injection domain Ω0

P(v, s) = 1
V0 ∫Ω0

v0(a)⟨v0(a)⟩𝛿[v − vs(s, a)]da, (A1)

each particle being weighted by its initial velocity. This PDF can be computed for any distance s ≥ 0 and in
general evolves with distance. The mixed s-Lagrangian PDF is defined by sampling along streamlines and
between particles as

Pm(v,L) =
1
L ∫

L

0

1
V0 ∫Ω0

v(a)⟨v(a)⟩𝛿[v − vs(s, a)]dads. (A2)

This method samples more statistics than its ensemble and streamwise counterparts since it integrates over
all particles labeled by a and distances s traveled. Under ergodic conditions, sampling along streamlines
and ensemble sampling are equivalent. As discussed in the main text, this can be achieved for sampling
distances L and initial volumes V0 large enough that a representative part of the velocity variability can be
experienced. Under these conditions, the streamwise, ensemble and mixed s-Lagrangian PDFs are identical
and independent of L and a (streamwise) and s (ensemble),

(v) = P(v) = Pm(v). (A3)

Figure A1 shows the streamwise, ensemble and mixed s-Lagrangian PDFs for L ≈ 108𝓁c in the streamwise
case and s = 7𝓁c for the ensemble. The three different PDFs are in very good agreement, which implies that
the reinjection method detailed in section 2.2.2 is ergodic (convergence of the streamwise PDF), and that
stationary conditions are already attained within the sample size (convergence of the ensemble PDF). The
evolution of the ensemble s-Lagrangian PDF is analyzed in detail in section 3.2. As the different statistics
are identical in steady state, we refer to the steady state distribution as P(v).
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Figure A1. Comparison between the streamwise (v) (orange dashed line), ensemble P(v) (blue circles, computed with
107 particles), and mixed Pm(v) (solid black line, computed with 105 particles) of the s-Lagrangian velocity PDFs.
PDF = probability density function.

A2. Equidistant Sampling: s-Eulerian Statistics
The fluid flow map 𝜑s, defined as

𝜑s ∶ a → x(s, a) (A4)

maps the initial particle position a on the particle position x(s, a) at distance s according to (6). The s-Eulerian
velocity PDF is obtained by volumetric sampling of the Eulerian velocity magnitude ve(x) in the subdomain
Ω(s) = 𝜑s(Ω0) ⊂ Ωf , where Ωf is the flow domain,

Pe(v, s) =
1

V(s)∫Ω(s)
𝛿[v − ve(x)]dx. (A5)

The relation between the s-Eulerian velocity PDF Pe(v, s) and the ensemble s-Lagrangian velocity PDF P(v, s)
is obtained by using the map (A4) in order to transform the integration variable a → x in (A1). Note that
the map (A4) is not volume preserving. Thus, V(s) ≠ V(t). In section B1 we show that

P(v, s) = v
𝜇e(s)

Pe(v, s), (A6)

with the s-Eulerian mean velocity 𝜇e(s). Equation (A6) means that the s-Lagrangian and s-Eulerian velocity
PDFs are related through flux weighting. The s-Eulerian mean velocity 𝜇e(s) is

𝜇e(s) =

∞

∫
0

Pe(v, s)dv, (A7)

which in general evolves with distance s. Under ergodic conditions, the s-Eulerian PDF is stationary and thus
independent from s, Pe(v, s) = Pe(v) and 𝜇e(s) = ⟨ve⟩. The Lagrangian and Eulerian statistics are related by

P(v) = v⟨ve⟩Pe(v). (A8)

A3. Isochronous Sampling: t-Lagrangian Statistics
Sampling of the velocity magnitude vt(t, a) between particles gives the ensemble t-Lagrangian PDF

P̂(v, t) = 1
V0 ∫Ω0

𝛿[v − vt(t, a)]da, (A9)

where Ω0 is the fluid domain in which particles are initially placed, and V0 is its volume. The mixed
t-Lagrangian PDF samples velocity magnitudes both between particles and along particle trajectories

P̂m(v,T) =
1

V0 ∫Ω0

1
T ∫

T

0
𝛿[v − vt(t, a)]dtda. (A10)
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Figure A2. Comparison of the streamwise ̂(v) (orange dashed line), ensemble P̂(v) (blue circles, computed with 106

particles), and mixed P̂m(v) (solid black line, computed with 104 particles) of the t-Lagrangian velocity PDFs.
PDF = probability density function.

