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Abstract

The ability to build in-depth cell signaling networks from vast experimental data is a key

objective of computational biology. The spleen tyrosine kinase (Syk) protein, a well-charac-

terized key player in immune cell signaling, was surprisingly first shown by our group to

exhibit an onco-suppressive function in mammary epithelial cells and corroborated by

many other studies, but the molecular mechanisms of this function remain largely unsolved.

Based on existing proteomic data, we report here the generation of an interaction-based

network of signaling pathways controlled by Syk in breast cancer cells. Pathway enrichment

of the Syk targets previously identified by quantitative phospho-proteomics indicated that

Syk is engaged in cell adhesion, motility, growth and death. Using the components and inter-

actions of these pathways, we bootstrapped the reconstruction of a comprehensive network

covering Syk signaling in breast cancer cells. To generate in silico hypotheses on Syk sig-

naling propagation, we developed a method allowing to rank paths between Syk and its

targets. We first annotated the network according to experimental datasets. We then com-

bined shortest path computation with random walk processes to estimate the importance of

individual interactions and selected biologically relevant pathways in the network. Molecular

and cell biology experiments allowed to distinguish candidate mechanisms that underlie the

impact of Syk on the regulation of cortactin and ezrin, both involved in actin-mediated cell

adhesion and motility. The Syk network was further completed with the results of our biologi-

cal validation experiments. The resulting Syk signaling sub-networks can be explored via an

online visualization platform.
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Author summary

The complex nature of cancer hampers traditional biological approaches to unravel its

molecular mechanisms and develop targeted drug therapies. Cancer affects a number of

“hallmark” cellular processes controlled by multiple signaling pathways. Our goal is to

identify the pathways that negatively affect tumor development and progression. We

established that the Syk protein tyrosine kinase exhibits a tumor-suppressive function in

breast cancer. Large scale global biochemical analyses allowed to identify Syk targets in

cancer cells, but their mechanisms and interrelationships remain unknown. Our main

goal was to pinpoint a limited number of biologically realistic molecular “paths” from Syk

to its effectors. We therefore developed a new methodology combining graph theoretical

methods allowing to reveal the shortest “paths” between “nodes” in a graph including an

approach that investigates also longer “paths”. Applied to the Syk network, this method

allowed us to propose and validate new signaling axes relating Syk to major effectors of

the cell adhesion and mobility that are crucial cancer hallmarks.

Introduction

Tyrosine phosphorylation of proteins acts as an efficient switch allowing to control key signal-

ing pathways involved in cell proliferation, apoptosis, migration, and invasion, and is thus

involved in oncogenesis. Understanding the functioning of such complex pathways is crucial

for both fundamental research and clinical applications and relies on the ability to build in-

depth network models from extensive global experimental data [1–7].

The non-receptor spleen tyrosine kinase Syk has for a long time been considered as a

hematopoietic cell-specific signaling molecule. In these cells, Syk is involved in coupling

activated immunoreceptors to downstream signaling events affecting cell proliferation, differ-

entiation and survival [8]. We and others have discovered that Syk is also present in non-

hematopoietic cells [9–12]. More precisely, its expression was found in mammary epithelial

cells and low-tumorigenic breast cancer cell lines, whereas invasive and metastatic breast can-

cer cells lacked Syk expression [11]. In patient samples, Syk expression exhibits a gradual loss

during breast cancer progression and the low Syk levels are correlated with an increased risk of

metastasis [13,14]. In hematopoietic cells, Syk functions as an essential component of the sig-

naling machinery of multiple immune receptors and adapter proteins that are, however, not

expressed in non-hematopoietic cells. Unveiling the Syk signaling pathways and tumor sup-

pressor mechanisms is a public health issue as pharmacological Syk inhibitors are being used

in clinical trials for treating auto-immune diseases [15,16].

We and other groups performed quantitative phospho-proteomic studies, based on differ-

ential Syk expression or activity, in order to identify novel Syk signaling effectors in breast can-

cer cells [17–19]. These approaches, however, allowed only to establish a comprehensive list of

direct and indirect Syk targets. In this study, we use the data produced in these investigations

to reconstruct a Syk-based signaling network and to identify the intermediary pathways via

which the signal propagates from Syk to its effectors in this network.

Phospho-proteomic studies provide data sets of phosphorylated proteins with a significant

“fold change” in differential experiments. Comparably to the gene data sets in transcriptomic

studies, these protein targets can be used to build networks by using comprehensive interac-

tion databases (hypergeometric test [20]; GSEA [21]; DAVID [22]; enrichment maps [23]). On

the one hand, the set of identified targets is incomplete and intermediate variables and interac-

tions are needed to describe systems-level functioning. On the other hand, the set may be too

Syk signaling network in breast cancer cells
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substantial and contain spurious or inessential components. Consequently, in order to obtain

comprehensive networks that expose new essential constituents, network reconstruction pro-

cedures should contain both enrichment and pruning steps.

Network pruning can be performed by sub-network extraction [7,24–27]. Three main

approaches based on generic graph analysis methods have been used to extract sub-networks

associated to a subset of its nodes: the classical shortest path [27–29], Steiner trees [7,25,26]

and random walk processes [30]. Module identification using expression data to score sub-net-

works [31] is a closely-related method but its aim is to identify a number of significant small

sub-networks rather than produce a simplified connected network.

Here we focus on the identification of signaling pathways from a single source to a collec-

tion of targets identified in phospho-proteomic studies. In this context, the classical shortest

paths approach can be inaccurate and does not take into account alternative paths, while the k-

shortest paths extension generates a collection of ranked alternative paths, but relies on well-

separated weights between arcs to be effective [27]. Steiner trees enable the identification of

the smallest set of edges allowing to connect a set of nodes: it may lead to longer individual

paths but will reduce the number of interactions when considering the dataset as a whole, with

the drawback of further reducing the number of alternative paths [25]. Suboptimal solutions

of the Steiner tree problem were computed for a lymphoma network [32] but the functional

significance of disparate solutions was not appraised. Finally, random walk processes have

been used to estimate the probability of reaching network nodes by observing information

flow propagation [30,33] The random walk approach can prioritize some proteins [30,34] but

does not usually aim to identify paths from the source(s) to the target(s). Additionally, it can

be inaccurate and fail to render specific features of the signaling pathways because it assumes

that the flow of information through the network satisfies linear equations (Laplace equation

on a graph) with transitions that are mainly guided by topology. Other turn-key tools have

been developed, such as Ingenuity Pathways Analysis (IPA) [35]. IPA mainly involves gene-

regulatory networks and request the signs of the regulations in order to score interactions and

paths. The latter information is rarely available in relation with protein modification/interac-

tion and phospho-proteomics data. Furthermore, IPA is a proprietary software with a private

database. Despite their limitations, each of these methods provides valuable information and it

is useful to combine several approaches with ad-hoc adjustments when analyzing networks in

relation with specific data.

In this paper we assembled the interaction network of signaling pathways controlled by Syk

in breast cancer cells, exploiting existing phospho-proteomic studies. To reconstruct and ana-

lyze the signaling network, we propose a novel methodology that combines the shortest paths

methods with random walk processes. We defined interaction weights based on functional

annotations and experimental datasets. Mainly, we pinpointed phosphorylation-based interac-

tions leading directly to targets whose changes of phosphorylation are significant and interac-

tions whose sources were identified targets. These weights define transition probabilities of a

Markovian random walk on the network, which are further refined by replacing them with

probability currents of the stationary Markov process. Thus, the random walk is not used for

pruning directly, like in other implementations of this technique[30,33], but applied for weight

re-evaluation. To produce a list of biologically relevant paths relating Syk to its direct and indi-

rect targets, we then searched for near-shortest paths in the resulting network with refined

weights. Our method combines the advantages of weighted shortest path methods that take

into account the functional importance of the interactions with those of the random walk

methods that propagate the information on the network and smoothen large weight differ-

ences that could incidentally occur. The increase in specificity obtained by combining several

sub-network extraction methods has also been exploited for analyzing metabolic networks

Syk signaling network in breast cancer cells
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[36]. By network pruning, relatively dense networks are downscaled to a few biologically sig-

nificant alternative paths from Syk to its targets. This helps to generate hypotheses about Syk

signal propagation that, however, need to be experimentally validated.

