Mine versus Wild: a plant conservation checklist of the rich Iron-Ore Ngovayang Massif Area (South Cameroon)
Vincent Droissart, Olivier Lachenaud, Gilles Dauby, Steven Dessein, Gyslène Kamdem, Charlemagne Nguembou K., Murielle Simo-Droissart, Tariq Stévant, Hermann Taedoumg, Bonaventure Sonké

To cite this version:
Vincent Droissart, Olivier Lachenaud, Gilles Dauby, Steven Dessein, Gyslène Kamdem, et al.. Mine versus Wild: a plant conservation checklist of the rich Iron-Ore Ngovayang Massif Area (South Cameroon). Plant Ecology and Evolution, Botanic Garden Meise and Royal Botanical Society of Belgium, 2019, 152 (1), pp.8-29. 10.5091/plecevo.2019.1547. hal-02079407

HAL Id: hal-02079407
https://hal.umontpellier.fr/hal-02079407
Submitted on 26 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mine versus Wild: a plant conservation checklist of the rich Iron-Ore Ngovayang Massif Area (South Cameroon)

Vincent Droissart¹,²,³,⁸,* , Olivier Lachenaud³,⁴, Gilles Dauby¹,⁵, Steven Dessein⁴, Gyslène Kamdem⁶, Charlemagne Ngoumbou K.⁶, Murielle Simo-Droissart⁶, Tariq Stévart²,³,⁴, Hermann Taedoumg⁶,⁷ & Bonaventure Sonké²,³,⁶,⁸

¹AMAP Lab, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France
²Missouri Botanical Garden, Africa and Madagascar Department, P.O. Box 299, St. Louis, Missouri 63166-0299, U.S.A.
³Herbarium et Bibliothèque de Botanique africaine, C.P. 265, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, BE-1050 Brussels, Belgium
⁴Meise Botanic Garden, Domein van Bouchout, Nieuwelaan 38, BE-1860 Meise, Belgium
⁵Evolutionary Biology and Ecology, Faculté des Sciences, C.P. 160/12, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, BE-1050 Brussels, Belgium
⁶Plant Systematics and Ecology Laboratory, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon
⁷Bioversity International, P.O. Box 2008 Messa, Yaoundé, Cameroon
⁸International Joint Laboratory DYCOFAC, IRD-UYI-IRGM, BP1857, Yaoundé, Cameroon
*Author for correspondence: vincent.droissart@ird.fr

Background and aims – The rapid expansion of human activities in South Cameroon, particularly mining in mountainous areas, threatens this region’s exceptional biodiversity. To comprehend the effects of land-use change on plant diversity and identify conservation priorities, we aim at providing a first comprehensive plant checklist of the Ngovayang Massif, focusing on the two richest plant families, Orchidaceae and Rubiaceae.

Location – The Ngovayang Massif Area (NMA) is located in the South Region of Cameroon. It is covered by lowland and submontane rainforest (100 to 1110 m elevation).

Methods – We compiled a dataset of 6116 georeferenced herbarium specimens, of which 2787 belong to Rubiaceae and Orchidaceae. We used rarefaction methods to explore sampling and diversity patterns, and investigated the altitudinal distribution of rare and/or threatened taxa.

Key results – The NMA, which houses about 1500 vascular plant taxa, is the richest documented area for Rubiaceae in Atlantic Central Africa (ACA) and the fifth for Orchidaceae, with respectively 281 and 111 taxa. Among these taxa, 178 (45%) are endemic to ACA and 67 (17%) are considered globally threatened according to IUCN categories and criteria. We show that higher elevation areas (> 750 m), which are also the main areas targeted for mining, are the richest in endangered and/or rare species. Three new records for Cameroon are reported here.

Conclusion – The NMA represents an Important Plant Area of Cameroon as confirmed by its exceptional plant diversity (> 20% of the total Flora of Cameroon), by the concentration of many threatened and/or restricted range species (10 taxa are strict endemics of the massif) as well as by the threat on rare habitats (i.e. the submontane vegetation above ~750 m elevation). A management plan involving in situ and ex situ conservation actions is urgently needed to reduce the potential threats of future mining activities.

Key words – Biodiversity, endangered species, Important Plant Area, iron and gold exploitation, new records, orchids, Rubiaceae, submontane forest.

© 2019 The Authors. This article is published and distributed in Open Access under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original work (author and source) is properly cited.

Plant Ecology and Evolution is published by Meise Botanic Garden and the Royal Botanical Society of Belgium
ISSN: 2032-3913 (print) – 2032-3921 (online)
INTRODUCTION

The flora of Cameroon is one of the richest of the African continent, with about 7000 species recorded to date (Onana 2011, Sosef et al. 2017). Only 10.6% of the Cameroonian land is covered by protected areas (UNEP-WCMC 2018), which is smaller than the global protected area coverage of 14.7% (Saura et al. 2017). The knowledge of the distribution and conservation status of African plants is still patchy, and far below the target 2 of the Global Strategy for Plant Conservation which calls for a comprehensive list of the world’s threatened plant species by 2020. Cameroon has been relatively well explored for plants compared to most other tropical African countries but prospecting efforts within the country have been very unequal (Onana 2011, Sosef et al. 2017), and the heterogeneous information on plant distribution limits effective conservation actions.

The Ngovayang Massif Area (NMA, c. 527 km²) is located in Atlantic Central Africa (ACA), which corresponds to the Lower Guinea subregion of White, the floristically richest phytochorion of the Guineo-Congolian region (White 1979, Droissart et al. 2018). The NMA represents a relatively well botanically sampled place in the South Region of Cameroon: more than 6000 herbarium specimens have been collected in this area (compared to the ~90000 specimens collected in Cameroon, Sosef et al. 2017). This sampling effort represents thus more than 5% of the total number of specimens collected in Cameroon, while the surface of the NMA only represents 0.1% of the country. However, information on the distribution of the flora within the NMA is relatively poor because a large part of the herbarium collections are not precisely georeferenced. In fact, about half of them come from the earliest botanical explorer of the area, the German botanist Georg August Zenker (1855–1922), who collected c. 3000 specimens at “Bipindi”. Until now, the only estimation for total number of plant species occurring in the NMA, i.e. 450 vascular plant species, was given by Gonmadje et al. (2011), unfortunately without indication of voucher specimens or sources used to generate this statistic.

The flora of the NMA was addressed in previous studies with more extensive geographic coverage, using a network of permanent sampling plots (1-hectare plot censused). A biogeographical study based on five 1-ha plots and 2673 censused trees with diameter above 10 cm at breast height (Gonmadje et al. 2012) showed that the lowland forests of NMA are dominated by Fabaceae-Caesalpinioideae (also known as Detarioideae), with a high proportion of Guineo-Congolian species (79%), and particularly Lower Guinean species (30%). An extended dataset (fifteen 1-ha plots) obtained by the same team (Gonmadje et al. 2017) has also proven that the decrease of above ground biomass of old-growth forests across an altitudinal gradient in the NMA can at least partially be explained by altitudinal filtering of large-tree species, highlighting the importance of elevational gradient in shaping flora composition.

Currently, the NMA does not have any legal conservation status, but is covered by three exploration permits (EP) with a total coverage of 2972 km² (electronic appendix 1): EP 144 covering the main part of the NMA, EP 195 located on N-NE part of NMA and EP 221 on SE part of NMA. The massif represents one of the largest iron deposits in Central Africa, and prospecting have also shown a high percentage of gold in the lowland part, in the south eastern part of the NMA. Magnetite-gneiss ore has been identified as the primary source of iron ore in the NMA. During the prospective phase started near Melombo locality (EP 144) by the Australian exploration company “Legend Mining Limited”, a report indicated the potential for a range of 300–500 Mt of magnetite ore, with a grade of 16–40% Fe (Wendt 2012), which confirms the potential of the NMA to host a large tonnage of magnetite deposits that can be economically exploited. Unpublished reports and one publication (Mimba et al. 2014) underlined that the highest concentrations of gold (Au > 100 ppb) are located in lower elevation areas in the south-eastern part of the NMA, in the heavy mineral fraction of stream sediments. The Legend Mining company announced on 5 August 2014 the completion of the sale of its Ngovayang project to the Italian company “Jindal Steel and Power” for a total of $17.5M. In these conditions, it is clear that required impact studies have to be conducted by these mining companies, and be based on appropriate, published and widely accessible data. In this context, the use of the Important Plant Areas (IPA) criteria system can offer a rigorous scientific tool to highlight gaps in the current protected areas network, and to render offsetting mechanisms consistent with conservation outcomes (Saenz et al. 2013, Darbyshire et al. 2017).

The amount, quality and accessibility of floristic data concerning the vascular flora of the NMA have significantly increased during the last 15 years, as a result of both recent efforts to combine several big datasets (Dauby et al. 2016, Sosef et al. 2017) and new botanical prospecting relying on an accurate geographic positioning system. However, our knowledge about the spatial distribution of the flora and the conservation status of the species within the NMA remains sparse and has never previously been synthesized to date. The main objectives of the present contribution are thus: (1) to compile a database of all herbarium specimens collected in Ngovayang to date; (2) to produce a verified checklist of the two larger plant families present in the NMA, Rubiaceae and Orchidaceae; (3) to analyze sampling and diversity patterns of these two families in the NMA; (4) to identify threatened species within the NMA. Finally, based on our dataset, we also evaluate whether the NMA meets the criteria of Tropical Important Plant Areas according to Darbyshire et al. (2017). Here, we choose to concentrate our analysis on the Rubiaceae and the Orchidaceae first because the two families are important component of tropical forest; together they represent about 15% of the Cameroonian vascular flora (Onana 2011), and second because our team have extensively reviewed their taxonomy (e.g. Azandi et al. 2016, Zemagho et al. 2017) and geographic distribution (e.g. Droissart et al. 2011, Lachenaud et al. 2013) in Central Africa during the last 20 years.

MATERIAL AND METHODS

Herbarium records database

Based on recent fieldwork, i.e. the 15 field campaigns organized by our team between 2004 and 2017, and using the RAINBIO database (Dauby et al. 2016), we compiled a data set with all herbarium collections available collected within
Table 1 – Checklist of Orchidaceae from Ngovayang Massif Area (NMA), with their geographical and altitudinal range and their IUCN categories.

Distribution categories considered: Wide = widely distributed; NMA = endemic to NMA; Cameroon = endemic to Cameroon; ACA = endemic to Atlantic Central Africa. IUCN Red List Categories considered: CR = Critically Endangered; EN = Endangered; VU = Vulnerable; NT = Near Threatened; LC = Least Concern; DD = Data Deficient. New records for Cameroon are indicated by an asterisk (*). Sources for IUCN Red List Category: 1IUCN (2018), 2Onana (2011), 3personal database, unpublished data, 4Descourvieres et al. (2013). One taxon (Angraecopsis sp.) not identified to species level is not included in the checklist.