The mixed method is often used for the empirical determination of velocity statistics from particle tracking
velocimetry because it yields better statistics than either sampling along a single trajectory or between parti-
cles. Under ergodic conditions, the sampling of the velocity magnitude along a streamline for a long enough
time T is identical to ensemble sampling for a large enough time t. The sampling time T and initial domain
Ω0 need to be large enough such that the sampled velocity variability is representative. Under these condi-
tions, ̂(v,T, a) = ̂(v) is independent of a and T and P̂(v, t) = P̂(v) is independent of the sampling time t
such that

̂(v) = P̂(v) = P̂m(v). (A11)

Figure A2 shows ̂(v,T, a), P̂(v, t,V0), and P̂m(v,T,V0). The three statistics are in good agreement, which
indicates that in the numerical simulations, ergodic conditions are reached.

A4. Isochronous Sampling: t-Eulerian Statistics
The fluid flow map

𝜑t ∶ a → x(t, a) (A12)

maps the initial particle position a on the position x(t, a) at time t. The t-Eulerian velocity PDF corresponding
to P̂t(v, t) is obtained by volumetric sampling of the Eulerian velocity magnitude ve(x) in the subdomain
Ω̂(t) = 𝜑t(Ω0),

P̂e(v, t) =
1

V0 ∫Ω̂(t)
𝛿
[
v − ve(x)

]
dx. (A13)

Note that Ω̂(t) is the domain occupied by the particles after time t. Its volume V̂(t) equals the initial volume
V̂(t) = V0 because the map (A12) is volume conserving. The t-Lagrangian PDF P̂(v, t) can be related to the
t-Eulerian PDF P̂e(v, t) by using the map (A12) in (A9) to transform the integration variable from a → x.
Thus, we obtain

P̂(v, t) ≡ P̂e(v, t), (A14)

see section B2. Note that the Jacobian of the map 𝜑t is 1, again because v(x) is volume conserving. Also note
that this is a purely kinematic relation, which is true independently of the question whether the system is
ergodic or not. Under ergodic conditions, (A11) and (A14) imply that the Eulerian statistics are independent
of t, P̂e(v, t) = P̂e(v) and

P̂e(v) = P̂(v) = ̂(v). (A15)

In the following, we refer to the steady state distribution as P̂(v) because the three statistics are identical in
the steady state.
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Figure A3. Ensemble t-Lagrangian PDF P̂(v) (full circles, computed with 106 particles) and s-Lagrangian PDF P(v)
(open circles, computed with 107 particles) and the flux-weighting relation (A16) (solid line). PDF = probability density
function.

A5. Relations Between Isochronous and Equidistant Statistics
We have seen in (A15) that the statistics of the isochronously sampled Lagrangian velocity ̂(v) along a
trajectory equals the Eulerian velocity statistics P̂e(v)under ergodic conditions and that the streamwise s- and
t- Lagrangian velocity statistics are related through a flux weighted relation (17). Furthermore, under ergodic
conditions, we know from (A3) that the ensemble equals the streamwise s-Lagrangian PDF, P(v) = (v),
and from (A11) that the ensemble is identical to the streamwise t-Lagrangian PDF, P̂(v) = ̂(v). Thus, we
obtain from (17) the following relation

P(v) = v⟨ve⟩ P̂(v). (A16)