We substantiated our in silico hypotheses with molecular and cell biology experiments, and

identified two candidate mechanisms that support the impact of Syk on the regulation of cor-

tactin and ezrin, two proteins involved in actin-based cell adhesion and motility. As a result of

our biological validations, we propose a new Syk-Src-cortactin signaling axis, and a direct

ezrin regulation by Syk phosphorylation. The Syk network was further corroborated with bio-

logical validation experiments and exploited to generate the sub-networks of the paths from

Syk to its targets involved in (i) cell adhesion and motility, (ii) cell growth and death, (iii)

immunity and inflammation and (iv) cell differentiation.

The proposed sub-network extraction method was applied to connect Syk, a source in the

network, to its direct and indirect targets. The same method can be applied in numerous other

studies to connect several sources amongst themselves and to their targets. This method reveals

important targets and interactions, allows to generate hypotheses and test new interactions. The

simplified network resulting from this method provides insights into biological processes con-

trolled by Syk and provides a challenging access to more mechanistic modeling approaches.

Results

Starting with the set of Syk-dependent targets identified by phosphoproteomics, we identified

a network explaining the propagation of the signal from Syk to its targets. In order to generate

this network we interrogated comprehensive pathways databases, extracted significantly

enriched pathways and consistently merged them by avoiding duplicate interactions and

nodes. The result of this assembly was a connected but very large network, too difficult to ana-

lyze and containing many unessential interactions. Here, we propose several methods allowing

to prune this network and to extract significant paths from it. Several paths connecting Syk to

functionally important targets were biologically validated.

Selection of Syk targets in breast cancer cells

To bootstrap the reconstruction of a comprehensive network of Syk downstream signaling in

breast cancer cells, we analyzed tyrosine phospho-proteomic data acquired in two independent

mass spectrometric studies using breast cancer cell lines with modified Syk catalytic activity or

protein expression. On the one hand, we selected from our own study the proteins lost or gained

in tyrosine-phosphorylated protein complexes of the Syk-positive MCF7 cells treated with a

pharmacological Syk inhibitor (further referenced as the MCF7 dataset) [19]. On the other

hand, we identified the proteins with modified tyrosine phosphorylation after exogenous Syk

expression in the Syk-negative MDA-MB-231 cells (further referenced as the MDA231 dataset)

[17]. Post-treatment procedures of the original phospho-proteomic data are detailed in the

Materials and Methods section. From these two studies; we respectively selected 265 and 487

proteins as Syk targets (S1 and S2 Tables). Only 64 proteins were found in common, reflecting

the complementarity of the two original phospho-proteomic studies. Indeed, the phospho-tyro-

sine enrichment prior to mass spectrometry as well as the experimental cell models used in

those studies are different (see the Materials and methods section). We analyzed the two datasets

separately to evaluate whether they point to distinct or similar cell signaling pathways.

Identification of overrepresented pathways

We searched for enriched pathways in the lists of Syk targets, using pathways from the KEGG

database [37]. We selected pathways which contain at least one of the proteins from the target

Syk signaling network in breast cancer cells
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lists and used a Fisher exact test to assess their enrichment. As we are only interested in over-

represented pathways, we removed the underrepresented ones: i.e; the ones for which the ratio

“number of proteins from the target list per total number of proteins” is lower than the same

ratio in the background list.

Within the two rather poorly overlapping datasets, we found among the most enriched

KEGG pathways those related to cell-cell and cell-substrate adhesions, actin cytoskeleton regu-

lation and apoptosis (S3 and S4 Tables). This observation is consistent with the reported role

of Syk on cell adhesion, motility, proliferation and death in breast cancer cells [19,38–43]. Fur-

thermore, the similarity in pathway enrichment, despite the limited overlap between the two

datasets, indicates their relationship. We merged the original datasets and present here the

results obtained for the network reconstruction.

Network reconstruction

We assembled and explored a prior-knowledge interaction network to extract candidate

mechanisms underlying the datasets. While such networks are often assembled using complete

pathway or interaction databases, here we focused on previously identified enriched pathways.

Using pathways rather than individual interactions will enable the extension of sub-networks

with relevant interactions in their neighborhood for further analysis. By restricting our full

network to a subset of pathways, some coverage may be lost but it allows to reduce the amount

of irrelevant interactions and to better assess the relevance of the identified pathways. Hereaf-

ter we show that the enriched pathway can be used to identify candidate mechanisms. We also

extended our search by using the Pathway Commons database [44]. KEGG provides a set of

well-established pathways, while Pathway Commons allows a higher coverage by integrating

pathways from multiple sources (notably Reactome, Panther, and PID). To select the most rel-

evant pathways guaranteeing to cover most identified targets, we filtered the pathways based

on their enrichment p-value and selected those presenting a p-value lower than 0.1 (in this

step we aim to be as complete as possible, selecting 83 pathways from KEGG and 419 from

Pathway Commons). Furthermore, we included the pathways containing Syk targets not cov-

ered by significantly over-represented pathways from the same database. This allowed to inte-

grate 41 additional pathways from KEGG and 9 from Pathway Commons (S5 and S6 Tables).

In this merged network, each protein and interaction keeps track of the list of pathways in

which it is involved. We also used the GO annotation to identify the proteins involved in pro-

cesses in which Syk is implicated (cell adhesion and motility, cell growth and death, immunity

and inflammation, cell differentiation). The resulting oriented and partly signed network com-

prises 6438 proteins and 62322 interactions, from 552 pathways (124 from KEGG, 428 from

Pathway Commons), covering 350 of the 687 identified targets (75 are only found in KEGG,

125 in Pathway Commons and 150 in both). Among these 350 targets, 245 are reachable from

Syk (steps 1–2 in Fig 1). This network contains 979 interactions between two targets identified

in the datasets. A closer scrutiny of these interactions further highlights connections between

the two datasets: 146 and 260 interactions are associating targets specific to the MCF7 and

MDA231 datasets respectively, 253 involve at least one target shared by the two datasets and

320 connect targets specific to different datasets.

Sub-networks extraction by shortest paths analysis

The paths connecting Syk to the identified targets in the reconstructed network describe possi-

ble mechanisms for its signal propagation. As a massive amount of alternative paths exist, it is

crucial to identify the appropriate candidates amongst the mass by extracting the sub-networks

that exhibit selected connections between Syk and a specific target (step 3 in Fig 1; S1 Fig).

Syk signaling network in breast cancer cells
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We focused on the signal propagation from Syk to its targets involved in cell adhesion and

motility, and in particular on cortactin and ezrin, two proteins that are differentially phosphor-

ylated in a Syk-dependent manner and that functionally link the plasma membrane to the

actin cytoskeleton [45,46]. We first considered a parsimonious approach to find the paths

implicating the fewest nodes, and searched for these shortest paths using the classical Dijkstra

algorithm [47].

We observed that the shortest paths between Syk and cortactin contain two intermediates,

with three alternative proteins directly upstream of cortactin (Fig 2A). Src is the only phospho-

tyrosine modifier (tyrosine kinases and phosphatases) amongst them, suggesting that the paths

involving Src are more credible to explain the change in cortactin phosphorylation.