<table>
<thead>
<tr>
<th>Species</th>
<th># specimens</th>
<th>Geographical range</th>
<th>Altitudinal range (m)</th>
<th>IUCN category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afropectinariella atlantica (Stévart & Droissart) M.Simo & Stévart</td>
<td>1</td>
<td>ACA</td>
<td>910</td>
<td>NT*</td>
</tr>
<tr>
<td>Afropectinariella gabonensis (Summerh.) M.Simo & Stévart</td>
<td>16</td>
<td>Wide</td>
<td>440–680</td>
<td>LC*</td>
</tr>
<tr>
<td>Afropectinariella pungens (Schltr.) M.Simo & Stévart</td>
<td>1</td>
<td>Wide</td>
<td>910</td>
<td>VU*</td>
</tr>
<tr>
<td>Ancistrochilus thomsonianus (Rchb.f.) Rolfe</td>
<td>2</td>
<td>ACA</td>
<td>570</td>
<td>LC*</td>
</tr>
<tr>
<td>Ancistrorhynchus bruneomaculatus (Rendle) Schltr.</td>
<td>5</td>
<td>Wide</td>
<td>100</td>
<td>DD</td>
</tr>
<tr>
<td>Ancistrorhynchus capitatus (Lindl.) Summerh.</td>
<td>15</td>
<td>Wide</td>
<td>260–1080</td>
<td>LC*</td>
</tr>
<tr>
<td>Ancistrorhynchus metteniae (Kraenzl.) Summerh.</td>
<td>4</td>
<td>Wide</td>
<td>290–900</td>
<td>LC*</td>
</tr>
<tr>
<td>Ancistrorhynchus schumannii (Kraenzl.) Summerh.</td>
<td>1</td>
<td>Wide</td>
<td>540</td>
<td>LC*</td>
</tr>
<tr>
<td>Ancistrorhynchus straussii (Schltr.) Schltr.</td>
<td>6</td>
<td>Wide</td>
<td>140–580</td>
<td>LC*</td>
</tr>
<tr>
<td>Ancistrorhynchus tenuicaulis Summerh.</td>
<td>4</td>
<td>Wide</td>
<td>550–1080</td>
<td>LC*</td>
</tr>
<tr>
<td>Angraecum angustum (Rolfe) Summerh.</td>
<td>2</td>
<td>ACA</td>
<td>570–580</td>
<td>EN*</td>
</tr>
<tr>
<td>Angraecum eichlerianum var. curvicalcaratum Szlach. & Olszewski</td>
<td>5</td>
<td>ACA</td>
<td>100–830</td>
<td>LC*</td>
</tr>
<tr>
<td>Angraecum ngovayangense sp. ined.</td>
<td>1</td>
<td>NMA</td>
<td>850</td>
<td>CR*</td>
</tr>
<tr>
<td>Bolusielia zenkeri (Kraenzl.) Schltr.</td>
<td>6</td>
<td>Wide</td>
<td>110–550</td>
<td>LC*</td>
</tr>
<tr>
<td>Brachycorythis kalbreyeri Rchb.f.</td>
<td>2</td>
<td>Wide</td>
<td>680–790</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum acutibracteatum De Wild. var. acutibracteatum</td>
<td>1</td>
<td>Wide</td>
<td>100</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum acutibracteatum var. rubrobrunneopapillosum (De Wild.) J.J.Verm.</td>
<td>3</td>
<td>Wide</td>
<td>530–640</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum alinae Szlach.</td>
<td>3</td>
<td>Cameroon</td>
<td>140–540</td>
<td>VU*</td>
</tr>
<tr>
<td>Bulbophyllum calyptratum Kraenzl.</td>
<td>3</td>
<td>Wide</td>
<td>110–900</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum calyptratum var. graminifolium (Summerh.) J.J.Verm.</td>
<td>3</td>
<td>Wide</td>
<td>80–110</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum calyptratum var. lucifugum (Summerh.) J.J.Verm.</td>
<td>1</td>
<td>Wide</td>
<td>470</td>
<td>DD</td>
</tr>
<tr>
<td>Bulbophyllum carnosisepalum J.J.Verm.</td>
<td>1</td>
<td>Wide</td>
<td>140</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum cochleatum Lindl.</td>
<td>16</td>
<td>Wide</td>
<td>140–950</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum colubrinum (Rchb.f.) Rchb.f.</td>
<td>1</td>
<td>Wide</td>
<td>620</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum dolabriforme J.J.Verm.*</td>
<td>1</td>
<td>ACA</td>
<td>910</td>
<td>EN*</td>
</tr>
<tr>
<td>Bulbophyllum falcatum var. bufo (Lindl.) Govaerts</td>
<td>1</td>
<td>Wide</td>
<td>910</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum falcatum var. velutinum (Lindl.) J.J.Verm.</td>
<td>8</td>
<td>Wide</td>
<td>100–570</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum fuscum Lindl.</td>
<td>1</td>
<td>Wide</td>
<td>800</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum fuscum var. melinostachyum (Schltr.) J.J.Verm.</td>
<td>16</td>
<td>Wide</td>
<td>100–800</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum imbricatum Lindl.</td>
<td>17</td>
<td>Wide</td>
<td>100–830</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum intertextum Lindl.</td>
<td>9</td>
<td>Wide</td>
<td>140–950</td>
<td>LC*</td>
</tr>
<tr>
<td>Bulbophyllum nigritianum Rendle*</td>
<td>1</td>
<td>Wide</td>
<td>570</td>
<td>DD</td>
</tr>
</tbody>
</table>
Table 1 (continued) – Checklist of Orchidaceae from Ngovayang Massif Area (NMA), with their geographical and altitudinal range and their IUCN categories.

<table>
<thead>
<tr>
<th>Species</th>
<th># specimens</th>
<th>Geographical range</th>
<th>Altitudinal range (m)</th>
<th>IUCN category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulbophyllum oreonastes Rchb.f.</td>
<td>6</td>
<td>Wide</td>
<td>100–900</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Bulbophyllum porphyrostachys Summerh.</td>
<td>3</td>
<td>ACA</td>
<td>100–140</td>
<td>NT<sup>a</sup></td>
</tr>
<tr>
<td>Bulbophyllum pumilum (Sw.) Lindl.</td>
<td>8</td>
<td>Wide</td>
<td>140–570</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Bulbophyllum resupinatum var. filiforme (Kraenzl.) J.J.Verm.</td>
<td>2</td>
<td>Wide</td>
<td>80</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Bulbophyllum saltatorium var. albociliatum (Finet) J.J.Verm.</td>
<td>11</td>
<td>Wide</td>
<td>80–650</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Bulbophyllum sandersonii (Hook.f.) Rchb.f.</td>
<td>7</td>
<td>Wide</td>
<td>100–650</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Bulbophyllum sandersonii subsp. stenopetalum (Kraenzl.) J.J.Verm.</td>
<td>15</td>
<td>Wide</td>
<td>100–550</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Bulbophyllum schimperianum Kraenzl.</td>
<td>1</td>
<td>Wide</td>
<td>1030</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Bulbophyllum schinzianum Kraenzl. ex De Wild. var. phaeopogon (Schltr.) J.J.Verm.</td>
<td>3</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Bulbophyllum teretifolium Schltr.</td>
<td>1</td>
<td>Cameroon</td>
<td>570</td>
<td>NT<sup>b</sup></td>
</tr>
<tr>
<td>Calyptrorchilum christyanum (Rchb.f.) Summerh.</td>
<td>7</td>
<td>Wide</td>
<td>100–570</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Calyptrorchilum emarginatum (Afzel. ex Sw.) Schltr.</td>
<td>2</td>
<td>Wide</td>
<td>260</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Corymborkis corymbis Thouars</td>
<td>3</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Cribbia confusa P.J.Cribb</td>
<td>1</td>
<td>Wide</td>
<td>620</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Cynorkis gabonensis Summerh.</td>
<td>1</td>
<td>ACA</td>
<td>850</td>
<td>NT<sup>a</sup></td>
</tr>
<tr>
<td>Cyrtorchis aschersonii (Kraenzl.) Schltr.</td>
<td>2</td>
<td>Wide</td>
<td>140</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Cyrtorchis monteiroae (Rchb.f.) Schltr.</td>
<td>1</td>
<td>Wide</td>
<td>570</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Cyrtorchis ringens (Rchb.f.) Summerh.</td>
<td>16</td>
<td>Wide</td>
<td>290–800</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Diaphananthe bidens (Afzel. ex Sw.) Schltr.</td>
<td>7</td>
<td>Wide</td>
<td>100–570</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Diaphananthe garayana Szlach. & Olszewski</td>
<td>8</td>
<td>Cameroon</td>
<td>100</td>
<td>EN<sup>c</sup></td>
</tr>
<tr>
<td>Diaphananthe ichneumonea (Lindl.) P.J.Cribb & Carlsward</td>
<td>1</td>
<td>Wide</td>
<td>1030</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Diaphananthe odoratissima (Rchb.f.) P.J.Cribb & Carlsward</td>
<td>5</td>
<td>Wide</td>
<td>80–100</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Diaphananthe spiralis (Stévart & Droissart) P.J.Cribb & Carlsward</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Diaphananthe pellucida (Lindl.) Schltr.</td>
<td>1</td>
<td>ACA</td>
<td>100</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Dolabridifolia aporoides (Summerh.) Szlach. & Romowicz</td>
<td>25</td>
<td>Wide</td>
<td>100–980</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Dolabridifolia bancensis (Burg) Szlach. & Romowicz</td>
<td>2</td>
<td>Wide</td>
<td>570</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Dolabridifolia disticha (Lindl.) Szlach. & Romowicz</td>
<td>3</td>
<td>Wide</td>
<td>570–720</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Dolabridifolia podochiloides (Schltr.) Szlach. & Romowicz</td>
<td>1</td>
<td>Wide</td>
<td>540</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Eggelingia gabonensis P.J.Cribb & Laan</td>
<td>7</td>
<td>ACA</td>
<td>570–1030</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Gastrodia africana Kraenzl.</td>
<td>1</td>
<td>Cameroon</td>
<td>690</td>
<td>EN<sup>c</sup></td>
</tr>
<tr>
<td>Genyorchis apetala (Lindl.) J.J.Verm.</td>
<td>1</td>
<td>Wide</td>
<td>570</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Genyorchis platybulbon Schltr.</td>
<td>4</td>
<td>ACA</td>
<td>100–140</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Graphorkis lurida (Sw.) Kuntze</td>
<td>3</td>
<td>Wide</td>
<td>440–680</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Kylicanthe cornuata Descourvèières, Stévart & Droissart</td>
<td>2</td>
<td>ACA</td>
<td>730–830</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Liparis hallei Szlach.</td>
<td>1</td>
<td>Cameroon</td>
<td>230</td>
<td>EN<sup>c</sup></td>
</tr>
<tr>
<td>Liparis platyglossa Schltr.</td>
<td>2</td>
<td>Wide</td>
<td>440–770</td>
<td>LC<sup>b</sup></td>
</tr>
</tbody>
</table>
Table 1 (continued) – Checklist of Orchidaceae from Ngovayang Massif Area (NMA), with their geographical and altitudinal range and their IUCN categories.

