, Mise en oeuvre de la stratégie mondiale de lutte antipaludique, Geneva: World Health Organization, 1993.

, Geneva: World Health Organization, WHO. World health statistics 2011. WHO Statistical Information System (WHOSIS), 2011.

M. Zaim, A. Aitio, and N. Nakashima, Safety of pyrethroid-treated mosquito nets, Med Vet Entomol, vol.14, pp.1-5, 2000.

A. E. Lund and T. Narahashi, Kinetics of sodium channel modification as the basis for the variation in the nerve membrane effects of pyrethroids and DDT analogs, Pest Biochem Physiol, vol.20, pp.203-219, 1983.

. Who, WHO recommended long-lasting insecticidal mosquito nets. Geneva: World Health Organization, 2009.

D. Martinez-torres, F. Chandre, M. S. Williamson, F. Darriet, J. B. Berge et al., Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s, Insect Mol Biol, vol.7, pp.179-84, 1998.
URL : https://hal.archives-ouvertes.fr/halsde-00201819

H. Ranson, B. Jensen, J. M. Vulule, X. Wang, J. Hemingway et al., Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids, Insect Mol Biol, vol.9, pp.491-498, 2000.

D. Pauron, J. Barhanin, M. Amichot, M. Pralavorio, J. B. Berge et al., Pyrethroid receptor in the insect Na+ channel: alteration of its properties in pyrethroid-resistant flies, Biochem J, vol.28, pp.1673-1680, 1989.

N. Liu, Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions, Annu Rev Entomol, vol.60, pp.537-59, 2015.

W. N. Aldridge, Some properties of specific cholinesterase with particular reference to the mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E 605) and analogues, Biochem J, vol.46, pp.451-60, 1950.

T. R. Fukuto, Mechanism of action of organophosphorus and carbamate insecticides, Environ Health Perspect, vol.87, pp.245-54, 1990.

D. Fournier and A. Mutero, Modification of acetylcholinesterase as a mechanism of resistance to insecticides, Comp Biochem Physiol C Comp Pharmacol Toxicol, vol.108, pp.19-31, 1994.

M. Weill, P. Fort, A. Berthomieu, M. P. Dubois, N. Pasteur et al., A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila, Proc Biol Sci, vol.269, pp.2007-2023, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01946120

M. Weill, G. Lutfalla, K. Mogensen, F. Chandre, A. Berthomieu et al., Comparative genomics: insecticide resistance in mosquito vectors, Nature, vol.423, pp.136-143, 2003.

H. Alout, L. Djogbénou, C. Berticat, F. Chandre, and M. Weill, Comparison of Anopheles gambiae and Culex pipiens acetylcholinesterase 1 biochemical properties, Comp Biochem Physiol B Biochem Mol Biol, vol.150, pp.271-278, 2008.

M. Ditzen, M. Pellegrino, and L. B. Vosshall, Insect odorant receptors are molecular targets of the insect repellent DEET, Science, vol.319, pp.1838-1880, 2008.

M. Degennaro, C. S. Mcbride, L. Seeholzer, T. Nakagawa, E. J. Dennis et al., orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET, Nature, vol.498, pp.487-91, 2013.

V. Corbel, M. Stankiewicz, C. Pennetier, D. Fournier, J. Stojan et al., Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent DEET, BMC Biol, vol.7, p.47, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409532

N. M. Stanczyk, J. Brookfield, R. Ignell, J. G. Logan, and L. M. Field, Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function, Proc Natl Acad Sci USA, vol.107, pp.8575-80, 2010.

, Geneva: World Health Organization, WHO Statistical Information System (WHOSIS), 2008.

M. Akogbeto and S. Yakoubou, Resistance of malaria vectors to pyrethroids used for impregnated bednets, Bull Soc Path Exot, vol.92, pp.123-153, 1999.

H. Ranson, N. 'guessan, R. Lines, J. Moiroux, N. Nkuni et al., Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?, Trends Parasitol, vol.27, pp.91-99, 2011.