The shortest paths network linking Syk to ezrin included more proteins and contained also

two intermediate nodes (Fig 2B). These paths were related with the classical regulation of ezrin

Fig 1. Workflow of the network reconstruction and signal propagation analysis. The combination of

simple steps unravels candidate mechanisms based on a list of proteins identified by (phospho-) proteomic

experiments. (1) Identification of enriched pathways in the target list. (2) Building of a large network integrating

interactions from the selected pathways. Proteins are associated with manually selected keywords based on

their GO annotation. These annotations reflect functional categories associated to the enriched pathways (cell

adhesion & motility, cell growth & death, cell differentiation and immunity & inflammation) and highlight

phospho-tyrosine modifiers (tyrosine kinases and phosphatases), which are important to decipher this

specific dataset. (3) Extraction from this large network of sub-networks allowing to propose candidate

mechanisms via the action of Syk on its effectors, by a combination of weighted shortest paths and random

walk methods. (4) Biological validation of candidate mechanisms. The individual steps are detailed in the

Materials and Methods section.

https://doi.org/10.1371/journal.pcbi.1005432.g001
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by the membrane lipid PIP2 or its phosphorylation on serine/threonine residue(s) [48,49].

None of the nodes directly upstream of ezrin were phospho-tyrosine modifiers that could

explain the effect of Syk on ezrin tyrosine phosphorylation. The sub-networks obtained for

cortactin and ezrin illustrate the need for careful analysis of phospho-tyrosine modifiers to

explain the phosphorylation-based modifications noticed in the MDA231 dataset.

Weighted shortest-path analysis

To take into account the importance of phospho-tyrosine modifiers, we extended the GO

annotation of network nodes with the corresponding terms (S7 Table) and modulated the

length of the path using distances attached to the interactions: a path involving more steps

associated to small distances can be selected over a short path with longer steps. We assigned

distances giving the priority to paths linking a phospho-tyrosine modifier upstream of pro-

teins experimentally identified as differentially phosphorylated. We also favored the inclu-

sion of other experimentally identified proteins by reducing the distances of their outgoing

interactions.

The introduction of these distances led to more realistic suggestions for the cortactin sub-

network, in which Src is the only protein directly upstream of cortactin (paths via white nodes

in Fig 2A). As shown in the dedicated Results subsection, biological validation confirmed the

role of Src in mediating Syk signal propagation to cortactin. However, it did not enable the

identification of significantly better suggestions for ezrin, suggesting a “missing link” (paths

via white nodes in Fig 2B). To resolve this inconsistency, we decided to evaluate the possibility

of a direct interaction between Syk and ezrin. These results are described below and prompted

us to propose that Syk directly phosphorylates ezrin.

Taking into account our biological validation, we added the new protein interaction from

Syk to ezrin to the Syk network. We also extended the list of Syk direct substrates by integrat-

ing the results of a third dataset that identified the peptides phosphorylated on tyrosine by Syk

Fig 2. Proposed sub-networks for the effect of Syk on cortactin (A) and ezrin (B) identified by shortest paths analysis. The grey

nodes are only involved in the unweighted shortest paths, while the white ones are also involved in the weighted ones. The red borders

denote phospho-tyrosine modifiers (tyrosine kinases and phosphatases). Note that some related proteins have been grouped in single

nodes for clarity (denoted by curly brackets at the end of the name, and “PI3K class I”). Interactions annotated as “phosphorylation” (not

particularly on tyrosine) appear in red, while “protein modifications” in general appear in blue. Line ends indicate the sign of the interaction:

arrow for positive, T for negative, and circle for unknown. Finally, node shapes denote identified proteins: squares have identified

differentially phosphorylated peptides (MDA231 dataset), circles correspond to differentially enriched proteins (MCF7 dataset), and

diamonds are not part of the datasets.

https://doi.org/10.1371/journal.pcbi.1005432.g002
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after an in vitro kinase reaction [18] (S2 Table; for details, see Materials and methods). Finally,

we added the direct interactions between Syk, E-cadherin and alpha-catenin, both members of

the same cell-cell adhesion complex that we previously identified as direct Syk substrates [19]

(step 4 in Fig 1).

Path ranking by random walk refinement and overflow

The sub-networks obtained with the weighted shortest-paths analysis still contain several

equivalent paths which we would like to classify further by integrating a parameter based on

the network topology. A random walk process provides a “reachability” score for each protein.

By taking into account both a mix of network topology and the weighted interactions, this

score highlights key proteins that are involved in multiple interesting and plausible candidate

paths. To integrate this parameter into our analysis method, we used these scores to refine

the distances associated to their outgoing edges, allowing the shortest-path approach to also

include such key proteins. The weight refinement algorithm is fully described in the Methods

section.

This methodology was applied to refine analysis of the Syk signal propagation to its targets

involved in cell adhesion and motility. The size of this sub-network (e.g. number of nodes and

edges) decreased after modulation of the length of the paths and even more after random walk

refinement (Fig 3). This ranking property was appropriate to highlight the most likely paths

regarding our biological and topological criteria. These observations were confirmed by the

sub-networks linking Syk to its targets involved in Syk-related cell processes (S2–S4 Figs)

Nevertheless, we considered this method as too stringent and searched for near-shortest

paths instead of strict shortest paths in order to generate a set of alternatives, selecting all paths

for which the total distance is up to 20% higher than that of the shortest path. Using this setting

for the analysis of the signal propagation from Syk to its targets involved in cell adhesion and

motility, we retrieved a sub-network as large as the one obtained without random walk refine-

ment. Moreover, the sets of interactions linking Syk to its targets involved in Syk-related cell

processes were slightly distinct as compared to the sub-networks obtained after weighted

shortest paths analysis, and after refinement with random walks, both allowing a 20% overflow

(Fig 4 and S5–S7 Figs). This suggests that introducing the “reachability” parameter not only

ranks the alternatives, but also selects novel elements that allow to generate hypotheses on Syk

signal propagation.

Taken together, the purpose of Figs 3 and 4 is to illustrate the flexibility of our method.

These two figures tell us that (i) taking into account the molecular biology parameters by

attaching distances to interactions for shortest-paths analysis and (ii) taking into account the

network topology by the random walk refinement, leads not only to shortest paths to be bio-

logically validated in the first instance (Fig 3, network size decrease), but also to novel alter-

native paths that were absent in the unweighted shortest paths analysis, and to rank more

realistically the set of paths.

Syk controls cortactin tyrosine phosphorylation via the Src tyrosine

kinase

Weighted shortest-path analysis from Syk to cortactin pointed to the Src tyrosine kinase as the

phospho-tyrosine modifier that could account for the Syk impact on cortactin tyrosine phos-

phorylation (paths via white nodes in Fig 2A). This hierarchy was contradictory with previous

studies describing the direct interaction of Syk and cortactin in breast cancer cells [18,42,50],

and the impact of Src on Syk phosphorylation in colon cancer cells, opposite to our observa-

tions [51]. To test the ability of Src to drive the Syk signal propagation, we analyzed cortactin

Syk signaling network in breast cancer cells
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Fig 3. Successive refinements of the shortest-paths sub-networks associated to cell adhesion and

motility. Evolution of the sub-network for the effect of Syk on proteins associated to cell adhesion and motility,

starting with unweighted shortest paths, after the integration of weights (A), and by refining them using random

walks (B). White nodes correspond to target proteins, grey nodes are intermediate proteins preserved by the

refinement. The other colors denote nodes and edges that are affected by the refinement: blue elements are
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tyrosine phosphorylation, together with Syk and Src activity in cells treated with tyrosine kinase

inhibitors. Cortactin phosphorylation and Src activity, evaluated by the phosphorylation of its

tyrosine 418 residue, were decreased after cell pretreatment with Syk or Src pharmacological

inhibitors (Fig 5A and 5B). Syk activity, evaluated by its auto-phosphorylation on the tyrosine

525/526 residues, was not affected by Src inhibitors, demonstrating the Syk-Src-cortactin hier-

archy. In the MCF7 dataset, cortactin is poorly affected by Syk inhibition. As the quantitative

measurement was obtained by calculating the median SILAC ratio of several peptides from cor-

tactin, we decided to analyze the phosphorylation of its individual peptides. The quantity of the

phosphotyrosine pTyr334 cortactin peptide was ~2 fold decreased by Syk inhibition (S8 Fig).