<table>
<thead>
<tr>
<th>Species</th>
<th># specimens</th>
<th>Geographical range</th>
<th>Altitudinal range (m)</th>
<th>IUCN category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listrostachys pertusa (Lindl.) Rchb.f.</td>
<td>24</td>
<td>Wide</td>
<td>100–680</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Manniella gustavi Rchb.f.</td>
<td>2</td>
<td>Wide</td>
<td>600–730</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Orestias micrantha Summerh.</td>
<td>2</td>
<td>ACA</td>
<td>unknown</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Polystachya adansoniae Rchb.f.</td>
<td>5</td>
<td>Wide</td>
<td>100–660</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya affinis Lindl.</td>
<td>1</td>
<td>Wide</td>
<td>830</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya albescens Ridl.</td>
<td>1</td>
<td>Wide</td>
<td>650</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya batkoi Szlach. & Olszewski</td>
<td>1</td>
<td>ACA</td>
<td>550</td>
<td>VU<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya bipoda Stévart</td>
<td>1</td>
<td>ACA</td>
<td>830</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Polystachya calluniifera Kraenzl.</td>
<td>3</td>
<td>Wide</td>
<td>620–1080</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya caloglossa Rchb.f.</td>
<td>2</td>
<td>Wide</td>
<td>470–600</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya camaridioides Summerh.</td>
<td>1</td>
<td>ACA</td>
<td>140</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Polystachya coriscensis Rchb.f.</td>
<td>33</td>
<td>Wide</td>
<td>100–620</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Polystachya dolichophylla Schltr.</td>
<td>19</td>
<td>Wide</td>
<td>110–620</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya elegans Rchb.f.</td>
<td>12</td>
<td>ACA</td>
<td>140–570</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya fusiformis (Thouars) Lindl.</td>
<td>2</td>
<td>Wide</td>
<td>830–1080</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya golungensis Rchb.f.</td>
<td>1</td>
<td>Wide</td>
<td>950</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya lejolyana Stévart</td>
<td>3</td>
<td>ACA</td>
<td>910–1060</td>
<td>EN<sup>c</sup></td>
</tr>
<tr>
<td>Polystachya letouzeyana Szlach. & Olszewski</td>
<td>1</td>
<td>ACA</td>
<td>580</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Polystachya montiquetiana Stévart & Geerinck</td>
<td>1</td>
<td>ACA</td>
<td>910</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Polystachya obanensis Rendle</td>
<td>6</td>
<td>Wide</td>
<td>540–660</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya odorata Lindl.</td>
<td>10</td>
<td>Wide</td>
<td>110</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya polychaete Kraenzl.</td>
<td>25</td>
<td>Wide</td>
<td>140–900</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya pyramidalis Lindl.</td>
<td>4</td>
<td>ACA</td>
<td>600–660</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Polystachya ramulosa Lindl.</td>
<td>7</td>
<td>Wide</td>
<td>600–1080</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya rhodoptera Rchb.f.</td>
<td>1</td>
<td>Wide</td>
<td>560</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya riomunienis Stévart & Nguema</td>
<td>3</td>
<td>ACA</td>
<td>620–760</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Polystachya seticaulis Rendle</td>
<td>3</td>
<td>Wide</td>
<td>180–570</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Polystachya supfiana Schltr.</td>
<td>11</td>
<td>ACA</td>
<td>570–900</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Polystachya tessellata Lindl.</td>
<td>2</td>
<td>Wide</td>
<td>100–620</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Polystachya victoriae Kraenzl.</td>
<td>3</td>
<td>Wide</td>
<td>680</td>
<td>NT<sup>b</sup></td>
</tr>
<tr>
<td>Rangaeris rhipsalisocia (Rchb.f.) Summerh.</td>
<td>3</td>
<td>Wide</td>
<td>110</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Rhipidoglossum curvatum (Rolfe) Garay</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Rhipidoglossum montealenense Descourvières, Stévart & P.J.Cribb</td>
<td>2</td>
<td>ACA</td>
<td>730–910</td>
<td>EN<sup>d</sup></td>
</tr>
<tr>
<td>Solenangis scandens (Schltr.) Schltr.</td>
<td>2</td>
<td>Wide</td>
<td>80</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Stolzia elaidum (Lindl.) Summerh.</td>
<td>3</td>
<td>Wide</td>
<td>660–910</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Tridactyle anthomaniaca (Rchb.f.) Summerh.</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
</tbody>
</table>
Table 1 (continued) – Checklist of Orchidaceae from Ngovayang Massif Area (NMA), with their geographical and altitudinal range and their IUCN categories.

<table>
<thead>
<tr>
<th>Species</th>
<th># specimens</th>
<th>Geographical range</th>
<th>Altitudinal range (m)</th>
<th>IUCN category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tridactyle brevicalcarata Summerh.</td>
<td>3</td>
<td>Wide</td>
<td>570–900</td>
<td>LC<sup>a</sup></td>
</tr>
<tr>
<td>Tridactyle egglelingii Summerh.</td>
<td>3</td>
<td>Wide</td>
<td>900</td>
<td>EN<sup>c</sup></td>
</tr>
<tr>
<td>Tridactyle lagosensis (Rolfe) Schltr.</td>
<td>1</td>
<td>ACA</td>
<td>570</td>
<td>NT<sup>b</sup></td>
</tr>
<tr>
<td>Tridactyle laurentii Schltr. var. laurentii</td>
<td>2</td>
<td>Wide</td>
<td>100–540</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Vanilla africana Lindl.</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Vanilla cucullata Kraenzl. ex J.Braun & K.Schum.</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Zeuxine gigiana Kraenzl. & Schltr.</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
</tbody>
</table>

or nearby the NMA. We took into consideration records that were explicitly mentioned as collected in NMA plus a radius of 3 km around the massif. We extracted 6116 georeferenced records using the shapefile of the Ngovayang area provided by the Interactive Forest Atlas of Cameroon (WRI 2012). For this paper, we focus our effort on the two larger families, Orchidaceae and Rubiaceae (2787 specimens together), for which the authors have particular taxonomic expertise: all specimens with doubtful identification for these two families were physically checked and verified. The species number estimates for other plant families collected in the NMA are mainly derived from Dauby et al. (2016).

Hereafter, for simplicity, we will use the term ‘species’ even if they comprise infraspecific taxa (subspecies or varieties).

Sampling completeness and diversity analysis

Sampling intensity and species richness were calculated for Rubiaceae and Orchidaceae using a fixed grid cell size of 0.02° × 0.02° (about 5 km²) which was a reasonable balance between precision and detail that can be achieved in the NMA. Rarefaction methods were used to calculate an expected number of species (S_e) per grid cell found in subsamples of fixed size (see Droissart et al. 2012 for calculation). For our comparison with raw species richness, we calculate S_e for $k = 20$ (i.e. the grid cells where at least 20 herbarium specimens have been collected). Richness estimates and sampling completeness for Rubiaceae and Orchidaceae were compared with sample-based rarefaction curves using the R package iNEXT (Hsieh et al. 2016). We used the iNEXT package to compute the seamless rarefaction (interpolation) and extrapolation (prediction) sampling curves and the associated 95% confidence intervals of individual-based abundance data.

From the compiled herbarium database, we kept 2484 records with location accurate to 1 km for diversity analysis (grid-cells maps), and 1869 records with location accurate to 100 m for altitudinal range analysis. Maps were prepared with ArcMap 10.5.1 (ESRI 2017).

IUCN Red List category and conservation analysis

The conservation status of plant species was taken from existing IUCN assessments on the Red List website (IUCN 2018) or in the literature (e.g. Onana 2011, Onana & Cheek 2011, Onana 2013), when available. Eighty-three of these assessments have been provided or corrected based on the authors’ more recent, unpublished data following the IUCN Red List guidelines (IUCN 2017). Most of these preliminary assessments are undergoing publication on the IUCN Red List portal.

To check objectively whether the NMA represents a key site for wild plant and habitat conservation in Central Africa, we applied the Important Plant Area (IPA) criteria using the revised guidelines and methodology recently provided by Darbyshire et al. (2017). A site can qualify as an IPA if it satisfies at least one of three main criteria (threatened species, botanical richness and threatened habitats). For each criterion, all sub-criteria and associated thresholds have been evaluated using the available data.

RESULTS

The rich flora of the Ngovayang Massif Area (NMA)

Our complete NMA dataset consists of 6116 specimens (of which 94% are identified to species), 138 families, 636 genera and 1472 species (see electronic appendix 2). These specimens were mainly extracted from the RAINBIO database (4924 specimens) and the additional specimens (1192) came from field expeditions led by the first and last authors between 2004 and 2017.

Most of the specimens from the NMA were collected during two main periods, between 1890 and 1930 (the contribution mostly of one collector: Zenker, see electronic appendix 3) and between 2004 and 2017 (electronic appendix 4). The last period added 318 species to the list of species previously known from the first collecting period which represents an increase of 21.6% (electronic appendix 3).

The two most represented families of the NMA, both in terms of species diversity and number of collections, are Ru-
Table 2 – Checklist of Rubiaceae from Ngovayang Massif Area (NMA), with their geographical and altitudinal range and their IUCN categories.

Distribution categories considered: Wide = widely distributed; NMA = endemic to NMA; Cameroon = endemic to Cameroon; ACA = endemic to ACA. IUCN Red List Categories considered are: CR = Critically Endangered; EN = Endangered; VU = Vulnerable; NT = Near Threatened; LC = Least Concern; DD = Data Deficient. Sources for IUCN Red List Category: 1IUCN (2018), 2Onana (2011), 3personal database, unpublished data, 4Lachenaud et al. (2013), 5Taedoumg et al. (2011), 6Verstraete et al. (2013), 7Sonké et al. (2015), 8Sonké & Lachenaud (2016), 9Zemagho et al. (2017), Sonké et al. (2012). 1 Probably specifically distinct from the type variety. 2 Pausinystalia brachythyrsum, supposedly an endemic species of the NMA, proves to be identical with Corynanthe johimbe (Ntore & Lachenaud, unpublished data). Two taxa (Canthium sp. and Pseudomussaenda sp.) not identified to species level are not included in the checklist.

<table>
<thead>
<tr>
<th>Species</th>
<th># specimens</th>
<th>Geographical range</th>
<th>Altitudinal range (m)</th>
<th>IUCN category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenorandia kalbreyeri (Hiern) Robbr. & Bridson</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Aidia micrantha (K.Schum.) Bullock ex F.White (s.l)</td>
<td>30</td>
<td>Wide</td>
<td>80–840</td>
<td>LCb</td>
</tr>
<tr>
<td>Aidia rhacodosepala (K.Schum.) E.M.A.Petit</td>
<td>8</td>
<td>Cameroon</td>
<td>390</td>
<td>LCb</td>
</tr>
<tr>
<td>Aidia rubens (Hiern) G.Taylor</td>
<td>5</td>
<td>ACA</td>
<td>750–840</td>
<td>LCb</td>
</tr>
<tr>
<td>Aoranthe cladantha (K.Schum.) Somers</td>
<td>9</td>
<td>Wide</td>
<td>80–1010</td>
<td>LCb</td>
</tr>
<tr>
<td>Argoceoffopsis subcordata (Hiern) Lebrun</td>
<td>8</td>
<td>Wide</td>
<td>450–770</td>
<td>LCb</td>
</tr>
<tr>
<td>Argostemma pumilum Benn.</td>
<td>1</td>
<td>Wide</td>
<td>980</td>
<td>DD</td>
</tr>
<tr>
<td>Atractogyne bracteata (Wernham) Hutch. & Dalziel</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>LCb</td>
</tr>
<tr>
<td>Aulacocalyx caudata (Keay)</td>
<td>17</td>
<td>ACA</td>
<td>90–840</td>
<td>LCb</td>
</tr>
<tr>
<td>Aulacocalyx jasminifera Hook. f.</td>
<td>12</td>
<td>Wide</td>
<td>110–1010</td>
<td>LCb</td>
</tr>
<tr>
<td>Aulacocalyx mapiana Sonké & Bridson</td>
<td>4</td>
<td>Cameroon</td>
<td>200–790</td>
<td>ENb</td>
</tr>
<tr>
<td>Aulacocalyx talbotii (Wernham) Keay</td>
<td>1</td>
<td>ACA</td>
<td>unknown</td>
<td>LCb</td>
</tr>
<tr>
<td>Belonophora coriacea Hoyle</td>
<td>12</td>
<td>Wide</td>
<td>430–920</td>
<td>LCb</td>
</tr>
<tr>
<td>Belonophora ongensis S.E.Dawson & Cheek</td>
<td>3</td>
<td>ACA</td>
<td>730–940</td>
<td>CRb</td>
</tr>
<tr>
<td>Belonophora talbotii (Wernham) Keay</td>
<td>6</td>
<td>ACA</td>
<td>440–760</td>
<td>VUb</td>
</tr>
<tr>
<td>Belonophora wernhamii Hutch. & Dalziel</td>
<td>7</td>
<td>ACA</td>
<td>490–570</td>
<td>NTb</td>
</tr>
<tr>
<td>Bertiera aethiopica Hiern</td>
<td>26</td>
<td>Wide</td>
<td>450–1060</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera batesii Wernham</td>
<td>6</td>
<td>ACA</td>
<td>430–830</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera bicarpellata (K.Schum.) N.Hallé</td>
<td>20</td>
<td>Wide</td>
<td>80–1010</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera bracteolata Hiern</td>
<td>3</td>
<td>Wide</td>
<td>430</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera breviflora Hiern</td>
<td>21</td>
<td>Wide</td>
<td>80–1010</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera elabensis K.Krause</td>
<td>18</td>
<td>ACA</td>
<td>80–540</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera globiceps K.Schum.</td>
<td>7</td>
<td>Wide</td>
<td>570–1060</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera heterophyllaNguembou & Sonké</td>
<td>3</td>
<td>NMA</td>
<td>120–440</td>
<td>CRb</td>
</tr>
<tr>
<td>Bertiera iturensis K.Krause</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera laxa Benth.</td>
<td>25</td>
<td>Wide</td>
<td>90–910</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera laxisima K.Schum.</td>
<td>19</td>
<td>Cameroon</td>
<td>450–930</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera lejolyana Nguembou & Sonké</td>
<td>24</td>
<td>ACA</td>
<td>350–1010</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera racemosa var. elephantina N.Hallé</td>
<td>3</td>
<td>Wide</td>
<td>500–510</td>
<td>LCb</td>
</tr>
<tr>
<td>Bertiera retrofracta K.Schum.</td>
<td>39</td>
<td>ACA</td>
<td>80–1010</td>
<td>LCb</td>
</tr>
<tr>
<td>Calycosiphonia spathicaulis (K.Schum.) Robbr.</td>
<td>3</td>
<td>Wide</td>
<td>unknown</td>
<td>LCb</td>
</tr>
<tr>
<td>Chassalia bipindensis Sonké, Nguembou & A.P.Davis</td>
<td>36</td>
<td>Cameroon</td>
<td>130–920</td>
<td>LCb</td>
</tr>
</tbody>
</table>
Table 2 (continued) – Checklist of Rubiaceae from Ngovayang Massif Area (NMA), with their geographical and altitudinal range and their IUCN categories.