V. Corbel, F. Chandre, C. Brengues, M. Akogbéto, F. Lardeux et al., Dosage-dependent effects of permethrin-treated nets on the behaviour of Anopheles gambiae and the selection of pyrethroid resistance, Malar J, vol.8, p.22, 2004.

, Global plan for insecticide resistance management in malaria vectors. Geneva: World Health Organization, 2012.

F. Chandre, F. Darriet, S. Duchon, L. Finot, S. Manguin et al., Modifications of pyrethroid effects associated with kdr mutation in Anopheles gambiae, Med Vet Entomol, vol.14, pp.81-89, 2000.

M. C. Henry, S. B. Assi, C. Rogier, J. Dossou-yovo, F. Chandre et al., Protective efficacy of lambda-cyhalothrin treated nets in Anopheles gambiae pyrethroid resistance areas of Côte d'Ivoire, Am J Trop Med Hyg, vol.73, pp.859-64, 2005.

R. N'guessan, V. Corbel, M. Akogbéto, and M. Rowland, Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis, vol.13, pp.199-206, 2007.

E. Deletre, T. Martin, P. Campagne, D. Bourguet, A. Cadin et al., Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito, PLoS One, vol.8, p.82103, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01189831

E. Deletre, F. Chandre, L. Williams, C. Duménil, C. Menut et al., Electrophysiological and behavioral characterization of bioactive compounds of the Thymus vulgaris, Cymbopogon winterianus, Cuminum cyminum and Cinnamomum zeylanicum essential oils against Anopheles gambiae and prospects for their use as bednet treatments, Parasit Vectors, vol.8, p.316, 2015.

R. F. Flattum and D. L. Shankland, Acetylcholine receptors and the diphasic action of nicotine in the American cockroach

, Comp General Pharmacol, vol.2, pp.159-67, 1971.

M. Amar, Y. Pichon, and I. Inoue, Micromolar concentrations of vetradine activate sodium channels in embryonic cockroach neurons in culture, Pflugers Arch, vol.417, pp.500-508, 1991.

A. N. Moretti, E. N. Zerba, and R. A. Alzogaray, Behavioral and toxicological responses of Rhodnius prolixus and Triatoma infestans (Hemiptera: Reduviidae) to 10 monoterpene alcohols, J Med Entomol, vol.50, pp.1046-54, 2013.
DOI : 10.1603/me12248

M. B. Isman, Plant essential oils for pest and disease management, Crop Prot, vol.19, pp.603-611, 2000.

M. B. Isman, Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world, Annu Rev Entomol, vol.51, pp.45-66, 2006.
DOI : 10.1146/annurev.ento.51.110104.151146

C. Regnault-roger, C. Vincent, and J. T. Arnason, Essential oils in insect control: low-risk products in a high-stakes world, Annu Rev Entomol, vol.57, pp.405-429, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01557865

T. Dekker, R. Ignell, M. Ghebru, R. Glinwood, and R. Hopkins, Identification of mosquito repellent odours from Ocimum forskolei, Parasit Vectors, vol.4, p.183, 2011.

E. Deletre, B. Schatz, D. Bourguet, F. Chandre, L. Williams et al., Prospects for repellent in pest control: current developments and future challenges, Chemoecology, vol.26, pp.127-169, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01608606

P. Kain, S. M. Boyle, S. K. Tharadra, T. Guda, C. Pham et al., Odour receptors and neurons for DEET and new insect repellents, Nature, vol.502, pp.507-519, 2013.

D. R. Swale, B. Sun, F. Tong, and J. R. Bloomquist, Neurotoxicity and mode of action of N,N-diethyl-meta-toluamide (DEET), PLoS One, vol.9, p.103713, 2014.

A. Abd-ella, M. Stankiewicz, K. Mikulska, W. Nowak, C. Pennetier et al., The repellent DEET potentiates carbamate effects via insect muscarinic receptor interactions: an alternative strategy to control insect vector-borne diseases, PLoS One, vol.10, p.126406, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392512

M. D. López and M. J. Pascual-villalobos, Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control, Ind Crops Prod, vol.31, pp.284-292, 2010.

M. M. Moran, H. Xu, and D. E. Clapham, TRP ion channels in the nervous system, Curr Opin Neurobiol, vol.14, pp.362-371, 2004.