Figure A3 compares the ensemble t- and s-Lagrangian statistics at t = 9 · 103𝜏c and s = 7𝓁p. Both statistics
are in good agreement with respect to relations (17) and (A16), which confirms again that ergodic conditions
are attained. Furthermore, note that under ergodic conditions the steady s-Lagrangian PDF P(v) is related to
the s-Eulerian PDF by relation (A8), while the steady t-Lagrangian is equal to the t-Eulerian PDF (see (A11)).
Thus, the s- and t-Eulerian velocity PDFs are identical under ergodic conditions,

Pe(v) = P̂e(v). (A17)

These relations imply that the t-Lagrangian velocity statistics are stationary for the initial distribution Pe(v),
which corresponds to a uniform injection over an area or volume that is large enough to be ergodic. The
s-Lagrangian statistics are accordingly stationary for a flux-weighted injection over a large enough injection
domain.

Furthermore, we have defined s- and t- Eulerian velocity distributions, which correspond to the respective
s- and t-Lagrangian statistics. The Eulerian distributions are obtained by volumetric sampling in the sub-
volumes Ω(s) and Ω̂(t) which are obtained by mapping the injection domain Ω0 by the respective flow maps
𝜑s and 𝜑t. The s-Lagrangian and s-Eulerian velocity PDFs are related by flux-weighting according to (A6);
the t-Eulerian and Lagrangian are identical (see (A14)).

Appendix B: Relations Between s- and t-Lagrangian Statistics
In the following, we provide some details on the derivation of the relations between s- and t-Lagrangian
statistics reported on in the previous section.
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B1. Relation Between the s-Eulerian Velocity PDF Pe(v, s) and the Ensemble s-Lagrangian
Velocity PDF P(v, s)
We derive the relation between the s-Eulerian velocity PDF Pe(v) and the ensemble s-Lagrangian velocity
PDF P(v, s). P(v, s) is defined as

P(v, s) = 1
V0 ∫Ω0

v(a)⟨v(a)⟩𝛿[v − vs(s, a)]da, (B1)

which is originally defined on the initial injection domain Ω0 and is parameterized through flux weight-
ing. V0 is the volume of Ω0, and a is the initial position of particle a. We can derive this definition to any
domain Ω(s), which is the domain occupied by the particles after they have traveled the distance s along
their streamline, this is achieved using the map a → x(s, a). Doing so we obtain

P(v, s) = 1
V0 ∫Ω(s)

J(s, a)−1 v(a)⟨v(a)⟩𝛿[v − ve(x(s, a))]dx, (B2)

where J(s, a) = ||dx(s, a)∕da|| is the Jacobian of the transformation. It can be determined as follows. First,
we note that its derivative is given by (Batchelor, 2000, p., 75)

d
ds

J(s, a) = J(s, a)∇ ·
(

v[x(s, a)]
vs(s, a)

)
, (B3)

which can be expanded to

d
ds

J(s, a) = −J(s, a)
v[x(s, a)] · ∇vs(s, a)

vs(s, a)2 , (B4)

where we used that ∇ · v(x) = 0. We obtain for the derivative of vs(s, a) = ve[x(s, a)] with respect to s,

dvs(s, a)
ds

=
v[x(s, a)] · ∇vs(s, a)

vs
, (B5)

where we used (6). Thus, equation (B4) reduces to

d
ds

J(s, a) = − 1
vs(s, a)

dvs(s, a)
ds

J(s, a). (B6)

Integrating the differential equation (B6) for the initial condition J(s = 0, a) = 1 yields

J(a, s) =
ve(a)

ve[x(s, a)]
. (B7)

Which leads to

P(v, s) = 1
V0 ∫Ω(s)

v(a)⟨v(a)⟩ v(x)
v(a)

𝛿[v − ve(x(s, a))]dx, (B8)

P(v, s) = 1
V0 ∫Ω(s)

v(x)⟨v(a)⟩𝛿[v − ve(x(s, a))]dx, (B9)

and because of the Dirac-delta,

P(v, s) = 1
V0

v⟨v(a)⟩∫Ω(s)
𝛿[v − ve(x(s, a))]dx. (B10)

Furthermore, we have 1⟨v(a)⟩ = V0⟨v(x)⟩V(s)
, which can be seen as follows. First, we observe that