<table>
<thead>
<tr>
<th>Species</th>
<th># specimens</th>
<th>Geographical range</th>
<th>Altitudinal range (m)</th>
<th>IUCN category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassalia chrysoclada (K.Schum.) O.Lachenaud</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Chassalia corallifera (A.Chev. ex De Wild.) Hepper</td>
<td>1</td>
<td>Wide</td>
<td>900</td>
<td>LC</td>
</tr>
<tr>
<td>Chassalia ischnophylla (K.Schum.) Hepper</td>
<td>4</td>
<td>ACA</td>
<td>110–1030</td>
<td>LC</td>
</tr>
<tr>
<td>Chassalia laikomensis Cheek</td>
<td>1</td>
<td>ACA</td>
<td>1080</td>
<td>NT</td>
</tr>
<tr>
<td>Chassalia macrodiscus K.Schum.</td>
<td>1</td>
<td>ACA</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Chassalia pleuroneura (K.Schum.) O.Lachenaud</td>
<td>1</td>
<td>Wide</td>
<td>90</td>
<td>LC</td>
</tr>
<tr>
<td>Chassalia subnuda (Hiern) Hepper</td>
<td>3</td>
<td>ACA</td>
<td>80–800</td>
<td>LC</td>
</tr>
<tr>
<td>Chassalia ichibangensis Pellegr.</td>
<td>1</td>
<td>ACA</td>
<td>870</td>
<td>LC</td>
</tr>
<tr>
<td>Coffea brevipes Hiern</td>
<td>6</td>
<td>Wide</td>
<td>770–920</td>
<td>LC</td>
</tr>
<tr>
<td>Coffea liberica Hiern</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Coffea mannii (Hook.f.) A.P.Davis</td>
<td>20</td>
<td>Wide</td>
<td>80–1010</td>
<td>LC</td>
</tr>
<tr>
<td>Coffea mapiana Sonké, Nguembou & A.P.Davis</td>
<td>9</td>
<td>Cameroon</td>
<td>540–940</td>
<td>VU</td>
</tr>
<tr>
<td>Coffea mayombensis A.Chev.</td>
<td>7</td>
<td>Wide</td>
<td>510–1010</td>
<td>LC</td>
</tr>
<tr>
<td>Colletoecema magna Sonké & Dessein</td>
<td>4</td>
<td>Cameroon</td>
<td>130–730</td>
<td>EN</td>
</tr>
<tr>
<td>Corynanthe johimbe K.Schum.²</td>
<td>15</td>
<td>ACA</td>
<td>490–760</td>
<td>LC</td>
</tr>
<tr>
<td>Corynanthe macroceras K.Schum.</td>
<td>7</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Corynanthe pachyceras K.Schum.</td>
<td>11</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Corynanthe talbottii (Wernham) Å.Krüger & Löfstr.</td>
<td>4</td>
<td>ACA</td>
<td>unknown</td>
<td>VU</td>
</tr>
<tr>
<td>Craterispermum caudatum Hutch.</td>
<td>5</td>
<td>Wide</td>
<td>230–640</td>
<td>LC</td>
</tr>
<tr>
<td>Craterispermum ledermannii K.Krause</td>
<td>16</td>
<td>ACA</td>
<td>90–810</td>
<td>LC</td>
</tr>
<tr>
<td>Craterispermum parvifolium Taedoumg & Sonké</td>
<td>1</td>
<td>ACA</td>
<td>930</td>
<td>VU</td>
</tr>
<tr>
<td>Craterispermum robrechtianum Taedoumg & Sonké</td>
<td>19</td>
<td>ACA</td>
<td>90–1010</td>
<td>LC</td>
</tr>
<tr>
<td>Cremaspora thomsonii Hiern</td>
<td>2</td>
<td>ACA</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Cuviera acutiflora DC.</td>
<td>6</td>
<td>Wide</td>
<td>430</td>
<td>LC</td>
</tr>
<tr>
<td>Cuviera physinodes K.Schum.</td>
<td>3</td>
<td>ACA</td>
<td>550–800</td>
<td>LC</td>
</tr>
<tr>
<td>Cuviera subuliflora Benth.</td>
<td>5</td>
<td>ACA</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Diodella sarmentosa (Sw.) Bacigalupo & Cabral ex Borhidi</td>
<td>1</td>
<td>Wide</td>
<td>540</td>
<td>LC</td>
</tr>
<tr>
<td>Empogona gossweileri (S.Moore) Tosh & Robbr.</td>
<td>8</td>
<td>Wide</td>
<td>470–1080</td>
<td>LC</td>
</tr>
<tr>
<td>Empogona macrophylla (K.Schum.) Tosh & Robbr.</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Euclinia longiflora Salisb.</td>
<td>7</td>
<td>Wide</td>
<td>510–650</td>
<td>LC</td>
</tr>
<tr>
<td>Euclinia squamifera (R.D.Good) Keay</td>
<td>1</td>
<td>ACA</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Eumachia andeliae sp. ined.</td>
<td>2</td>
<td>ACA</td>
<td>570–800</td>
<td>LC</td>
</tr>
<tr>
<td>Eumachia coffeosperma (K.Schum.) Razafim. & C.M.Taylor</td>
<td>4</td>
<td>Wide</td>
<td>440–900</td>
<td>LC</td>
</tr>
<tr>
<td>Eumachia domaticola (De Wild.) Razafim. & C.M.Taylor</td>
<td>3</td>
<td>Wide</td>
<td>850–1030</td>
<td>LC</td>
</tr>
<tr>
<td>Eumachia insidens (Hiern) Razafim. & C.M.Taylor</td>
<td>4</td>
<td>Wide</td>
<td>380–770</td>
<td>LC</td>
</tr>
<tr>
<td>Species</td>
<td># specimens</td>
<td>Geographical range</td>
<td>Altitudinal range (m)</td>
<td>IUCN category</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Eumachia letouzeyi (Robbr.) Razafim. & C.M.Taylor</td>
<td>7</td>
<td>ACA</td>
<td>540–850</td>
<td>LC</td>
</tr>
<tr>
<td>Eumachia obovoidea (Verdc.) Razafim. & C.M.Taylor</td>
<td>4</td>
<td>Wide</td>
<td>80–430</td>
<td>LC</td>
</tr>
<tr>
<td>Eumachia oddonii var. cameroonensis (Verdc.) C.M.Taylor</td>
<td>4</td>
<td>Wide</td>
<td>910</td>
<td>LC</td>
</tr>
<tr>
<td>Eumachia sciadephora (Hiern) Razafim. & C.M.Taylor</td>
<td>11</td>
<td>Wide</td>
<td>80–1080</td>
<td>LC</td>
</tr>
<tr>
<td>Eumachia viridicalyx (R.D. Good) Razafim. & C.M.Taylor</td>
<td>1</td>
<td>ACA</td>
<td>unknown</td>
<td>DD</td>
</tr>
<tr>
<td>Gaertnera bieleri (De Wild.) E.M.A.Petit</td>
<td>10</td>
<td>Wide</td>
<td>230–910</td>
<td>LC</td>
</tr>
<tr>
<td>Gaertnera letouzeyi Malcomber</td>
<td>2</td>
<td>ACA</td>
<td>730</td>
<td>EN</td>
</tr>
<tr>
<td>Gaertnera trachystyla (Hiern) E.M.A.Petit</td>
<td>23</td>
<td>ACA</td>
<td>120–1030</td>
<td>LC</td>
</tr>
<tr>
<td>Gardenia imperialis K.Schum.</td>
<td>9</td>
<td>Wide</td>
<td>80–420</td>
<td>LC</td>
</tr>
<tr>
<td>Geophila afzelii Hiern</td>
<td>5</td>
<td>Wide</td>
<td>120–520</td>
<td>LC</td>
</tr>
<tr>
<td>Geophila lancistipula Hiern</td>
<td>1</td>
<td>ACA</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Geophila obvallata Didr.</td>
<td>3</td>
<td>Wide</td>
<td>80–570</td>
<td>LC</td>
</tr>
<tr>
<td>Globulostylis leniochlamys (K.Schum.) Sonké, O.Lachenaud & Dessein</td>
<td>13</td>
<td>NMA</td>
<td>450–910</td>
<td>CR</td>
</tr>
<tr>
<td>Globulostylis rammeloana Sonké, O.Lachenaud & Dessein</td>
<td>7</td>
<td>Cameroon</td>
<td>200–730</td>
<td>VU</td>
</tr>
<tr>
<td>Heinsia crinita (Afzel.) G.Taylor</td>
<td>3</td>
<td>Wide</td>
<td>710</td>
<td>LC</td>
</tr>
<tr>
<td>Heinsia myrmoecia (K.Schum.) N.Hallé</td>
<td>4</td>
<td>ACA</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Hekistocarpa minutiflora Hook.f.</td>
<td>2</td>
<td>ACA</td>
<td>520</td>
<td>LC</td>
</tr>
<tr>
<td>Hymenocoleus globulifer Robbr.</td>
<td>2</td>
<td>ACA</td>
<td>910–1030</td>
<td>LC</td>
</tr>
<tr>
<td>Hymenocoleus hirsutus (Benth.) Robbr.</td>
<td>2</td>
<td>Wide</td>
<td>180–830</td>
<td>LC</td>
</tr>
<tr>
<td>Hymenocoleus nervipilosus Robbr.</td>
<td>2</td>
<td>Wide</td>
<td>440–550</td>
<td>LC</td>
</tr>
<tr>
<td>Hymenocoleus neurodictyon (K.Schum.) Robbr.</td>
<td>2</td>
<td>Wide</td>
<td>760</td>
<td>LC</td>
</tr>
<tr>
<td>Hymenocoleus rotundifolius (A.Chev. ex Hepper) Robbr.</td>
<td>1</td>
<td>Wide</td>
<td>550</td>
<td>LC</td>
</tr>
<tr>
<td>Hymenocoleus scaphus (K.Schum.) Robbr.</td>
<td>1</td>
<td>Wide</td>
<td>380</td>
<td>LC</td>
</tr>
<tr>
<td>Hymenocoleus subipecacuanha (K.Schum.) Robbr.</td>
<td>6</td>
<td>Wide</td>
<td>110–770</td>
<td>LC</td>
</tr>
<tr>
<td>Ixora aneimenodesma K.Schum.</td>
<td>18</td>
<td>ACA</td>
<td>170–920</td>
<td>LC</td>
</tr>
<tr>
<td>Ixora batesii Wernham</td>
<td>2</td>
<td>Cameroon</td>
<td>380–910</td>
<td>EN</td>
</tr>
<tr>
<td>Ixora bauchiensis Hutch. & Dalziel</td>
<td>1</td>
<td>ACA</td>
<td>750</td>
<td>LC</td>
</tr>
<tr>
<td>Ixora euosmia K.Schum.</td>
<td>7</td>
<td>ACA</td>
<td>120</td>
<td>LC</td>
</tr>
<tr>
<td>Ixora guineensis Benth.</td>
<td>5</td>
<td>Wide</td>
<td>200–1030</td>
<td>LC</td>
</tr>
<tr>
<td>Ixora hippoperifera Bremerk.</td>
<td>26</td>
<td>ACA</td>
<td>110–730</td>
<td>LC</td>
</tr>
<tr>
<td>Ixora macilenta De Block</td>
<td>5</td>
<td>ACA</td>
<td>110–800</td>
<td>LC</td>
</tr>
<tr>
<td>Ixora minutiflora Hiern subsp. minutiflora</td>
<td>31</td>
<td>ACA</td>
<td>80–1010</td>
<td>LC</td>
</tr>
<tr>
<td>Ixora nematopoda K.Schum.</td>
<td>3</td>
<td>ACA</td>
<td>310–760</td>
<td>LC</td>
</tr>
<tr>
<td>Ixora praetermissa De Block</td>
<td>6</td>
<td>ACA</td>
<td>200–910</td>
<td>LC</td>
</tr>
<tr>
<td>Ixora synactica De Block</td>
<td>10</td>
<td>Cameroon</td>
<td>190–780</td>
<td>EN</td>
</tr>
</tbody>
</table>
Table 2 (continued) – Checklist of Rubiaceae from Ngovayang Massif Area (NMA), with their geographical and altitudinal range and their IUCN categories.

