A. Kulkarni, S. Siahrostami, A. Patel, and J. K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction, Chem. Rev, vol.118, pp.2302-2312, 2018.

S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat et al., A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells, J. Mater. Chem. A, vol.5, pp.1808-1825, 2017.

Y. Nie, L. Li, and Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem. Soc. Rev, vol.44, pp.2168-2201, 2015.

B. P. Setzler, Z. Zhuang, J. A. Wittkopf, and Y. Yan, Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells, Nat. Nanotechnol, vol.11, pp.1020-1025, 2016.

M. Shao, Q. Chang, J. Dodelet, and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction, Chem. Rev, vol.116, pp.3594-3657, 2016.

R. Chattot, O. L. Bacq, V. Beermann, S. Kühl, J. Herranz et al., Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis, Nat. Mater, vol.17, pp.827-833, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01856128

X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu et al., High-performance transition metal-doped Pt 3 Ni octahedra for oxygen reduction reaction, Science, vol.348, pp.1230-1234, 2015.

V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross et al., Improved oxygen reduction activity on Pt 3 Ni(111) via increased surface site availability, Science, vol.315, pp.493-497, 2007.

L. Chong, J. Wen, J. Kubal, F. G. Sen, J. Zou et al., Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks, Science, vol.362, pp.1276-1281, 2018.

N. F. Rosli, C. C. Mayorga-martinez, N. M. Latiff, N. Rohaizad, Z. Sofer et al., Layered PtTe 2 matches electrocatalytic performance of Pt/C for oxygen reduction reaction with significantly lower toxicity, ACS Sustain. Chem. Eng, vol.6, pp.7432-7441, 2018.

A. Zitolo, V. Goellner, V. Armel, M. Sougrati, T. Mineva et al., Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials, Nat. Mater, vol.14, pp.937-942, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01511266

A. Zitolo, N. Ranjbar-sahraie, T. Mineva, J. Li, Q. Jia et al., Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction, Nat. Commun, vol.8, p.957, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01617740

X. X. Wang, D. A. Cullen, Y. T. Pan, S. Hwang, M. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells, Adv. Mater, vol.30, pp.1706758-1706768, 2018.

H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos et al., Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation, J. Am. Chem. Soc, vol.139, pp.14143-14149, 2017.

C. Zhu, Q. Shi, B. Z. Xu, S. Fu, G. Wan et al., Hierarchically Porous M-N-C (M = Co and Fe) Single-atom electrocatalysts with robust MN x active moieties enable enhanced ORR performance, Adv. Energy Mater, vol.29, pp.1801956-1801963, 2018.

J. Li and F. Jaouen, Structure and activity of metal-centered coordination sites in pyrolyzed metal-nitrogen-carbon catalysts for the electrochemical reduction of O 2, Curr. Opin. Electrochem, vol.9, pp.198-206, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807265

J. Li, S. Ghoshal, W. Liang, M. Sougrati, F. Jaouen et al., Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction, Energy Environ. Sci, vol.9, pp.2418-2432, 2016.

Q. Jia, N. Ramaswamy, U. Tylus, K. Strickland, J. Li et al., Spectroscopic insights into the nature of active sites in iron-nitrogen-carbon electrocatalysts for oxygen reduction in acid, Nano Energy, vol.29, pp.65-82, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401920

Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland et al., Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity, ACS Nano, vol.9, pp.12496-12505, 2015.

C. H. Choi, H. Lim, M. W. Chung, G. Chon, N. R. Sahraie et al., The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium, Energy Environ. Sci, vol.11, pp.3176-3182, 2018.

F. Jaouen, M. Lefèvre, J. Dodelet, and M. Cai, Heat-treated Fe/N/C catalysts for O 2 electroreduction: Are active sites hosted in micropores?, J. Phys. Chem. B, vol.110, pp.5553-5558, 2006.

E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian et al., Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nat. Commun, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00739597

J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, and D. Liu, Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network, Proc. Natl. Acad. Sci, vol.112, pp.10629-10634, 2015.

Y. Chang, M. Antonietti, and T. P. Fellinger, Synthesis of nanostructured carbon through ionothermal carbonization of common organic solvents and solutions, Angew. Chem. Int. Ed, vol.54, pp.5507-5512, 2015.

J. Pampel, C. Denton, and T. Fellinger, Glucose derived ionothermal carbons with tailor-made porosity, Carbon, vol.107, pp.288-296, 2016.

T. Fellinger, Sol-gel carbons from ionothermal syntheses, J. Sol-Gel Sci. Technol, vol.81, pp.52-58, 2017.

J. Pampel, A. Mehmood, M. Antonietti, and T. Fellinger, Ionothermal template transformations for preparation of tubular porous nitrogen doped carbons, vol.4, pp.493-501, 2017.

M. Antonietti, N. Fechler, and T. Fellinger, Carbon aerogels and monoliths: Control of porosity and nanoarchitecture via sol-gel routes, Chem. Mater, vol.26, pp.196-210, 2013.

J. Li, S. Chen, W. Li, R. Wu, S. Ibraheem et al., A eutectic salt-assisted semi-closed pyrolysis route to fabricate high-density active-site hierarchically porous Fe/N/C catalysts for the oxygen reduction reaction, J. Mater. Chem. A, vol.6, pp.15504-15509, 2018.