Conversely, Tyr446 phosphorylation was not affected (S9 Fig). Those observations were consis-

tent with the data from MDA231 dataset (Fig 5C). Taken together, our results indicate that the

signal transmission from Syk to cortactin is mediated by the Src kinase.

lost, while orange ones are introduced. The shape of nodes symbolizes the identification of the corresponding

proteins in the original dataset, as in Fig 2. The ezrin and the cortactin sub-networks illustrated in Fig 2 are

included in the adhesion and motility network.

https://doi.org/10.1371/journal.pcbi.1005432.g003

Fig 4. Extension of the weighted shortest-paths sub-networks. Evolution of the sub-network for the effect

of Syk on proteins associated to cell adhesion and motility using weighted shortest paths, and after refinement

with random walks, both allowing a 20% overflow. White nodes correspond to target proteins (which are all

involved in cell adhesion or motility), grey nodes are intermediate proteins selected with the two approaches.

The other colors denote nodes and edges that are specifically selected in one of the two methods: blue for

weighted shortest paths, orange with random walk. The shape of nodes symbolizes the identification of the

corresponding proteins in the original dataset, as in Fig 2. Although the new paths introduced by the overflow

lie outside the cortactin and ezrin sub-networks, this methodological figure is useful for illustrating the flexibility

of our approach.

https://doi.org/10.1371/journal.pcbi.1005432.g004
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Syk phosphorylates ezrin on the Tyr424 residue

None of the nodes directly upstream of ezrin were phospho-tyrosine modifiers that could

explain the Syk impact on ezrin tyrosine phosphorylation (Fig 2B). To explore this more pro-

foundly, we evaluated the possibility of a direct interaction between Syk and ezrin. Both pro-

teins are localized in phospho-tyrosine enriched plasma membrane extensions (ruffles) of

MDA-MB-231 breast cancer cells in which actin is dynamically reorganized (Fig 6A). Colocali-

zation of Syk and ezrin was evaluated quantitatively (Fig 6B). Purified recombinant Syk was

able to induce direct ezrin phosphorylation on tyrosine residue(s) in in vitro kinase assays

Fig 5. Syk controls cortactin tyrosine phosphorylation via the Src tyrosine kinase. (A) Phosphorylation of indicated signaling proteins

(left) in MCF7 cells that were treated with kinase inhibitors (Syk1, R406; Syk2, PRT062607; Src1, PP2; Src2, AZD0530) and either left

unstimulated or stimulated with pervanadate (PV). CTTN, cortactin; IP, immunoprecipitation; WCL, whole cell lysate. Molecular weight

standards (MW) are indicated (right). (B) Protein tyrosine phosphorylation of Syk, Src and cortactin quantified after pTyr stimulation and

inhibition of Syk or Src catalytic activity. In the stimulated conditions, all the values obtained with the different inhibitors are statistically

significant compared to the value obtained without inhibitor (P < 0.05; n = 3), except for the Syk phosphorylation with both Src inhibitors. (C)

Cartoon illustrating the Syk-dependent cortactin tyrosine-phosphorylation. The structure of cortactin comprises an NTA region (NH2-terminal

acidic), 6.5 tandem repeats (37 amino acids each), a helical region (helical), a proline-rich (P-rich) region, and a C-terminal SH3 domain. The

localization of the identified phosphorylated tyrosines and their dependency on Syk are indicated (+, dependent; 0, independent;?,

undetermined).

https://doi.org/10.1371/journal.pcbi.1005432.g005
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Fig 6. Syk phosphorylates ezrin on the Tyr424 residue. (A) Syk and ezrin are both localized in pTyr-enriched plasma

membrane ruffles of MDA-MB-231 cells (arrowheads). Scale bar 5 μm. (B) Quantitative analysis of Syk and ezrin

colocalization with the merged picture of Syk and ezrin channels in which colocalized pixels are displayed in white (upper

panel, scale bar 5 μm) and the scatter plot of pixel intensities in Syk and ezrin channels (lower panel). (C) Direct in vitro

tyrosine phosphorylation of ezrin by Syk. The phosphorylation of purified Syk and ezrin (left) are analyzed by autoradiography

or Western blot (pTyr). Molecular weight standards (MW) are indicated (right). *, non-specific band. (D) Cartoon illustrating

the ezrin phosphorylation on Tyr424 residue by Syk. The structure of ezrin comprises a NH2-terminal FERM domain followed

by a helical domain and the C-terminal actin-binding domain (C-ERMAD).

https://doi.org/10.1371/journal.pcbi.1005432.g006
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(Fig 6C). Moreover, in an immune-complex in vitro kinase assay using endogenous or exoge-

nously expressed FLAG tagged or GFP fusion-proteins, ezrin was phosphorylated dependent

on the Syk catalytic activity (S10A and S10B Fig). It is worth noting that tyrosine phosphoryla-

tion of Syk is also enhanced in the presence of ezrin (compare lane 3 with lane 1) in both

autoradiography and Western blot analyses which may have a biological explanation. Ezrin

contains a canonical ITAM motif that has been shown to interact with Syk [52] and even play

a role in Syk recruitment and activation by binding to its tandem SH2 domains [53]. A positive

feedback loop may thus exist as binding of Syk is activated by its SH2 domain binding to bi-

phosphorylated ITAM motifs but should be explored more deeply. Detailed analysis of the

ezrin post-translational modifications by isoelectric focusing revealed that its in vitro phos-

phorylation by Syk induced a unique phosphorylation of one third of the total ezrin protein

(S10C and S10D Fig). Mass spectrometric analysis demonstrated that ezrin is phosphorylated

by Syk on a peptide containing the phosphorylated Tyr424 residue (S11 Fig). The same ezrin

phospho-peptide was the only one identified in the Syk-positive breast cancer cells in the

MDA231 dataset. Taken together, these results prompted us to propose the new protein

interaction between Syk and ezrin, leading to ezrin phosphorylation on the Tyr424 residue

(Fig 6D).

Discussion

In this study, we constructed a network by which the Syk tyrosine kinase acts on its targets in

breast cancer cell lines. This network is comprehensive enough to cover 350 targets, which rep-

resent 50% of the Syk targets identified in several phospho-proteomics experiments. The net-

work was further reduced by sub-network extraction which made its analysis possible. The

network enrichment and pruning steps were performed by a novel bioinformatics method that

combines the shortest paths method with random walk processes. We thus propose a flexible

tool, well-adapted for reconstruction and analysis of signaling networks applied on phospho-

proteomic data. This method confirmed that Syk is engaged in several cancer-related pathways

associated to cell growth and death, adhesion, motility, polarity and cytoskeleton regulation.

In addition, it led to new biological findings concerning molecular paths in breast cancer cells

linking the tyrosine kinase Syk and two targets involved in cell adhesion and motility: (i) the

signaling axis Syk-Src-cortactin and (ii) the direct action of Syk on ezrin.

Reasonability of network reconstruction and shortest path analysis

Using datasets extracted from two published complementary phospho-proteomic studies that

identified Syk targets in breast cancer cells, we reconstructed a Syk-controled molecular net-

work by integrating the components of signaling pathways enriched for Syk targets (S1 File).