<table>
<thead>
<tr>
<th>Species</th>
<th># specimens</th>
<th>Geographical range</th>
<th>Altitudinal range (m)</th>
<th>IUCN category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keetia (?) sp. ined.</td>
<td>1</td>
<td>NMA</td>
<td>690</td>
<td>CR</td>
</tr>
<tr>
<td>Keetia leucantha (K.Krause) Bridson</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Keetia mannii (Hiern) Bridson</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Keetia ripae (De Wild.) Bridson</td>
<td>5</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Keetia venosa (Oliv.) Bridson</td>
<td>3</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Kupeantha pentamera (Sonké & Robbr.) Cheek</td>
<td>33</td>
<td>ACA</td>
<td>180–920</td>
<td>LC</td>
</tr>
<tr>
<td>Kupeantha spathulata (A.P.Davis & Sonké) Cheek</td>
<td>25</td>
<td>NMA</td>
<td>350–920</td>
<td>CR</td>
</tr>
<tr>
<td>Lasianthus batangensis K.Schum.</td>
<td>19</td>
<td>Wide</td>
<td>200–1030</td>
<td>LC</td>
</tr>
<tr>
<td>Leptactina arborescens (Welw. ex Benth. & Hook.f.) De Block</td>
<td>11</td>
<td>Wide</td>
<td>510</td>
<td>LC</td>
</tr>
<tr>
<td>Leptactina involucrata Hook.f.</td>
<td>5</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Leptactina latifolia K.Schum.</td>
<td>1</td>
<td>ACA</td>
<td>770</td>
<td>LC</td>
</tr>
<tr>
<td>Leptactina mannii subsp. arnoldiana* (De Wild.) Neuba ex Figueiredo</td>
<td>7</td>
<td>ACA</td>
<td>350–900</td>
<td>LC</td>
</tr>
<tr>
<td>Massularia acuminata (G.Don) Bullock ex Hoyle</td>
<td>21</td>
<td>Wide</td>
<td>80–710</td>
<td>LC</td>
</tr>
<tr>
<td>Massularia stewartiana Sonké, E.Bidault & Droissart</td>
<td>1</td>
<td>ACA</td>
<td>710</td>
<td>EN</td>
</tr>
<tr>
<td>Mitragyna ledermannii (K.Krause) Ridsdale</td>
<td>5</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Morelia senegalensis A.Rich. ex DC.</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Morinda longiflora G.Don</td>
<td>4</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Morinda lucida Benth.</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Morinda morindoides (Baker) Milne-Redh.</td>
<td>2</td>
<td>Wide</td>
<td>430</td>
<td>LC</td>
</tr>
<tr>
<td>Mussaenda arcuata Poir.</td>
<td>5</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Mussaenda elegans Schumach. & Thonn.</td>
<td>3</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Mussaenda tenuiflora Benth.</td>
<td>3</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Nauclea diderrichii (De Wild.) Merr.</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>VU</td>
</tr>
<tr>
<td>Nichallea soyauxii (Hiern) Bridson</td>
<td>34</td>
<td>Wide</td>
<td>110–940</td>
<td>LC</td>
</tr>
<tr>
<td>Oldenlandia lancifolia (K.Schum.) DC</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Otomeria micrantha K.Schum.</td>
<td>2</td>
<td>Wide</td>
<td>540–830</td>
<td>LC</td>
</tr>
<tr>
<td>Otomeria volabilis (K.Schum.) Verde.</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Oxyanthus brevicaulis K.Krause</td>
<td>1</td>
<td>Wide</td>
<td>840</td>
<td>VU</td>
</tr>
<tr>
<td>Oxyanthus doucettii Sonké & O.Lachenaud</td>
<td>1</td>
<td>Cameroon</td>
<td>430</td>
<td>VU</td>
</tr>
<tr>
<td>Oxyanthus formosus Hook.f.</td>
<td>6</td>
<td>Wide</td>
<td>510–840</td>
<td>LC</td>
</tr>
<tr>
<td>Oxyanthus gracilis Hiern</td>
<td>16</td>
<td>Wide</td>
<td>570–1030</td>
<td>LC</td>
</tr>
<tr>
<td>Oxyanthus laxiflorus K.Schum. ex Hutch. & Dalziel</td>
<td>35</td>
<td>ACA</td>
<td>80–930</td>
<td>LC</td>
</tr>
<tr>
<td>Oxyanthus oliganthus K.Schum.</td>
<td>9</td>
<td>Wide</td>
<td>unknown</td>
<td>VU</td>
</tr>
<tr>
<td>Oxyanthus setosus Keay</td>
<td>13</td>
<td>ACA</td>
<td>630–930</td>
<td>LC</td>
</tr>
<tr>
<td>Oxyanthus speciosus DC.</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Oxyanthus unilocularis Hiern</td>
<td>6</td>
<td>Wide</td>
<td>430</td>
<td>LC</td>
</tr>
</tbody>
</table>
Table 2 (continued) – Checklist of Rubiaceae from Ngovayang Massif Area (NMA), with their geographical and altitudinal range and their IUCN categories.

<table>
<thead>
<tr>
<th>Species</th>
<th># specimens</th>
<th>Geographical range</th>
<th>Altitudinal range (m)</th>
<th>IUCN category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parapentas setigera (Hiern) Verde.</td>
<td>1</td>
<td>Wide</td>
<td>450</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pauridiantha arcula (S.E. Dawson) Smedmark & B. Bremer</td>
<td>5</td>
<td>Cameroon</td>
<td>470–690</td>
<td>CR<sup>b</sup></td>
</tr>
<tr>
<td>Pauridiantha divaricata (K. Schum.) Bremek.</td>
<td>8</td>
<td>ACA</td>
<td>550–910</td>
<td>VU<sup>a</sup></td>
</tr>
<tr>
<td>Pauridiantha floribunda (K. Schum. & K. Krause) Bremek.</td>
<td>3</td>
<td>ACA</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pauridiantha makakana (N. Hallé) Smedmark & B. Bremer</td>
<td>19</td>
<td>ACA</td>
<td>440–910</td>
<td>NT<sup>b</sup></td>
</tr>
<tr>
<td>Pauridiantha schumannii (Bremek.) Smedmark & B. Bremer</td>
<td>29</td>
<td>ACA</td>
<td>200–1030</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pauridiantha talbotii (Wernham) Ntore & Dessein</td>
<td>1</td>
<td>ACA</td>
<td>920</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta bidentata Hiern</td>
<td>7</td>
<td>ACA</td>
<td>80–1080</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta camerounensis S.D. Manning</td>
<td>25</td>
<td>ACA</td>
<td>90–1030</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta gabonica Bremek.</td>
<td>9</td>
<td>ACA</td>
<td>570–1040</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta hispida Hiern</td>
<td>11</td>
<td>ACA</td>
<td>110–910</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta kribiensis S.D. Manning</td>
<td>3</td>
<td>Cameroon</td>
<td>110–310</td>
<td>EN<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta longibrachiata Bremek.</td>
<td>1</td>
<td>ACA</td>
<td>700</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta microthammus K. Schum.</td>
<td>3</td>
<td>Wide</td>
<td>680–800</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta neurocarpa Benth.</td>
<td>11</td>
<td>ACA</td>
<td>200–730</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta owariensis var. opaca S.D. Manning<sup>i</sup></td>
<td>1</td>
<td>ACA</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta renidens (K. Krause) Bremek.</td>
<td>6</td>
<td>ACA</td>
<td>440–650</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta rigida Hiern</td>
<td>2</td>
<td>ACA</td>
<td>550</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta stauidii Hutch. & Dalziel</td>
<td>4</td>
<td>ACA</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pavetta suffruticosas K. Schum.</td>
<td>11</td>
<td>ACA</td>
<td>500–940</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Petitiocodon parviflorum (Keay) Robbr.</td>
<td>5</td>
<td>ACA</td>
<td>110–730</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pleiocoryne fernandensis (Hiern) Rauschert</td>
<td>4</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Pouchetia africana A. Rich. var. aequatorialis N. Hallé<sup>i</sup></td>
<td>5</td>
<td>Wide</td>
<td>110–630</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria alatipes Wernham</td>
<td>13</td>
<td>ACA</td>
<td>260–1030</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria anetoclada Hiern</td>
<td>1</td>
<td>ACA</td>
<td>830</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria bifaria Hiern</td>
<td>3</td>
<td>Wide</td>
<td>130–470</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria brandneriana (L. Linden) Robbr.</td>
<td>1</td>
<td>Wide</td>
<td>80</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria breteleri O. Lachenaud</td>
<td>6</td>
<td>ACA</td>
<td>450–930</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria brevifissa O. Lachenaud</td>
<td>7</td>
<td>ACA</td>
<td>570–1010</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria calceata E. M. A. Petit</td>
<td>2</td>
<td>Cameroon</td>
<td>310</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria conica O. Lachenaud subsp. ngovayangensis O. Lachenaud</td>
<td>1</td>
<td>NMA</td>
<td>700</td>
<td>CR<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria densinervia (K. Krause) Verde.</td>
<td>3</td>
<td>ACA</td>
<td>870–1080</td>
<td>EN<sup>a</sup></td>
</tr>
<tr>
<td>Psychotria dewildei O. Lachenaud</td>
<td>5</td>
<td>ACA</td>
<td>930–1030</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>*Psychotria droissartii O. Lachenaud</td>
<td>2</td>
<td>ACA</td>
<td>90–790</td>
<td>VU<sup>i</sup></td>
</tr>
<tr>
<td>Psychotria ebensis K. Schum.</td>
<td>11</td>
<td>ACA</td>
<td>310–910</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria fimbriatifolia R. D. Good</td>
<td>3</td>
<td>Wide</td>
<td>760–910</td>
<td>LC<sup>b</sup></td>
</tr>
</tbody>
</table>
Table 2 (continued) – Checklist of Rubiaceae from Ngovayang Massif Area (NMA), with their geographical and altitudinal range and their IUCN categories.