K. Nagata, TRP channels as target sites for insecticides: physiology, pharmacology and toxicology, Invert Neurosci, vol.7, pp.31-38, 2007.

M. Parnas, M. Peters, D. Dadon, S. Lev, I. Vertkin et al., Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels, Cell, vol.45, pp.300-309, 2009.

S. A. Abdelgaleil, M. I. Mohamed, M. E. Badawy, . El-arami, and . Sa, Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity, J Chem Ecol, vol.35, pp.518-543, 2009.

M. Jukic, O. Politeo, M. Maksimovic, M. Milos, and M. Milos, In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone, Phytother Res, vol.21, pp.259-61, 2007.

J. A. Anderson and J. R. Coats, Acetylcholinesterase inhibition by nootkatone and carvacrol in arthropods, Pestic Biochem Physiol, vol.102, pp.124-132, 2012.

C. Regnault-roger and A. Hamraoui, Lutte contre les insectes phytophages par les plantes aromatiques et leurs molécules allélochimiques, Acta Bot Gallica, vol.144, pp.401-413, 1997.
DOI : 10.1080/12538078.1997.10515779

I. Dusfour, N. L. Achee, D. R. Roberts, and J. P. Grieco, Contact irritancy and repellency behaviors in Anopheles albimanus Wiedemann (Diptera: Culicidae) collected in, vol.34, pp.232-239, 2009.
DOI : 10.3376/038.034.0209

N. L. Achee, M. R. Sardelis, I. Dusfour, K. R. Chauhan, and J. P. Grieco, ? fast, convenient online submission ? thorough peer review by experienced researchers in your field ? rapid publication on acceptance ? support for research data, including large and complex data types ? gold Open Access which fosters wider collaboration and increased citations maximum visibility for, J Am Mosq Control Assoc, vol.25, pp.156-67, 2009.

, Choose BMC and benefit from

H. Imgrund, Department of Pesticide Regulation, 2003.

G. White, Terminology of insect repellents, Insect repellents: principles, methods and uses, 2007.
DOI : 10.1201/b17407-3

J. M. Wagman, N. L. Achee, and J. P. Grieco, Insensitivity to the spatial repellent action of transfluthrin in Aedes aegypti: a heritable trait associated with decreased insecticide susceptibility, PLoS Negl Trop Dis, vol.9, p.3726, 2015.

W. Boonyuan, M. J. Bangs, J. P. Grieco, S. Tiawsirisup, A. Prabaripai et al., Excito-repellent responses between Culex quinquefasciatus permethrin susceptible and resistant mosquitoes, J Ins Behav, vol.29, pp.415-446, 2016.
DOI : 10.1007/s10905-016-9570-4

C. F. Curtis, J. D. Lines, J. Ijumba, A. Callaghan, N. Hill et al., The relative efficacy of repellents against mosquito vectors of disease, Med Vet Entomol, vol.1, pp.109-128, 1987.

A. Badolo, E. Ilboudo-sanogo, A. P. Ouédraogo, and C. Costantini, Evaluation of the sensitivity of Aedes aegypti and Anopheles gambiae complex mosquitoes to two insect repellents: DEET and KBR 3023, Trop Med Int Health, vol.9, pp.330-334, 2004.

C. Costantini, A. Badolo, and E. Ilboudo-sanogo, Field evaluation of the efficacy and persistence of insect repellents DEET, IR3535, and KBR 3023 against Anopheles gambiae complex and other Afrotropical vector mosquitoes, Trans R Soc Trop Med Hyg, vol.98, pp.644-52, 2004.

J. P. Grieco, N. L. Achee, M. R. Sardelis, K. R. Chauhan, and D. R. Roberts, A novel high-throughput screening system to evaluate the behavioural response of adult mosquitoes to chemicals, J Am Mosq Control Assoc, vol.21, pp.404-415, 2005.

, Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC/MAL/98(12). Geneva: World Health Organization, 1998.

S. Holm, A simple sequentially rejective multiple test procedure, Scand J Stat, vol.6, pp.65-70, 1979.

W. Püntener, Manual for field trials in plant protection, 1981.