Two different breast cancer cell models were used: Syk-positive MCF7 cells treated or not

with a pharmacological Syk inhibitor versus exogenous Syk expression in the Syk-negative

MDA-MB-231 cells. This was expected to bring some heterogeneity in the molecular paths

linking Syk to its targets. Nevertheless, lists of Syk targets emerging from the different datasets

showed similarities in pathway enrichment. Moreover, in the Syk network subpart containing

the reachable targets, we found that one third of the interactions involving two targets connect

targets identified in different datasets, which justified combining them into a unique set

despite the partial overlapping. This proportion is conserved after shortest paths analysis, sug-

gesting that a number of mechanisms by which Syk activates its targets are common to the cell

models used. Although the biochemical methods to enrich protein extracts before mass spec-

trometry analysis were distinct (enrichment of tyrosine phosphorylation dependent-protein

complexes versus tyrosine-phosphorylated peptides), they produced complementary
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information. On the one hand, phospho-proteomic studies at the protein level identified not

only proteins that are differentially phosphorylated but also their partners present in the pro-

tein complexes. Several conserved protein domains are involved in phospho-tyrosine-depen-

dent protein-protein interaction. On the other hand, phospho-proteomic studies at the

peptide level identified the differentially phosphorylated tyrosine residues, allowing to increase

the precision of our experimental validations. Knowing the phosphosites provides insight in

the functional consequences of the phosphorylation and the integration of this functional

information allows to construct more coherent networks.

The introduction of distances was a crucial step in our approach that allowed the selection

of realistic paths. The extra random walk step enabled the refinement of these distances, so the

selection of too many paths having the same length was avoided. In contrast to methods pro-

posing a unique solution (or too many alternatives), our method allows to downscale to a few

biologically significant alternative paths. The simplified network obtained by sub-network

extraction allowed us to generate computational hypothesis about Syk signal propagation that

were subsequently validated.

Validation of the cortactin signaling axis: Cortactin phosphorylation by

Syk is dependent on Src

As a result of our biological validations, we proposed a new molecular explanation of the

impact of Syk on cortactin, a protein involved in cell adhesion and motility by its ability to reg-

ulate the cortical actin cytoskeleton. Previous studies described cortactin as a direct Syk sub-

strate [42,50]. However, in the phospho-proteomic data exploited in our study, the cortactin

Tyr421 residue directly phosphorylated by Syk in vitro [18] does not match the Tyr residues

phosphorylated in a Syk-dependent manner in cellulo [17]. In our model, we proposed a new

Syk-Src-cortactin signaling axis (paths via white nodes in Fig 2A). We demonstrated that cor-

tactin tyrosine phosphorylation induced by Syk is dependent on Src catalytic activity. Con-

versely, inhibition of Src did not affect the Syk catalytic activity, but both are required to induce

cortactin phosphorylation in breast cancer cells (Fig 5A and 5B). This tyrosine kinase hierarchy

does not match previous observations showing that Src inhibition induces a decreased tyrosine

phosphorylation of Syk [51]. This discrepancy could be explained by the distinct cell models

(breast cancer versus colorectal cancer cells) and by the fact that Leroy and colleagues [52] ana-

lyzed global Syk phosphorylation rather than specific phosphorylation on the Tyr525/526 resi-

dues, which are located in the activation loop of the Syk kinase domain and are more relevant

to detect changes in Syk catalytic activity [54]. Multiple tyrosine phosphorylation sites have

been described within cortactin (for review, [46]http://www.phosphosite.org/). We confirmed

that the phosphorylation of cortactin Tyr446 residue is not directy affected by Syk (Fig 5C).

Conversely, the phosphorylation of the Tyr334 residue is Syk-dependent, but can, according to

our model, be phosphorylated also by Src [55]. There is currently no information about the

functional consequences of this residue’s phosphorylation. Finally, the Syk-Src-cortactin signal-

ing axis we proposed is consistent with the positive impact of Syk on E-cadherin dependent

cell-cell adhesion [19,42]. Src-dependent phosphorylation of cortactin is necessary to link the

E-cadherin adherens junction complex to the actin cytoskeleton, that subsequently supports

cell-cell contact formation [56,57].

Validation of the ezrin signaling axis: Syk directly phosphorylates ezrin

Our initial computational hypotheses of molecular circuits linking Syk to ezrin did not explain

its tyrosine phosphorylation, by the lack of a phospho-tyrosine modifier directly upstream of

ezrin (Fig 2B). We demonstrated that Syk phosphorylates ezrin in a direct manner on its

Syk signaling network in breast cancer cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005432 March 17, 2017 14 / 27

http://www.phosphosite.org/
https://doi.org/10.1371/journal.pcbi.1005432


Tyr424 residue and that both proteins colocalize in the plasma membrane ruffles in breast

cancer cells (Fig 6A and 6B). Previous studies described a Syk-dependent tyrosine phosphory-

lation of ezrin in B lymphocytes on its Tyr353 residue [58,59], a site that can be also phosphor-

ylated by the epidermal growth factor receptor (EGFR) [60]. Phosphorylation of this residue

leads to activation of the ezrin downstream signaling pathways as JNK or PI3K/Akt [59,61].

Two other ezrin tyrosine residues, Tyr146 and Tyr478, can be phosphorylated by Src (Tyr146,

also being phosphorylated by EGFR), mediating cell scattering and stimulating motility

[62,63]. We showed here that in breast cancer cells, Syk phosphorylates ezrin on the Tyr424

residue, rather than Tyr353 as it occurs in B lymphocytes, and could induce a signaling cascade

different than the ones previously described for tyrosine phosphorylated ezrin. This novel

molecular regulation of ezrin could help to explain the negative impact of Syk on epithelial cell

motility.

Interest for cancer research and extent of application of the methods

By this study, we do provide to the cancer cell signaling community access to the Syk network

and sub-networks of the paths from Syk to its targets involved in (i) cell adhesion and motility,

(ii) cell growth and death, (iii) cell differentiation and (iv) immunity and inflammation (see

Supporting Information). As Syk is involved in breast cancer suppression, it is not surprising

that these cellular processes involved in cancer progression can be affected by Syk in breast

cancer cells. Nonetheless, many of the Syk interactions described in pathway databases are

extracted from molecular studies in cells of hematopoietic origin. More precisely, Syk signaling

has been extensively studied in B lymphocytes where it is indispensable for immune cell differ-

entiation. Which part of Syk signaling is shared between epithelial and hematopoietic cell

types could be determined by Syk related phospho-proteomic experiments with a more com-

prehensive collection of cell models.

At this stage, our model suggests a number of plausible mechanisms linking Syk with can-

cer-related cellular processes. These can be used to generate more hypotheses, validation and

provide valuable inputs for further developments. A crucial issue in Syk-related research is

how to activate compensatory mechanisms maintaining tumor suppression signaling even

when Syk is downregulated. The network we propose here is the first step towards addressing

this question. To advance towards more refined mechanistic models the annotation of the

interactions, for instance the sign, should be completed by integration of more data and by for-

mal inference methods [64,65]. The careful consideration of possible feed-backs should also be

considered in these developments. For instance, in tyrosine kinase signaling, many feed-back

interactions involve phosphatase players whose role and significance are largely ignored even

for very well studied pathways such as MAPK. New biological experiments are needed to

unravel new players and interactions. Basic networks like the one resulting from our approach

can be used for planning such experiments. As a simple example, if phosphatases are present

upstream in the network one would want to test the effect of their inhibition on downstream

proteins.

The bioinformatics method we used to reconstruct and prune the Syk signaling network

can be used in other studies, whenever the focus is on finding candidate mechanisms explain-

ing how signals propagate in large networks and how the network state-changes under pertur-

bations. We consider that the combination of ad-hoc distances, random walk, and near-

shortest paths provides good candidate mechanisms, by implementing the following require-

ments: (i) minimize the number of steps (shortest paths); (ii) fit with the data (ad-hoc dis-

tances); (iii) further favor intermediates which belong to multiple appropriate candidate paths

(random walk); (iv) propose and rank multiple alternatives (near-shortest paths). This strategy
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can be generally applied to other studies of signaling networks using datasets based on distinct

post-translational modifications, separately or combined. The open source code for the net-

work reconstruction and extraction of relevant sub-networks has been made available for the

computational biology community (S1 File and https://github.com/aurelien-naldi/

NetworkReconstruct).