<table>
<thead>
<tr>
<th>Species</th>
<th># specimens</th>
<th>Geographical range</th>
<th>Altitudinal range (m)</th>
<th>IUCN category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychotria foliosa Hiern</td>
<td>16</td>
<td>ACA</td>
<td>90–1030</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria globiceps K.Schum.</td>
<td>7</td>
<td>ACA</td>
<td>430–1080</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria hexamera (K.Schum.) O.Lachenaud</td>
<td>5</td>
<td>Cameroon</td>
<td>80–900</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria humilis Hiern</td>
<td>1</td>
<td>ACA</td>
<td>560</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria hypsophila K.Schum. & K.Krause</td>
<td>8</td>
<td>Wide</td>
<td>520–930</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria ingentifolia E.M.A.Petit</td>
<td>4</td>
<td>Cameroon</td>
<td>810–910</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria konguensis Hiern</td>
<td>9</td>
<td>Wide</td>
<td>440–930</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria kupensis Cheek</td>
<td>10</td>
<td>ACA</td>
<td>200–1060</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria lagenocarpa K.Schum.</td>
<td>3</td>
<td>ACA</td>
<td>260–560</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria lanceifolia K.Schum.</td>
<td>18</td>
<td>ACA</td>
<td>200–850</td>
<td>VU<sup>a</sup></td>
</tr>
<tr>
<td>Psychotria latistipula Benth.</td>
<td>14</td>
<td>ACA</td>
<td>80–810</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria laxithyrsa O.Lachenaud</td>
<td>1</td>
<td>ACA</td>
<td>700</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria ledermannii (K.Krause) Figueiredo</td>
<td>4</td>
<td>ACA</td>
<td>550–830</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria leptophylla Hiern</td>
<td>20</td>
<td>Wide</td>
<td>90–940</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria letoazeyi E.M.A.Petit</td>
<td>5</td>
<td>ACA</td>
<td>540–1080</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria longicornis O.Lachenaud</td>
<td>2</td>
<td>ACA</td>
<td>800–1080</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria lucens Hiern</td>
<td>4</td>
<td>Wide</td>
<td>550–620</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria maesenii O.Lachenaud</td>
<td>1</td>
<td>ACA</td>
<td>830</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria marantifolia O.Lachenaud</td>
<td>4</td>
<td>Cameroon</td>
<td>80–770</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria pendalothyrsa O.Lachenaud</td>
<td>1</td>
<td>ACA</td>
<td>770</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria potanthera Wernham</td>
<td>2</td>
<td>ACA</td>
<td>800–900</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria raynaliorum O.Lachenaud</td>
<td>5</td>
<td>ACA</td>
<td>80–940</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria retorsrispis O.Lachenaud</td>
<td>6</td>
<td>NMA</td>
<td>71–1030</td>
<td>CR<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria rhizomatosa De Wild.</td>
<td>2</td>
<td>ACA</td>
<td>840–910</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria rynchodiscus O.Lachenaud</td>
<td>4</td>
<td>ACA</td>
<td>540–810</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria rubescens (Hiern) O.Lachenaud</td>
<td>3</td>
<td>ACA</td>
<td>730–1030</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria rubripilis K.Schum.</td>
<td>1</td>
<td>Wide</td>
<td>510</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria satabiei O.Lachenaud</td>
<td>17</td>
<td>Cameroon</td>
<td>260–910</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Psychotria senterrei O.Lachenaud</td>
<td>2</td>
<td>Cameroon</td>
<td>1010–1030</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria sitae O.Lachenaud subsp. holochlora O.Lachenaud</td>
<td>2</td>
<td>ACA</td>
<td>640–1080</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria soffana K.Krause</td>
<td>16</td>
<td>ACA</td>
<td>230–1010</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria subpunctata Hiern</td>
<td>1</td>
<td>Wide</td>
<td>560</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria taedoumgii O.Lachenaud</td>
<td>2</td>
<td>Cameroon</td>
<td>620–650</td>
<td>NT<sup>f</sup></td>
</tr>
<tr>
<td>Psychotria thonneri (De Wild. & T.Dur.) O.Lachenaud</td>
<td>4</td>
<td>Wide</td>
<td>830–1080</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria varans O.Lachenaud</td>
<td>15</td>
<td>Wide</td>
<td>600–1080</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Psychotria venosa (Hiern) E.M.A.Petit</td>
<td>5</td>
<td>ACA</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
</tbody>
</table>
Table 2 (continued) – Checklist of Rubiaceae from Ngoyang Massif Area (NMA), with their geographical and altitudinal range and their IUCN categories.

<table>
<thead>
<tr>
<th>Species</th>
<th># specimens</th>
<th>Geographical range</th>
<th>Altitudinal range (m)</th>
<th>IUCN category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychotria villicarpa O.Lachenaud subsp. sessilis O.Lachenaud</td>
<td>9</td>
<td>NMA</td>
<td>540–930</td>
<td>CR</td>
</tr>
<tr>
<td>Psychotria vogeliana Benth.</td>
<td>7</td>
<td>Wide</td>
<td>80</td>
<td>LC</td>
</tr>
<tr>
<td>Psydrax acutiflora (Hiern) Bridson</td>
<td>4</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Psydrax arnoldiana (De Wild. & T.Durand) Bridson</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Psydrax subcordata (DC.) Bridson</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Rothmannia hispida (K.Schum.) Fagerl.</td>
<td>12</td>
<td>Wide</td>
<td>110–940</td>
<td>LC</td>
</tr>
<tr>
<td>Rothmannia lateriflora (K.Schum.) Keay</td>
<td>16</td>
<td>Wide</td>
<td>110–1010</td>
<td>LC</td>
</tr>
<tr>
<td>Rothmannia libisa N.Hallé</td>
<td>3</td>
<td>Wide</td>
<td>540–810</td>
<td>LC</td>
</tr>
<tr>
<td>Rothmannia longiflora Salisb.</td>
<td>11</td>
<td>Wide</td>
<td>430</td>
<td>LC</td>
</tr>
<tr>
<td>Rothmannia macrocarpa (Hiern) Keay</td>
<td>2</td>
<td>Wide</td>
<td>510–840</td>
<td>LC</td>
</tr>
<tr>
<td>Rothmannia octomera (Hook.) Fagerl.</td>
<td>3</td>
<td>Wide</td>
<td>80–910</td>
<td>LC</td>
</tr>
<tr>
<td>Rothmannia talbotii (Wernham) Keay</td>
<td>6</td>
<td>Wide</td>
<td>110–810</td>
<td>LC</td>
</tr>
<tr>
<td>Rothmannia whitfieldii (Lindl.) Dandy</td>
<td>5</td>
<td>Wide</td>
<td>430</td>
<td>LC</td>
</tr>
<tr>
<td>Rutidea decorticata Hiern</td>
<td>7</td>
<td>ACA</td>
<td>200–410</td>
<td>LC</td>
</tr>
<tr>
<td>Rutidea hispida Hiern</td>
<td>7</td>
<td>ACA</td>
<td>80–930</td>
<td>LC</td>
</tr>
<tr>
<td>Rutidea olenotricha Hiern</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Rutidea rufipilis Hiern</td>
<td>1</td>
<td>ACA</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Rutidea smithii Hiern</td>
<td>3</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Rytignya membranacea (Hiern) Robyns</td>
<td>3</td>
<td>ACA</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Rytignya robusta sp. ined.</td>
<td>1</td>
<td>Wide</td>
<td>1010</td>
<td>LC</td>
</tr>
<tr>
<td>Sabicea africana (P.Beauv.) Hepper</td>
<td>4</td>
<td>Wide</td>
<td>80–690</td>
<td>LC</td>
</tr>
<tr>
<td>Sabicea apocynacea (K.Schum.) Razafim., B.Bremer, Liede & Saleh A.Khan</td>
<td>1</td>
<td>ACA</td>
<td>930</td>
<td>EN</td>
</tr>
<tr>
<td>Sabicea calycina Benth.</td>
<td>5</td>
<td>Wide</td>
<td>540–1040</td>
<td>LC</td>
</tr>
<tr>
<td>Sabicea capitellata Benth.</td>
<td>4</td>
<td>Wide</td>
<td>930</td>
<td>LC</td>
</tr>
<tr>
<td>Sabicea dinklagei K.Schum.</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Sabicea gabonica (Hiern) Hepper</td>
<td>3</td>
<td>ACA</td>
<td>90–870</td>
<td>LC</td>
</tr>
<tr>
<td>Sabicea gigantostipula K.Schum.</td>
<td>2</td>
<td>ACA</td>
<td>810</td>
<td>LC</td>
</tr>
<tr>
<td>Sabicea gracilis Wernham</td>
<td>1</td>
<td>Cameroon</td>
<td>90</td>
<td>DD</td>
</tr>
<tr>
<td>Sabicea laxa Wernham</td>
<td>2</td>
<td>ACA</td>
<td>unknown</td>
<td>EN</td>
</tr>
<tr>
<td>Sabicea medusula K.Schum. ex Wernham</td>
<td>5</td>
<td>Wide</td>
<td>410–730</td>
<td>LC</td>
</tr>
<tr>
<td>Sabicea pilosa Hiern</td>
<td>1</td>
<td>ACA</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Sabicea trigemina K.Schum.</td>
<td>1</td>
<td>ACA</td>
<td>unknown</td>
<td>CR</td>
</tr>
<tr>
<td>Sabicea venosa Benth.</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>LC</td>
</tr>
<tr>
<td>Sabicea xanthotricha Wernham</td>
<td>1</td>
<td>ACA</td>
<td>910</td>
<td>EN</td>
</tr>
<tr>
<td>Schumanniophyton magnificum (K.Schum.) Harms</td>
<td>3</td>
<td>Wide</td>
<td>750–840</td>
<td>LC</td>
</tr>
</tbody>
</table>
Table 2 (continued) – Checklist of Rubiaceae from Ngovayang Massif Area (NMA), with their geographical and altitudinal range and their IUCN categories.

<table>
<thead>
<tr>
<th>Species</th>
<th># specimens</th>
<th>Geographical range</th>
<th>Altitudinal range (m)</th>
<th>IUCN category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sericanthe auriculata (Keay) Robbr.</td>
<td>10</td>
<td>ACA</td>
<td>200–920</td>
<td>VU<sup>b</sup></td>
</tr>
<tr>
<td>Sericanthe lowryana Sonké & Robbr.</td>
<td>4</td>
<td>Cameroon</td>
<td>660–760</td>
<td>EN<sup>i</sup></td>
</tr>
<tr>
<td>Sericanthe jacfelicis (N.Hallé) Robbr.</td>
<td>1</td>
<td>ACA</td>
<td>710</td>
<td>VU<sup>b</sup></td>
</tr>
<tr>
<td>Sherbournia buccularia N.Hallé</td>
<td>1</td>
<td>ACA</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Sherbournia hapalophylla (Wernham) Hepper</td>
<td>3</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Sherbournia streptocaulon (K.Schum.) Hepper</td>
<td>8</td>
<td>ACA</td>
<td>730</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Sherbournia zenkeri Hua</td>
<td>2</td>
<td>Wide</td>
<td>450</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Tarenna bipindensis (K.Schum.) Bremek.</td>
<td>17</td>
<td>Wide</td>
<td>630–660</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Tarenna conferta (Benth.) Hiern</td>
<td>5</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Tarenna eketensis Wernham</td>
<td>4</td>
<td>Wide</td>
<td>650</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Tarenna fusco-flava (K.Schum.) S.Moore</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Tarenna grandiflora (Benth.) Hiern</td>
<td>19</td>
<td>Wide</td>
<td>80–760</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Tarenna lasiorhachis (K.Schum. & K.Krause) Bremek.</td>
<td>13</td>
<td>Wide</td>
<td>200–550</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Tarenna pallidula Hiern</td>
<td>4</td>
<td>Wide</td>
<td>600–900</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Tarenna precidantenna N.Hallé</td>
<td>14</td>
<td>Wide</td>
<td>370–920</td>
<td>LC<sup>e</sup></td>
</tr>
<tr>
<td>Trialyssia amplexicaulis Robbr.</td>
<td>3</td>
<td>ACA</td>
<td>570</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Trialyssia atherara N.Hallé</td>
<td>1</td>
<td>ACA</td>
<td>630</td>
<td>VU<sup>a</sup></td>
</tr>
<tr>
<td>Trialyssia coriacea (Benth.) Hiern</td>
<td>2</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Trialyssia elliotii (K.Schum.) Hutch. & Dalziel</td>
<td>1</td>
<td>Wide</td>
<td>560</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Trialyssia ferorum Robbr.</td>
<td>1</td>
<td>ACA</td>
<td>130</td>
<td>VU<sup>c</sup></td>
</tr>
<tr>
<td>Trialyssia lasiodelphys (K.Schum. & K.Krause) A.Chev.</td>
<td>8</td>
<td>ACA</td>
<td>790–910</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Trialyssia pangolina N.Hallé</td>
<td>2</td>
<td>ACA</td>
<td>650–710</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Trialyssia sp. ined.</td>
<td>1</td>
<td>NMA</td>
<td>410</td>
<td>CR<sup>c</sup></td>
</tr>
<tr>
<td>Trialyssia sylva Robbr.</td>
<td>24</td>
<td>ACA</td>
<td>90–940</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Trialyssia vadensis Robbr.</td>
<td>12</td>
<td>ACA</td>
<td>200–770</td>
<td>VU<sup>a</sup></td>
</tr>
<tr>
<td>Trichostachys aurea Hiern</td>
<td>4</td>
<td>Wide</td>
<td>380–950</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Vangueriella chlorantha (K.Schum.) Verde.</td>
<td>27</td>
<td>ACA</td>
<td>90–850</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Vangueriella laxiflora (K.Schum.) Verde.</td>
<td>22</td>
<td>Wide</td>
<td>260–930</td>
<td>LC<sup>c</sup></td>
</tr>
<tr>
<td>Vangueriella letestui Verde.</td>
<td>1</td>
<td>ACA</td>
<td>unknown</td>
<td>EN<sup>b</sup></td>
</tr>
<tr>
<td>Vangueriella nigerica (Robyns) Verde.</td>
<td>1</td>
<td>Wide</td>
<td>unknown</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Vangueriella nigricans (Robyns) Verde.</td>
<td>3</td>
<td>Wide</td>
<td>560</td>
<td>LC<sup>b</sup></td>
</tr>
<tr>
<td>Vangueriella zenkeri Verde.</td>
<td>2</td>
<td>Cameroon</td>
<td>930</td>
<td>EN<sup>b</sup></td>
</tr>
<tr>
<td>Virectaria procumbens (Sm.) Bremek.</td>
<td>3</td>
<td>Wide</td>
<td>430–550</td>
<td>LC<sup>c</sup></td>
</tr>
</tbody>
</table>
biaceae (2237 specimens, 65 genera, 281 species) and Or
chidaceae (550 specimens, 32 genera, 111 species), followed
by Fabaceae s. lat. (306 specimens, 56 genera, 92 species)
(electronic appendix 5).