J. Li, A. Alsudairi, Z. Ma, S. Mukerjee, and Q. Jia, Asymmetric volcano trend in oxygen reduction activity of Pt and non-Pt catalysts: In situ identification of the site-blocking effect, J. Am. Chem. Soc, vol.139, pp.1384-1387, 2017.

S. Webster, J. Maultzsch, C. Thomsen, J. Liu, R. Czerw et al., Raman characterization of nitrogen doped multiwalled carbon nanotubes, MRS Online Proc. Libr. Arch, vol.772, 2003.

A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol, vol.8, pp.235-246, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00844853

G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke et al., Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition, Nano Energy, vol.29, pp.83-110, 2016.

L. Jiao, G. Wan, R. Zhang, H. Zhou, S. Yu et al., From Metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media, Angew. Chem. Int. Ed, vol.130, pp.8661-8665, 2018.

P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions, Angew. Chem. Int. Ed, vol.56, pp.610-614, 2017.

J. Yi, R. Xu, Q. Wu, T. Zhang, K. Zang et al., Atomically dispersed iron-nitrogen active sites within porphyrinic triazine-based frameworks for oxygen reduction reaction in both alkaline and acidic media, ACS Energy Lett, vol.3, pp.883-889, 2018.

K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy et al., Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination, Nat. Commun, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01174293

J. Tu?ek, R. Zbo?il, and A. Namai, Ohkoshi, S.-I. ?-Fe 2 O 3 : An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling, Chem. Mater, vol.22, pp.6483-6505, 2010.

U. I. Kramm, I. Herrmann-geppert, J. Behrends, K. Lips, S. Fiechter et al., On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN 4 -type sites active for the ORR, J. Am. Chem. Soc, vol.138, pp.635-640, 2016.

J. Y. Chen, L. Dang, H. Liang, W. Bi, J. B. Gerken et al., Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: Detection of Fe 4+ by Mossbauer spectroscopy, J. Am. Chem. Soc, vol.137, pp.15090-15093, 2015.

R. Zboril, M. Mashlan, and D. Petridis, Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications, Chem. Mater, vol.14, pp.969-982, 2002.

S. Kamali-m, T. Ericsson, and R. Wäppling, Characterization of iron oxide nanoparticles by Mössbauer spectroscopy, Thin Solid Films, vol.515, pp.721-723, 2006.

T. Shinjo, M. Kiyama, N. Sugita, K. Watanabe, and T. Takada, Surface magnetism of ?-Fe 2 O 3 by Mössbauer spectroscopy, J. Magn. Magn. Mater, vol.35, pp.133-135, 1983.

M. T. Sougrati, V. Goellner, A. K. Schuppert, L. Stievano, and F. Jaouen, Probing active sites in iron-based catalysts for oxygen electro-reduction: A temperature-dependent 57 Fe Mössbauer spectroscopy study, Catal. Today, vol.262, pp.110-120, 2016.

U. I. Kramm, J. Herranz, N. Larouche, T. M. Arruda, M. Lefèvre et al., Structure of the catalytic sites in Fe/N/C-catalysts for O 2 -reduction in PEM fuel cells, Phys. Chem. Chem. Phys, vol.14, pp.11673-11688, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739549

H. Liang, W. Wei, Z. Wu, X. Feng, and K. Müllen, Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction, J. Am. Chem. Soc, vol.135, pp.16002-16005, 2013.

H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby et al., Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst, vol.357, pp.479-484, 2017.

Y. Li, J. Huang, X. Hu, L. Bi, P. Cai et al., Fe vacancies induced surface FeO 6 in nanoarchitectures of N-doped graphene protected ?-FeOOH: Effective active sites for pH-universal electrocatalytic oxygen reduction, Adv. Funct. Mater, vol.28, pp.1803330-1803338, 2018.

E. Negro, A. Nale, K. Vezzù, G. Pagot, S. Polizzi et al., Hierarchical oxygen reduction reaction electrocatalysts based on FeSn 0.5 species embedded in carbon nitride-graphene based supports, Electrochim. Acta, vol.280, pp.149-162, 2018.

E. Negro, A. B. Delpeuch, K. Vezzu, G. Nawn, F. Bertasi et al., Toward Pt-free anion-exchange membrane fuel cells: Fe-Sn carbon nitride-graphene core-shell electrocatalysts for the oxygen reduction reaction, Chem. Mater, vol.30, pp.2651-2659, 2018.

F. Kong, X. Fan, A. Kong, Z. Zhou, X. Zhang et al., Covalent phenanthroline framework derived FeS@Fe 3 C composite nanoparticles embedding in N-S-codoped carbons as highly efficient trifunctional electrocatalysts, Adv. Funct. Mater, vol.28, 2018.

X. Fan, F. Kong, A. Kong, A. Chen, Z. Zhou et al., Covalent porphyrin framework-derived Fe 2 P@ Fe 4 N-coupled nanoparticles embedded in N-doped carbons as efficient trifunctional electrocatalysts, ACS Appl. Mater. Interfaces, vol.9, pp.32840-32850, 2017.

J. A. Varnell, C. Edmund, C. E. Schulz, T. T. Fister, R. T. Haasch et al., Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts, Nat. Commun, 2016.

M. Reda, H. A. Hansen, and T. Vegge, DFT Study of the oxygen reduction reaction on carbon-coated iron and iron carbide, ACS Catal, vol.8, pp.10521-10529, 2018.

B. Ravel, M. Newville, and . Athena, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat, vol.12, pp.537-541, 2005.