Materials and methods

Online databases

Uniprot ID mapping from uniprot.org/downloads (2015/07)

HGNC dataset from genenames.org/cgi-bin/statistics (2015/07)

GO ontology from geneontology.org/page/download-ontology (go-basic.obo, 2015/10)

GO annotation from geneontology.org/page/download-annotations (goa_human.gaf,

2015/10)

KEGG: www.kegg.jp, release 75 (2015/07)

Pathway commons:pathwaycommons.org release 7 (2015/03)

Mapping protein identifiers

Proteins are identified by their Uniprot IDs, without the isoform postfix. We used Uniprot ID

mapping files to associate KEGG and HGNC identifiers (transferred to the corresponding

gene symbols) with these Uniprot IDs. When multiple Uniprot IDs are associated to the same

KEGG or HGNC ID, they were grouped and a single ID is selected for the group, preferably a

reviewed entry (allowing to map unreviewed Uniprot entries to the associated reviewed entry

when possible).

Annotation of Syk network

The network is annotated based on the dataset, the pathways, and the GO annotation. Nodes

and interactions keep track of the list of pathways in which they appear. Interactions types

(phosphorylation, modification, regulation) and signs (+ or -) are transferred from the path-

ways when available. When the same interaction is described in several pathways, all types and

a combination of the signs are conserved (an interaction described as positive in a pathway

and negative in another is considered as unclear). We selected some groups of GO terms rep-

resenting relevant processes and functions in this dataset, in particular cell adhesion and motil-

ity (GO:0048870, GO:0007155, GO:0034330, GO:0022610, GO:0060352, GO:0030030), cell

growth and death (GO:0008283, GO:0007049, GO:0008219, GO:0019835, GO:0000920,

GO:0007569, GO:0051301, GO:0060242), immunity and inflammation (GO:0002376,

GO:0001906), and cell differentiation (GO:0030154, GO:0036166). We also annotated as phos-

pho-tyrosine modifiers the components of the network with tyrosine kinases (GO:0004713)

and tyrosine phosphatases (GO:0004725) GO terms and manually verified this list (S7 Table).

Many nodes in KEGG pathways represent groups of proteins, where the same protein can

be part of several groups (with variable overlap). These groups are conserved in the merged

network by introducing “group nodes” with bidirectional links to their members. Proteins

can thus have interactions associated directly to them or through one or several groups. Such

groups are “exploded” before the path search step described below.

Network visualization

Cytoscape 3.4 (http://www.cytoscape.org/) was used to generate figures and Cytoscape web

was used to provide interactive access to the Syk network.
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Near-shortest paths

We searched for “near-shortest paths” between Syk and a list of targets, using an approach sim-

ilar to the classical Dijkstra algorithm for shortest paths. We started by identifying the length

of the shortest path for every node as in Dijkstra’s method (starting from the source node, we

iteratively picked the closest new neighbor of all reachable nodes: at each step we obtained the

best result for a new node, ending with the node with the longest of the shortest paths). In the

Dijkstra algorithm, the shortest paths were then obtained by starting from the target nodes and

going backward to the source by selecting the incoming edge(s) which can satisfy this best dis-

tance: i.e. the best distance of the current node is equal to the sum of that of the source and the

distance of the edge. Here we define an acceptable extra distance to include additional nodes

and edges during this backtracking step. Note that the resulting sub-network can contain paths

that are longer than acceptable, but all selected nodes and edges are involved in at least one

acceptable path. For example if (A,B,C) is the shortest path from A to C, and (A,I,B,C) and (A,

B,J,C) are also acceptable, then the path (A,I,B,J,C) exists in the resulting sub-network despite

being too long. In the resulting sub-network, the selected nodes and edges are annotated with

the “overflow” needed to include them: i.e. the extra distance of the best path using them com-

pared to the actual shortest path. Members of the shortest paths have no overflow.

Edge distances for the shortest paths

To improve the identified paths, we selected edge weights based on the available annotations:

“normal” edges have a distance of 5 (d = 5), we promoted edges coming out of identified pro-

teins (d = 3), edges reaching an identified protein while coming out of a tyrosine kinase or

phosphatase (d = 2) or combining these two conditions (d = 1). On the other end, we demoted

edges reaching a target identified as differentially phosphorylated, but which did not come

from a tyrosine kinase or phosphatase (d = 8), even if they come out of another identified pro-

tein (d = 6). Finally, edge distances are refined to integrate the results of the random walk esti-

mation: they are multiplied by the inverse of the normalized score of their source node.

Random walk

We adapted the netwalk implementation in R from the GUILD software [66]: http://sbi.imim.

es/web/index.php/research/software/guildsoftware

Edge weights are based on the distances originally defined for the shortest paths search

(reversed as a higher distance corresponds to a lower weight).

More precisely, let dij be the distance from a node i to its direct target j, previously defined

for the shortest path search. Given a node i the set of all its direct targets (successors in the

directed network) is denoted Succ(i). The random walk is defined by transition probabilities pij

defined as:

pij ¼
ð1 � p0Þd� 1

ij
P

j2SuccðiÞd� 1
ij

;

where p0 is the return probability to the origin node Syk (chosen the same for all nodes).

The probabilities pij together with p0 added as last entry of each row are the entries of the

stochastic matrix P (each row of this matrix sums to one). The equilibrium or limiting distri-

bution of the random walk is a normalized row vector π satisfying the equation:

πP ¼ π:
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This distribution can be estimated by starting the random walk from any node and running

it a sufficiently long time for equilibration. A finite, connected network with possibility of

return to the Syk node from terminal nodes is ergodic guaranteeing the existence and unique-

ness of the equilibrium distribution.

Nodes are scored by the values of the equilibrium probabilities πi. In order to eliminate

biases created by topology a second simulation is performed where all edges have the same

weight. The resulting scores in this second simulation are the equilibrium probabilities p0
i . The

two scores are then used to refine the distances as follows

~dij ¼ dij
p0

i

pi
:

Cell culture

MCF7, MDA-MB-231 and COS7 cell lines were obtained from the ATCC and maintained in

Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplemented with 10% fetal calf

serum (FCS, Eurobio). All cell cultures were carried out at 37˚C using a 5% CO2 atmosphere.

For cell stimulation studies, cell lines were stimulated with Sodium pervanadate (PV, premix

of 1 mM H2O2 and 1 mM Na3VO4) and incubated for 15 min at 37˚C. For the evaluation of

the effect of the kinase inhibitors (all from Selleckchem), cells were incubated in medium for 2

hours with 2.5 mM R406, 5 mM PRT062607, 1 mM PP2, 0.5 mM AZD0530. Stock solutions

for all those kinase inhibitors were prepared in dimethyl sulfoxide (Sigma, Hybri-Max grade),

which is used as vehicle negative control

Western blot analyses

Cells were washed with ice-cold phosphate buffered saline solution and scrapped in 10 mM

Tris-HCl (pH 7.4), 150 mM NaCl, 0.5 mM EDTA (Sigma), 1% Nonidet-P40 (Sigma), 0.5%

sodium deoxycholate (Sigma), 1 mM Na3VO4 (Sigma), 50 mM NaF (Sigma) and a protease

inhibitor cocktail (Sigma) at 4˚C. After transfer to an Eppendorf tube and extensive vortexing,

lysates were cleared by centrifugation at 10,000 rpm for 10 min at 4˚C and supernatants

diluted in 4x SDS-PAGE sample buffer. Immunoprecipitations were performed as described

previously [44]. Protein samples were diluted in 4x SDS-PAGE Laemmli sample buffer, dena-

tured by boiling for 5 min at 95˚C in SDS-PAGE sample buffer, separated electrophoretically

and transferred to polyvinylidene difluoride membranes. Membranes were blocked using 5%

BSA in tris-buffered saline solution with Tween-20 detergent (TBS-T; 25 mM Tris-HCl pH