A detailed checklist for Rubiaceae and Orchidaceae

We here confirm the presence of 281 Rubiaceae species and
111 Orchidaceae species in the NMA (detailed checklists for
these two families are presented in tables 1 & 2). Among ar
geas of comparable size in ACA for which species checklists
have previously been published, the NMA ranks first for the
diversity of Rubiaceae, and fifth for Orchidaceae (table 3,
electronic appendix 6).

Bulbophyllum and Polystachya (27 species each, 24% of the
total for each) are the most diverse genera of Orchidaceae
within the NMA. Thirty-nine orchid species have only been
collected once in the NMA, and nine species are endemic to the NMA (Ku
peantha spathulata, Bertiera heterophylla, Globulostyli
leniochlamys, Keetia (?) sp. ined., Psychotria conica subsp.
ngoyangensis, P. retrorsipilis, P. villicarpa subsp. sessilis,
Sabicea trigemina, Tricalysia sp. ined.). We did not find any
new records for Cameroon, but several Rubiaceae species
previously thought to have a more northern distribution in
Cameroon have been discovered in the NMA thanks to recent
prospections: Aulacocalyx mapiana, Chassalia laikomensis
Ghertnera letouzeyi and Petitiocodon parviflorum. Four spe
- cies new to science are also reported from the NMA (see spe
- cies referred to as “sp. ined.” in table 2) and will be published
elsewhere.

Sampling and diversity patterns of Rubiaceae and
Orchidaceae

The botanical exploration of the NMA and the knowledge of distribu-
tional patterns of Rubiaceae and Orchidaceae within the
massif is far from complete (fig. 1), but general trends
can nevertheless be identified. The 2484 georeferenced spec
imens collected for the two families are mostly concentrated
around eight villages bordering the NMA (fig. 1A), that rep
resent fieldwork starting points. Looking at raw data (fig. 1B
& 1C), species richness is correlated with the historical sam
pling effort (Pearson correlation coefficient R = 0.95). For
instance, the grid overlapping the Bipindi locality is by far
the most sampled (582 herbarium records) and species-rich
(183 Rubiaceae and Orchidaceae species).

Table 3 – Summary statistics for main areas of Atlantic Central Africa with published inventory data for Orchidaceae and Rubiaceae (SR = species richness).
Areas are classified according to their size (km²).

<table>
<thead>
<tr>
<th>Place names</th>
<th>Area (km²)</th>
<th>Altitudinal range (m)</th>
<th>SR total</th>
<th>SR Orchidaceae</th>
<th>SR Rubiaceae</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dom, Bamenda Highland (Cameroon)</td>
<td>4.5</td>
<td>1550–1930</td>
<td>356</td>
<td>12</td>
<td>34</td>
<td>Cheek et al. (2010)</td>
</tr>
<tr>
<td>Mefou “proposed” NP (Cameroon)</td>
<td>10</td>
<td>600–900</td>
<td>863</td>
<td>28</td>
<td>103</td>
<td>Cheek et al. (2011)</td>
</tr>
<tr>
<td>Annobón Island (Equatorial Guinea)</td>
<td>17</td>
<td>0–598</td>
<td>365</td>
<td>28</td>
<td>16</td>
<td>Velayos et al. (2014)</td>
</tr>
<tr>
<td>Ngoyang (Cameroon)</td>
<td>527</td>
<td>0–1110</td>
<td>1472</td>
<td>111</td>
<td>281</td>
<td>This paper</td>
</tr>
<tr>
<td>São Tomé and Principe</td>
<td>990</td>
<td>0–2024</td>
<td>1104</td>
<td>124</td>
<td>74</td>
<td>Figueiredo et al. (2011)</td>
</tr>
<tr>
<td>Lebialem Highlands (Cameroon)</td>
<td>1223</td>
<td>250–2000</td>
<td>412</td>
<td>33</td>
<td>68</td>
<td>Harvey et al. (2010)</td>
</tr>
<tr>
<td>Mount Oku (Cameroon)</td>
<td>1550</td>
<td>1100–3011</td>
<td>920</td>
<td>85</td>
<td>36</td>
<td>Cheek et al. (2000)</td>
</tr>
<tr>
<td>Bioko Island (Equatorial Guinea)</td>
<td>2000</td>
<td>0–3011</td>
<td>842</td>
<td>136</td>
<td>170</td>
<td>Velayos et al. (2013)</td>
</tr>
<tr>
<td>Mounts Kupe-Manengouba (Cameroon)</td>
<td>2390</td>
<td>500–2411</td>
<td>2412</td>
<td>183</td>
<td>213</td>
<td>Cheek et al. (2004)</td>
</tr>
<tr>
<td>Mount Cameroon (Cameroon)</td>
<td>2700</td>
<td>0–4040</td>
<td>2435</td>
<td>147</td>
<td>261</td>
<td>Cable & Cheek (1998)</td>
</tr>
<tr>
<td>Gabon</td>
<td>257700</td>
<td>0–1070</td>
<td>5236</td>
<td>400</td>
<td>640</td>
<td>Sosef et al. (2006); Vande weghe et al. (2016)</td>
</tr>
<tr>
<td>Cameroon</td>
<td>475000</td>
<td>0–4040</td>
<td>6883</td>
<td>489</td>
<td>718</td>
<td>Onana (2011)</td>
</tr>
</tbody>
</table>
When using the subsampling procedure (fig. 1D), the correlation between sampling and richness patterns becomes blurred (Pearson correlation coefficient $R = 0.07$), and several grid cells scattered all over the NMA present high expected diversity values.

The assessment of sampling completeness through interpolation and extrapolation curves (fig. 2) shows that, in terms of total species richness, Rubiaceae and Orchidaceae are relatively well known in the NMA; observed sample coverage values being over 90% for both families. From the extrapolation curves, one could expect that total species richness is comprised between 298 and 339 species for Rubiaceae and between 124 and 186 species for Orchidaceae (95% lower and upper confidence limits).

The analysis of altitudinal distribution of Rubiaceae and Orchidaceae in the NMA reveals that the observed (or expected) number of species for both families tends to increase along the elevation gradient, the areas above 750 m having the highest values (fig. 3). However, extrapolation values between 250 and 500 m and > 750 m for Orchidaceae, and < 250 m for Rubiaceae must be interpreted cautiously because sample coverage is weak (i.e. below 0.75) at these elevation intervals.

Geographical range and conservation status of Rubiaceae and Orchidaceae

About a quarter (27%) of the Orchidaceae and more than half (53%) of the Rubiaceae recorded in the NMA are endemic to ACA (fig. 4). Nine Rubiaceae and one Orchidaceae are endemic to the NMA.

The proportions of threatened (VU, EN, CR) species are 17% and 18% for Rubiaceae and Orchidaceae, respectively (fig. 5).

Figure 1 – Botanical exploration of Rubiaceae and Orchidaceae in the Ngovayang Massif Area (NMA): A, localization of historical (1889–2003) and recent (2004–2017) herbarium records made in the NMA; B, number of herbarium records (samples) collected per 0.05° grid-cells; C, number of species collected per 0.05° grid-cells; D, expected number of species calculated for 0.05° grid-cells that contain at least 20 herbarium records ($S_{k=20}$).
Figure 2 – Sampling completeness (left) and diversity estimates (right) for Rubiaceae and Orchidaceae in the NMA. Rarefaction/interpolation (solid line segment) and extrapolation (dotted line segments) curves are based on abundance data and represented with 95% confidence intervals (shaded areas). The numbers below rarefaction curves indicate the observed sample completeness (left) and species richness (right).

Figure 3 – Diversity estimates (upper graphs) and sampling completeness (lower graphs) for Orchidaceae and Rubiaceae along the elevation gradient in the NMA. Interpolation (solid line segment) and extrapolation (dotted line segments) curves are based on abundance data and represented with 95% confidence intervals (shaded areas).
Figure 4 – Geographical range for Rubiaceae and Orchidaceae recorded from the NMA. Distribution categories considered are: Wide = Widely distributed; NMA end. = endemic to NMA; Cameroon end. = endemic to Cameroon; ACA end. = endemic to Atlantic Central Africa.

Figure 5 – Proportion of threatened species for Orchidaceae and Rubiaceae recorded from the NMA. IUCN Red List Categories considered are: CR = Critically Endangered; EN = Endangered; VU = Vulnerable; NT = Near Threatened; LC = Least Concern; DD = Data Deficient.

Figure 6 – Number of threatened (= Threat.) species (in red) and species endemic (= End.) to ACA (in blue) along the altitudinal gradient in the NMA.
The number of restricted range and threatened species increases with altitude (fig. 6), being double the number above 750 m than below 250 m. Above 750 m, our database reports the presence of 35 species threatened with extinction and 104 species endemic to ACA.

The NMA must be considered as an Important Plant Area (IPA) in ACA, as confirmed by its exceptional plant diversity (> 20% of the total flora of Cameroon), by the concentration of many threatened and/or restricted range species (67 taxa are considered globally threatened according to IUCN and ten taxa are strict endemics of the massif) as well as by the threat to rare habitats (i.e. the submontane forest vegetation above ~750 m elevation). The current knowledge of Rubiaceae and Orchidaceae collected in the NMA as well as their habitat (table 4), allows the NMA to qualify for IPA's criterion A(i, iii, iv) B(i,ii) C(iii).

Table 4 – Application of Important Plant Area (IPA) criteria to the flora of the Ngovayang Massif Area (NMA).