∫Ω0

v(a)⟨v(a)⟩da = V0 (B11)

by definition. Using the transformation a → x(s, a), we can obtain

∫Ω(s)
J
−1 v(a)⟨v(a)⟩dx = ∫Ω(s)

v(x)
v(a)

v(a)⟨v(a)⟩dx = ∫Ω(s)

v(x)⟨v(a)⟩dx = V0, (B12)
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which implies that

⟨v(a)⟩ = V(s)
V0

[
1

V(s)∫Ω(s)
v(x)dx

]
=

V(s)⟨v(x)⟩
V0

. (B13)

Inserting this in equation (B10) gives

P(v, s) = 1
V0

v⟨v(x)⟩ V0

V(s)∫Ω(s)
𝛿[v − vs(s, a)]dx = v⟨v(x)⟩Pe(v, s). (B14)

This shows that the ensemble s-Langrangian velocity PDF is related to the s-Eulerian velocity PDF through
flux weighting.

B2. Relation Between the t-Eulerian Velocity PDF Pe(v, t) and the Ensemble t-Lagrangian
Velocity PDF P̂(v, t)
Keeping the same spirit, we derive the relation between the Eulerian temporal velocity PDF P̂e(v, t) and the
ensemble temporal velocity PDF P̂(v, t). Starting with the definition of P̂(v, t):

P̂(v, t) = 1
V0 ∫Ω0

𝛿[v − vt(t, a)]da, (B15)

and changing variable according to the map a → x(t, a), we obtain

P̂(v, t) = 1
V0 ∫Ω(t)

J
−1𝛿(v − ve[x(t, a)])dx, (B16)

P̂(v, t) = 1
V0 ∫Ω(t)

𝛿(v − ve[x(t, a)])dx, (B17)

because the map is volume conserving and therefore J = 1. And again from volume conservation V0 = V(t)
which gives for equation (B17)

P̂(v, t) = 1
V(t)∫Ω(t)

𝛿(v − ve[x(t, a)])dx = P̂e(v, t). (B18)

B3. Relation Between the Ensemble s-Lagrangian Velocity PDF P(v, s) and the Ensemble
t-Lagrangian Velocity PDF P̂(v, t)
Then, we can derive the relation between ensemble s-Lagrangian velocity PDF P(v, s) and the ensemble
t-Lagrangian velocity PDF P̂(v, t); starting with the definition of P̂(v, t) we have

p̂(v, t) = ∫Ω0

𝛿(v − ve[x(t), a)])𝜌(a)da, (B19)

= ∫Ω0

𝛿(v − ve[x(s(t), a)])𝜌(a)da, (B20)

since x(t, a) = x(s(t), a). Then we can write it as

p̂(v, t) = ∫ ∫Ω0

𝛿[s − s(t, a)]𝛿[v − ve(x[s(t), a])]𝜌(a)dads. (B21)

And then using the fact that

𝛿[𝑓 (x)] =
∑

i

1
𝑓 ′(xi)

𝛿(x − xi), (B22)

we obtain

𝛿[s − s(t, a)] = 1
ve[x(s, a)]

𝛿[t − t(s, a)]. (B23)

Inserting this in equation (B21) leads to

p̂(v, t) = ∫ ∫Ω0

1
ve[x(s, a)]

𝛿[t − t(s, a)]]𝛿[v − ve[x(s, a)]]𝜌(a)dads, (B24)
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= 1
v ∫ ∫Ω0

𝛿[t − t(s, a)]𝛿[v − ve[x(s, a)]]𝜌(a)dads. (B25)

Then, recognizing that the inside integral is actually p(v, t, s), that is, the joint PDF of time and velocity in
space, we have

p̂(v, t) = 1
v ∫ p(v, t, s)ds, (B26)

where p(v, t, s) is the joint PDF of velocity vs(s, a) and particle time t(s, a),

p(v, t, s) = ∫ 𝛿[v − vs(s, a)]𝛿[t − t(s, a)]𝜌(a)da. (B27)
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