8.0, 150 mM NaCl, 0.1% Tween-20) for 1 h and then incubated at 4˚C with the appropriate pri-

mary antibodies diluted in blocking buffer. Those included a mix of two monoclonal antibod-

ies to phospho-tyrosine (1:1 mix vol/vol mix of the 4G10 and PY20 hybridoma supernatants),

monoclonal antibodies to the FLAG epitope (clone M2, Sigma), cortactin (clone 4F11; Milli-

pore), Syk (clone 4D10, Santa Cruz) and alpha-tubulin (clone DM1A, Sigma), rabbit poly-

clonal antibodies to pTyr418 Src (Invitrogen), GFP (Chemokine), a home-made rabbit

polyclonal antibody to the COOH-terminal domain of human ezrin [67], and a rabbit mono-

clonal antibody to pTyr525/526 Syk (Cell Signaling Technology). After three washes with

TBS-T, the membrane was incubated with horseradish peroxidase-conjugated appropriate sec-

ondary antibody (1:5000, Jackson ImmunoResearch) for 1 h at room temperature. Immuno-

blots were revealed using a standard chemoluminescent method (ECL, Ozyme) and a Multi-

application gel imaging system (PXi, Syngene). Membranes were optionally stripped with

the Restore PLUS Western blot stripping buffer (Thermo Scientific) before a second immuno-

blotting. Immunoblot-derived signals were quantified using the ImageJ software (NIH) with
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three independent biological and technical replicates for each quantification. The signals were

normalized on the lane corresponding to the total protein quantity loaded (immunoglobulin

heavy chain in case of immunoprecipitation; Tubulin-α in case of whole cell lysate) and the

unstimulated condition was arbitrarily set at 1.

In vitro phosphorylation assay

Assays with proteins extracted from cell lysates, immunoprecipitations and Western blot anal-

yses were performed as described previously [43]. Otherwise, recombinant GST-Syk (BPS

Bioscience, San Diego, CA) and GST-ezrin (previously described in [68]) were used. In vitro
kinase assays were performed as described [43]. For the two-dimensional electrophoresis anal-

ysis, proteins were precipitated for 2 h in two volumes of acetone at −20˚C, and resuspended

in 8 M urea, CHAPS 4%, and thiourea 2 M. We used 18 cm IPG-strips (Amersham Biosci-

ences) with linear pH range of 3–10 for the first dimension. Proteins were loaded on the IPG-

strips and run in a Multiphor II apparatus (Amersham Biosciences). After focusing, a second

migration was performed in 10% SDS-PAGE gel and proteins were stained with silver nitrate

(Amersham Biosciences).

Microscopy

MDA-MB-231 cells were transiently transfected with pDsRed-Syk [43] using Fugene 6 (Roche

Applied Bioscience). Immunostaining procedures have been described before [43]. The fol-

lowing primary antibodies were used: monoclonal antibody 4G10 hybridoma supernatant

(diluted 1:50 in TBS) and a home-made rabbit polyclonal antibody to the C-terminal domain

of human ezrin [67]. The secondary antibodies used were goat-anti-mouse-Cy5 and donkey-

anti-rabbit-FITC (Jackson ImmunoResearch Laboratories). Confocal images of immunos-

tained cells were obtained as described [69]. For quantitative analysis of colocalization, we

used the ImageJ software plug-ins (https://imagej.nih.gov/ij/) with the “Colocalization Finder”

module (https://imagej.nih.gov/ij/plugins/colocalization-finder.html) to generate the merged

picture of Syk and ezrin channels in which colocalized pixels are displayed in white, and with

the “Coloc 2” module (http://imagej.net/Coloc_2) to generate the scatter plot of pixel intensi-

ties in Syk and ezrin channels and to compute the Pearson correlation of pixel intensities over

space.

Proteomic analyses

Sample preparation. Proteins were separated by SDS-PAGE and the gel was stained

with the Colloidal Brillant Blue G (Sigma). Protein bands were in-gel digested using trypsin

(sequencing grade; Promega, Charbonnières, France) [70].

Tandem mass spectrometry. Analysis of the samples was performed on a QSTAR pulsar-

i quadripole-time-of-flight mass spectrometer (Applied Biosystems, Foster City, USA) coupled

to an Ultimate 3000 (Dionex, Amsterdam, Netherland) nanoflow system driven by Chrome-

leon software. A gradient consisting of 0–40% B in A for 60 min, 80% B in A for 15 min

(A = 0.1% formic acid, 2% acetonitrile in water; B = 0.1% formic acid in acetonitrile) flowing

at 300 nl/min was used to elute peptides from the capillary (75 μm x 150 mm) reverse-phase

column (Pepmap, Dionex). Desalting and pre-concentration of samples were achieved on-line

on a Pepmap precolumn (300 μm x 10 mm). All MS spectra were acquired in data-dependent

mode using Analyst QS 1.1 software. Briefly, the mass spectrometer was operated in the infor-

mation-dependent acquisition mode to automatically switch between MS and MS/MS acquisi-

tion. Survey full-scan TOF-MS spectra (from m/z 350–1600) were acquired during 1 s. The

two most intense ions were sequentially isolated and fragmented using collisional-induced
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dissociation. Each MS/MS spectrum was acquired during 3 s and the precursor was excluded

during 45 s. Parameters were adjusted as follows: ion spray voltage (IS), 1800 V; curtain gas

(CUR), 25; declustering potential (DP), 60 V; focusing potential (FP), 265 V; declustering

potential 2 (DP2), 15 V. Peptide fragmentation was performed in the collision cell using nitro-

gen gas on the doubly, triply, or quadruply charged ions detected, with a collision energy set

“on-the-fly” using the rolling collision energy feature based on their charge and mass.

Database analysis. MS/MS spectra were searched against the human entries of UniProt

Knowledgebase Release 10.2 database (http://www.expasy.ch) by using the Mascot v2.1 algo-

rithm (http://www.matrixscience.com). Search parameters were mass accuracy 0.1 Da for MS

and MS/MS data; 1 miscleavage; variable modifications: oxidized methionine, Phospho-Ser/

Thr, Phospho-Tyr, SILAC-labels: Lys-8 and Arg-10. All significant hits (p<0.05) were manu-

ally inspected.

Quantification. Quantification was done on at least two MS spectra per protein by using

MSQuant v1.4.1 software developed by Mann and colleagues [71] (http://msquant.sourceforge.

net). Data were manually inspected and corrected when necessary.

Post-treatment of phospho-proteomic data. The first dataset was obtained after inhibi-

tion of Syk catalytic activity in Syk-positive MCF7 cells [19]. Proteins were purified on an anti-

phospho-tyrosine affinity column, and enriched phospho-tyrosine-dependent complexes were

identified by mass spectrometry. The SILAC (Stable Isotope Labeling with Amino acids in Cell

culture) strategy allows relative quantification of protein ratio between control and Syk-inhib-

ited cells. As the Syk inhibitor concentration only partly inhibits the Syk catalytic activity, we

selected proteins with a SILAC ratio reflecting a variation of 10% as Syk targets. On 479 pro-

teins identified, 240 proteins exhibited an increased phosphorylation or association with phos-

phoproteins in presence of full Syk activity, 25 proteins in presence of inhibited Syk activity

(S1 Table). The second dataset was obtained after Syk expression in Syk-negative MDA-MB-

231 cells [17]. In this study, proteins were trypsin-digested prior to two steps purification on

an anti-phospho-tyrosine affinity column and on polymer-based metal ion affinity column.