<table>
<thead>
<tr>
<th>IPA criteria and sub-criteria</th>
<th>Ngovayang Massif Area (NMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Threatened species</td>
<td>Forty-seven Rubiaceae and 20 Orchidaceae are considered globally threatened (CR, EN or VU) according to IUCN category and criteria (tables 1 & 2, this paper). Fourteen assessments (four Orchidaceae, ten Rubiaceae) are currently published on the IUCN global Red List (IUCN 2018).</td>
</tr>
<tr>
<td>A(i) Site contains one or more globally threatened species</td>
<td>Not evaluated, all species considered here have been assessed globally.</td>
</tr>
<tr>
<td>A(ii) Site contains one or more regionally threatened species</td>
<td>Ten species (1 Orchidaceae, 9 Rubiaceae) are strict endemic to NMA.</td>
</tr>
<tr>
<td>A(iii) Site contains one or more highly restricted endemic species that are potentially threatened</td>
<td>Twelve species (1 Orchidaceae, 11 Rubiaceae) are assessed as CR (EOO < 100km²).</td>
</tr>
<tr>
<td>A(iv) Site contains one or more range restricted endemic species that are potentially threatened</td>
<td>Twenty-seven species (22 Rubiaceae and 5 Orchidaceae) present in the NMA are endemic to Cameroon. Additionally, 22 species (8 Orchidaceae, 14 Rubiaceae) are assessed as EN (100 km² < EOO < 5000 km²).</td>
</tr>
<tr>
<td>(B) Botanical richness</td>
<td>The NMA houses 21.4% of the total number of plant species recorded to date for Cameroon (1472 species in NMA out of a total of 6883 species), all these species are linked with tropical evergreen forest (lowland forest and submontane forest). Thirty-three Rubiaceae and 16 Orchidaceae are characteristic species for submontane forest and were only collected above 750 m in the NMA.</td>
</tr>
<tr>
<td>B(i) Site contains a high number of species within defined habitat or vegetation types</td>
<td>Thirty-seven species (31 Rubiaceae and 6 Orchidaceae) present in the NMA are endemic to the massif or to Cameroon, which represent 4.5% of the 815 rare or threatened species documented for Cameroon (Onana & Cheek 2011). The NMA represent one of the 15 richest sites for Cameroon (third richest documented site after Mt Cameroon and Mts Kupe/Manengouba).</td>
</tr>
<tr>
<td>B(ii) Site contains an exceptional number of species of high conservation importance</td>
<td>Not evaluated.</td>
</tr>
<tr>
<td>B(iii) Site contains an exceptional number of socially, economically or culturally valuable species</td>
<td>Not evaluated.</td>
</tr>
<tr>
<td>(C) Threatened habitat</td>
<td>Not evaluated.</td>
</tr>
<tr>
<td>C(i) Site contains globally threatened or restricted habitat/vegetation type</td>
<td>Not evaluated.</td>
</tr>
<tr>
<td>C(ii) Site contains regionally threatened or restricted habitat/vegetation type</td>
<td>Not evaluated.</td>
</tr>
<tr>
<td>C(iii) Site contains nationally threatened or restricted habitat/vegetation type, AND/OR habitats that have severely declined in extent nationally</td>
<td>Not precisely evaluated, but considering a lower limit of 750 m, Ngovayang might contain more than 5% of submontane vegetation present in Cameroon. Considering the continuous extend of the submontane forest in the NMA, the site represents one of the 5 “best sites” for that habitat nationally.</td>
</tr>
</tbody>
</table>

The NMA, an Important Plant Area

The NMA houses 21.4% of the total number of plant species recorded to date for Cameroon, while its surface area only represents 0.1% of the country (table 3). It represents the third richest documented site for Cameroon after the Mount Cameroon National Park (2435 plant species, Cable & Cheek 1998) and the Kupe, Mwanenguba and Bakossi Mountains (2412 plant species, Cheek et al. 2004). For the two families here studied in detail (Rubiaceae and Orchidaceae), 17.1% of the species occurring in the NMA are considered threatened according to IUCN red list categories and criteria (IUCN 2012). Additionally, 45% of the Rubiaceae and Orchidaceae...
recorded from the NMA are restricted-range species and endemic to ACA. Though no precise vegetation mapping has been made for the NMA to date, we can recognize two main types: the lowland evergreen forest between 0 and 750 m and the submontane vegetation above 750 m (33 Rubiaceae and 16 Orchidaceae were only collected above this elevation in the NMA, table 1 & 2). We also observed particular submontane vegetation associated with rock outcrops during our recent inventories near the locality of Atog Boga, but this habitat remains to date underexplored.

The exceptional plant diversity and endemism level of the NMA should be linked to both environmental/geomorphological gradients and past climatic conditions. The NMA is part of a series of small mountain range stretching along the ocean coast from Southern Cameroon to Congo Brazzaville, and corresponding to several, isolated and putative forest refuges during drier and cooler climatic periods of the Quaternary (Maley 1987, Maley et al. 2018). Based on distribution pattern of endemic orchids to ACA, this series of small mountain ranges has been considered as a unique but discontinuous area of endemism (Droissart 2009). Several species in our checklist such as Colletoecema magna, Kupeantha spatulata, Afropectinariella atlantica, Polystachya bipoda and P. lejolyana are indeed only present in small hills distributed south of the NMA. In addition, several species, which are otherwise largely restricted to southwest Cameroon, are represented by isolated populations in the NMA, e.g. Aulacocalyx mapiana, Chassalia laikomensis, Gaertnera lehouzeyi, Petitoecodon parviflorum, Psychotria taedoumgii, Dolabrifolia podochiloides and Bulbophyllum teretifolium. As proposed by Gonmadje et al. (2011), the presence of restricted-range species reaching either the most southern or most northern part of their distribution in the NMA tends to confirm that the massif is located at the junction of various phytogeographical influences. In most cases these restricted-range species occur in relatively high elevation areas (e.g. Chassalia laikomensis only above 1000 m) and their discovery in the massif is recent, so other similar findings should be expected in the future. Their presence reinforces the importance of the NMA in terms of conservation, and underlines the necessity of developing conservation strategies for these species whose habitat will be strongly impacted by mining activities in the near future.

Mining threats on the NMA rich biodiversity

Africa is facing an unprecedented mining boom (Edwards et al. 2014) that will potentially have severe impact on the biodiversity of areas with recorded mineral resources. The area affected by mining exploitation depends on the mineral being mined (Edwards 2001), iron exploitation being one of the worse in terms of surface impacted. For biologists, who are usually not involved in the definition of the methods and area to be exploited, it is always extremely difficult to determine what will be the impact of mining on biodiversity and habitats. However, according to aeromagnetic maps produced during the mining exploration stage (electronic appendix 1), the highest concentrations of iron are found in the highest elevation areas of the NMA, i.e above 750 m, which are also the richest in endangered and/or rare species (fig. 6). Before starting the effective mining exploitation of the NMA, it is thus essential to set up mitigation and offsetting mechanisms in order to minimize the impact on the environment. The present work highlights several species on which such mitigation programmes should be addressed first, such as the 12 Critically Endangered (CR) species identified for Rubiaceae and Orchidaceae (tables 1 & 2). We have initiated *ex situ* collections and a seedbank in Yaoundé, but this initiative currently covers only a small fraction of the threatened species of the NMA (less than 10%) due to limited resources. In addition, *ex situ* conservation may be very difficult for some species, e.g. due to their peculiar habitat requirements or low germination rates and, for these species, *in situ* conservation and management plans are urgently required.

CONCLUSION

The NMA represents one of the richest inventoried areas of ACA in terms of plant diversity (table 3). Additional fieldwork in less accessible and/or undersampled areas will certainly reinforce this picture and will allow a better understanding of the distribution and conservation status of plant species within the NMA.

SUPPLEMENTARY DATA

Supplementary data are available at *Plant Ecology and Evolution*, Supplementary Data Site (https://www.ingentaconnect.com/content/botbel/plecevo/supp-data) and consist of the following: (1) exploration permits covering the NMA, with Iron ore and gold sampling target areas overlying aeromagnetic image (pdf); (2) Ngovayang Massif Area (NMA) herbarium database (Excel spreadsheet); (3) summary statistic for the ten most active botanists in the NMA (pdf); (4) temporal distribution of collecting efforts in the NMA (pdf); (5) summary statistics for the ten most species-rich families in the NMA (pdf); and (6) species-area curve for total, Rubiaceae and Orchidaceae floras in two countries and 11 sites of Atlantic Central Africa.

ACKNOWLEDGEMENTS

We are grateful to Dr Jean-Michel Onana, former Head of the National Herbarium of Cameroon (YA), and the staff, for facilitating access to the herbarium collection. The herbarium staff of BR, BRLU, K, P, WAG is thanked for facilities provided to the authors, and for the loan of specimens. We also acknowledge the *Sud Expert Plantes* project under French Ministry of Foreign Affairs, the Agence Universitaire de la Francophonie (AUF) and the National Geographic Society (Grant 7711-04 and Grant 8377-07, B. Sonké as PI) for pro-
viding financial supports for the fieldwork. We express our gratitude to the National Geographic Society (Grant C303-15, V. Droissart as PI) who supported ex situ conservation activities (orchid living collection and seedbank) in Cameroon. We are also grateful to local authorities and villagers from Atog Boga, Biphondi, Bidjoka, Bipindi, Mbikiliki, Melmel II, Ngoveyang and Ngoyang for their support and help during fieldwork activities. We express our sincere gratitude to Catherine Guiakam, Sandrine Mayogo and Narcisse Kamdem for maintenance work and collection of specimens in the Yaoundé shadehouse. We also thank reviewers, Jean Michel Onana and Martin Cheek, for their useful comments and suggestions for the final version of this paper.

REFERENCES

In this section, a comprehensive review of the literature is presented, focusing on the floristic diversity of tropical Africa. The IUCN Red List of Threatened Species (2017) has provided a valuable resource for assessing the conservation status of plant species in the region. Sosef M.S.M., Wieringa J.J., de Heij J., Janssens S., Klimberg V., Ley A.C., Mackinder B.A., Meerts P., van de Poel J.L., Sonké B., Stévart T., Stoffelen P., Svenning J.-C., Sepulchre P., Zaiss R., Wieringa J.J., Couvreur T.L.P. (2017) has explored the floristic diversity of tropical Africa, highlighting the importance of conserving these species.

Mimba M.E., Tamnta N.M., Suh C.E. (2014) have studied the geochemical dispersion of gold in stream sediments in the Paleoproterozoic Nyong Series, southern Cameroon. Their research underscores the significance of understanding the distribution and concentration of minerals in sediments for effective resource management.

Maley J., Doumenge C., Giresse P., Mahé G., Philippon N., Houbau W., Lokonda M.O., Tshibamba J.M., Chepstow-Lusty A. (2018) have investigated late Holocene forest contraction and fragmentation in central Africa. This study contributes to our understanding of the historical dynamics of forest ecosystems.

Velayos M., Cabezas F.J., Barberá P., Velandos M., de la Estrella M., Aedo C., Morales R., Quintanar A., Velayos G., Fero M. (2013) have documented preliminary checklist of vascular plants of Bioko Island (Equatorial Guinea). Their work is crucial for the conservation of plant diversity in this remote and unique region.

Vandegheeghe P., van de Poel J.L.C.H., Walters G., de Wilde J.J.F.E. (2018) have provided an interactive forest atlas of Cameroon, version 3.0. This resource is invaluable for stakeholders in the conservation and sustainable use of forest resources.

Vanderwolf A., Kiesecker J. (2013) have discussed development by design in Colombia: making mitigation decisions consistent with conservation outcomes. Their insights are relevant for biodiversity conservation strategies globally.

Verstraete B., Lachenaud O., Smets E., De Sessein S., Sonké B. (2013) have explored the taxonomy and phylogenetics of Cuviera (Rubiaceae–Vanngueriae) and reinstatement of Globulostylis with the description of three new species. This work advances our understanding of the evolutionary relationships within this family.

The World Database of Protected Areas [online]. Available from http://www.protectedplanet.net/country/CMR

UNEP-WCMC (2018) has developed a decision profile for Cameroon from the World Database of Protected Areas [online]. Available from http://www.iucnredlist.org/resources/redlistguidelines