We compared the tyrosine-phosphorylated peptides identified in Syk-positive and Syk-nega-

tive cells by Iliuk and colleagues (2010). Phospho-peptides identified in only one experimental

condition were considered as differentially phosphorylated (461 in Syk-positive cells and 125

in Syk-negative cells). Phospho-peptides identified in Syk-positive cells match to 385 proteins,

those identified in the Syk-negative cells to 117 proteins. Amongst them, 15 proteins displayed

distinct phospho-peptides identified in both experimental conditions. Due to amino acid

sequence redundancy, 25 of the differentially phosphorylated peptides matched to several pro-

teins that we all included in the differentially phosphorylated proteins. We considered all these

proteins as Syk targets. 131 phospho-peptides were found in both experimental conditions,

including 9 with the same phospho-tyrosine residue but with a differential methionine oxida-

tion, and were excluded (S2 Table). The third dataset identified the peptides phosphorylated

on tyrosine by Syk after in vitro kinase reaction [18]. Amongst them, we selected as Syk direct

substrates those that were also identified in the MDA-MB-231 cells after Syk expression by

Iliuk and colleagues (2010). Contrary to the list published by Xue and colleagues (2012), we

excluded the following proteins because their phospho-peptides identified in vitro were not

retrieved exclusively in Syk expressing MDA-MB-231 cells: Four and a half LIM domains pro-

tein 2 (Uniprot #Q14192), Tyrosine-protein phosphatase non-receptor type 11 (Uniprot

#Q06124), Tyrosine-protein phosphatase non-receptor type 1 (Uniprot #P18031), cortactin

(Uniprot #Q14247), Vimentin (Uniprot #P08670) and Tyrosine-protein phosphatase non-

receptor type 12 (Uniprot #Q05209). We also excluded the ITSFPESEGYSyETSTK phospho-

peptide of the MAP1B protein (Uniprot #P46821) for the same reasons (but the MAP1B pro-

tein remains as a Syk direct substrate because another MAP1B phospho-peptide was retrieved
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exclusively in Syk-expressing MDA-MB-231 cells). Finally, we included the Cofilin-1 and Cofi-

lin-2 proteins (Uniprot #P23528 and #Q9Y281, respectively) because the YALYDATyETK

phospho-peptide was retrieved exclusively in Syk-expressing MDA-MB-231 cells (S2 Table).

Statistical analysis

Statistical analyses were performed using the two-tailed Student’s t test for paired and

unpaired data versus control values. Experimental values in this work are all given as mean

and standard error of the mean (SEM). Results with a P value� 0.05 were considered as sta-

tistically significant.

Supporting information

S1 Table. MCF7 dataset. Dataset of Syk targets in breast cancer cells from Larive et al. (2009).

“+”, proteins with an increased phosphorylation or association with phospho-proteins in pres-

ence of active Syk; “-”, proteins with a decreased phosphorylation or association with phos-

pho-proteins in presence of active Syk. Proteins from both situations are considered as Syk

targets.

(ODS)

S2 Table. MDA231 dataset. Datasets of Syk targets in breast cancer cells from Iliuk et al. and

Xue et al. “+”, phospho-peptides identified in Syk-positive cells; “-”, phospho-peptides identi-

fied in Syk-negative cells. Proteins identified with peptides from both situations are considered

as Syk targets.

(ODS)

S3 Table. Network components selected as phospho-tyrosine modifiers with tyrosine

kinases (GO:0004713) and tyrosine phosphatases (GO:0004725) GO terms and manually

verified.

(ODS)

S4 Table. Enriched pathways in the lists of Syk targets from MCF7 dataset, using pathways

from the KEGG database.

(ODS)

S5 Table. Enriched pathways in the lists of Syk targets from MDA231 dataset, using path-

ways from the KEGG database.

(ODS)

S6 Table. Enriched pathways in the lists of Syk targets from MCF7 and MDA231 datasets,

using pathways from the KEGG database.

(ODS)

S7 Table. Enriched pathways in the lists of Syk targets from MCF7 and MDA231 datasets,

using pathways from the Pathway Commons database.

(ODS)

S1 Fig. Network showing all selected paths from Syk to identified targets. The color of

nodes represents associated GO annotations: red for cell adhesion and motility, green for cell

growth and death, blue for immunity and inflammation. Proteins associated to several groups

have composed colors. Black nodes are associated with all groups, grey ones with none. The

larger squares highlight proteins found in the original datasets. Syk is the largest node.

(PDF)
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S2 Fig. Evolution of the sub-network for the effect of Syk on proteins associated to cell

growth and death using unweighted shortest paths, after the integration of weights (A),

and after refinement using random walks (B). Network elements are annotated as Fig 3.

(PDF)

S3 Fig. Evolution of the sub-network for the effect of Syk on proteins associated to cell dif-

ferentiation using unweighted shortest paths, after the integration of weights (A), and

after refinement using random walks (B). Network elements are annotated as Fig 3.

(PDF)

S4 Fig. Evolution of the sub-network for the effect of Syk on proteins associated to immu-

nity and inflammation using unweighted shortest paths, after the integration of weights

(A), and after refinement using random walks (B). Network elements are annotated as Fig 3.

(PDF)

S5 Fig. Evolution of the sub-network for the effect of Syk on proteins associated to cell

growth and death using weighted shortest paths, and after refinement with random walks,

both allowing a 20% overflow. Network elements are annotated as Fig 4.

(PDF)

S6 Fig. Evolution of the sub-network for the effect of Syk on proteins associated to cell dif-

ferentiation using weighted shortest paths, and after refinement with random walks, both

allowing a 20% overflow. Network elements are annotated as Fig 4.

(PDF)

S7 Fig. Evolution of the sub-network for the effect of Syk on proteins associated to immu-

nity and inflammation using weighted shortest paths, and after refinement with random

walks, both allowing a 20% overflow. Network elements are annotated as Fig 4.

(PDF)

S8 Fig. Effect of Syk on the phosphorylation of cortactin pTyr334 residue. (A) MS spectrum

of the cortactin heavy and light peptides containing the phosphorylated Tyr 334 residue and

showing their relative abundance in pervanadate-activated MCF7 cells pretreated or not with

Syk inhibitor (Pic, piceatannol). (B) MS/MS identification of the cortactin heavy peptide con-

taining the phosphorylated Tyr334 residue.

(PDF)

S9 Fig. Effect of Syk on the phosphorylation of cortactin pTyr446 residue. (A) MS spectrum

of the cortactin heavy and light peptides containing the phosphorylated Tyr 446 residue and

showing their relative abundance in pervanadate-activated MCF7 cells pretreated or not with

Syk inhibitor piceatannol (Pic). (B) MS/MS identification of the cortactin heavy peptide con-

taining the phosphorylated Tyr 446 residue.

(PDF)

S10 Fig. Syk controls ezrin tyrosine phosphorylation. (A) After protein extraction from

MCF7 cells and Syk and ezrin protein immunoprecipitation (IP), the in vitro kinase reaction is

performed with [32P]-ATP either in the presence or absence of Syk inhibitor piceatannol

(PIC). (B) COS7 cells are expressing FLAG-Syk (1), ezrin-GFP (2), both (4) or ezrin-GFP and

FLAG-Syk kinase dead (KD) mutant (lane 3). After cell lysis and immunoprecipitation (IP)

with the indicated antibodies (bottom), the in vitro kinase reaction is performed with [32P]-

ATP. (C-D) COS7 cells expressing FLAG-Syk and ezrin-GFP are lysed, proteins are immuno-

precipitated and the in vitro kinase reaction is performed in presence or absence of ATP. Pro-

teins are then incubated either with alkaline phosphatase or not. Part of the reaction product is
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analyzed for tyrosine phosphorylation of ezrin after SDS-PAGE (C). Part of the reaction is ana-

lyzed by two-dimensional gel electrophoresis (D). Arrow designs the phosphorylated ezrin.

IEF, isoelectro focusing.

(PDF)

S11 Fig. MS/MS identification of the ezrin peptide containing the phosphorylated Tyr 424

residue.

(PDF)

S1 File. Python code tools for all the steps described in the paper. Data representing the full

Syk network and the subnetworks analyzed in the paper. An example of web visualization of

the Syk networks based on a customized Cytoscape Web.

(ZIP)
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