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Abstract: Signal transducer and activator of transcription 3 (STAT3) signaling is a major driver of
colorectal cancer (CRC) growth, however therapeutics, which can effectively target this pathway,
have so far remained elusive. Here, we performed an extensive screen for STAT3 inhibitors among
a library of 1167 FDA-approved agents, identifying Ponatinib as a lead candidate. We found that
Ponatinib inhibits STAT3 activity driven by EGF/EGFR, IL-6/IL-6R and IL-11/IL-11R, three major
ligand/receptor systems involved in CRC development and progression. Ponatinib was able to inhibit
CRC migration and tumor growth in vivo. In addition, Ponatinib displayed a greater ability to inhibit
STAT3 activity and mediated superior anti-proliferative efficacy compared to five FDA approved SRC
and Janus Kinase (JAK) inhibitors. Finally, long-term exposure of CRC cells to Ponatinib, Dasatinib
and Bosutinib resulted in acquired resistance to Dasatinib and Bosutinib occurring within six weeks.
However, acquired resistance to Ponatinib was observed after long-term exposure of >4 months.
Overall, our results identify a novel anti-STAT3 property of Ponatinib and thus, Ponatinib offers a
potential therapeutic strategy for CRC.

Keywords: STAT3; CRC; Ponatinib; EGFR; interleukin signaling

1. Introduction

Colorectal cancer (CRC) is one of the leading causes of cancer mortality [1,2]. First and
second-line therapy in the metastatic setting consists of fluoropyrimidine based chemotherapy, in
which 5-fluorouracil or capecitabine is combined with either oxaliplatin or irinotecan [3–5]. Targeted
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therapy has emerged as a treatment option for CRC patients. These include the epidermal growth
factor receptor (EGFR) inhibitors cetuximab and panitumumab and the vascular endothelial growth
factor an inhibitor bevacizumab [6–8]. However, despite these agents producing improvements in
patient outcome, treatment failure is frequently observed and 5-year survival rates for patients with
metastatic disease remains below 15% [9,10]. These disappointing outcomes highlight the requirement
for continued evaluation for improved therapeutic agents, in particular those that target critical
oncogenic molecules and pathways.

Signal transducer and activator of transcription 3 (STAT3) is a pro-tumorigenic transcription factor
that is frequently hyper-activated in many types of tumors including CRC [11]. Considerable evidence
has demonstrated an essential role for STAT3 in the regulation of genes such as SOCS3, cyclin D1 and
HIF1α in promoting tumor cell proliferation, migration, invasion and resistance to therapies [11,12].
STAT3 is phosphorylated in response to the activation of several cytokine receptors in the IL-6 cytokine
receptor family in conjunction with their co-receptor gp130 and by growth factor receptors including
the EGFR [13]. Both IL-6 and EGFR play critical roles in the pro-oncogenic properties of STAT3 [14–16].
Recently, another IL-6 cytokine family member, IL-11 was observed in high abundance in CRC tumor
samples and correlated with increased phosphorylated STAT3 levels [17]. In addition, non-receptor
kinases including SRC and Janus Kinase (JAK) also activate STAT3 [18,19]. Therefore, targeting the
STAT3 signaling axis represents an important and rationale approach for the clinical management of
patients with CRC.

However, direct inhibitors of STAT3 have not progressed beyond early-phase clinical trials [20,21].
Agents that target molecules upstream of STAT3 such as SRC and JAK inhibitors have also
demonstrated modest clinical efficacy [22,23], which may at least in part be due to other uninhibited
ligand–receptor systems inducing compensatory signaling and subsequently allow for the re-activation
of critical tumor promoting downstream molecules such as STAT3. Indeed, we and others have
demonstrated that blocking one receptor is not sufficient in inhibiting STAT3 activity, as other
uninhibited pathways such as those driven by EGFR, IL-6R and IL-11R can reactivate STAT3, leading
to continued tumor growth and refractory outcomes clinically [16,24,25]. Given that (1) STAT3 is
consistently found to be hyper-activated in CRC; (2) STAT3 pro-tumorigenic properties are commonly
mediated through EGF, IL-6 and IL-11 ligand/receptor systems in CRC; (3) STAT3 is often re-activated
through uninhibited ligand/receptor systems; and (4) a successful anti-STAT3 agent has yet to be
approved in any cancer setting, we explored the possibility of identifying agents currently approved
for other indications that may also display novel anti-STAT3 activity. Importantly, identifying an agent
that could inhibit STAT3 activity driven through an EGF, IL-6 and IL-11 ligand/receptor system may
limit compensatory or re-activation of STAT3 and potentially reduce the likelihood of tumor resistance.

One of the most successful tyrosine kinases inhibitors in cancer treatment is the BCR-ABL inhibitor
Imatinib, an effective first-line therapy for patients with chronic myeloid leukemia (CML) [26–28].
However, resistance to Imatinib is commonly observed, leading researchers to generate second-line
BCR-ABL inhibitors including Dasatinib [29] and Nilotinib [30]. Kinase domain mutations in BCR-ABL,
particularly the BCR-ABLT315I mutation, confer resistance to Dasatinib, Nilotinib and Imatinib.
Therefore, a third generation agent, Ponatinib (Iclusig™; ARIAD Pharmaceuticals, Cambridge, MA,
U.S.A.) [31,32] was designed as a pan-inhibitor of BCR-ABL including the BCR-ABLT315I mutation and
has shown exciting results in CML patients who harbor the BCR-ABLT315I mutation [33,34].

Here we identify Ponatinib from a large panel of approved therapeutics, to have an additional
novel property of inhibiting STAT3 activity driven by multiple ligand-receptor systems. Ponatinib
displayed superior inhibition of STAT3 activity compared to currently approved SRC and JAK
inhibitors. We also demonstrate that Ponatinib can successfully inhibit CRC cell migration and
tumor growth in vivo. In summary, Ponatinib has the potential to be re-purposed as a STAT3 inhibitor
for the treatment of patients with CRC.
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2. Results

2.1. IL-11-STAT3 Signaling Enhances Tumor Growth

To investigate if a high level of IL-11-STAT3 signaling correlates with patient outcome in CRC, we
examined if the association of expression levels of IL-11, IL-11R and SOCS3 correlated with outcome
in the TCGA cohort. CRCs with high composite expression of these three readouts of STAT3 signaling
had significantly worst overall survival compared to tumors with low composite expression (n = 350;
Figure 1A). To directly determine the effect of activated STAT3 signaling on tumor growth we next
stably transfected the IL-11Rα subunit into DLD-1 and SW48 CRC cells. IL-11Rα over-expressing cells
displayed increased STAT3 activity and SOCS3 gene expression (Figure S1) and enhanced subcutaneous
xenograft growth compared to parental cells (Figure 1B,C).
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Figure 1. IL-11 signaling is associated with poorer survival in colorectal cancer (CRC) patients and 
drives increased tumor growth. (A) The relationship between high (Green) and low (Red) 
IL-11-IL-11Rα-SOCS3 gene expression with patient survival was determined through mining a 
SurvExpress TCGA dataset. Kaplan-Meier survival curves were evaluated from the TCGA, n = 350; 
Risk group hazard ratio = 1.13 (Conf. Int. 1.15~2.93); * p < 0.05. (B) DLD-1 control (•) and IL-11Rα 
transfected stable clones (IL-11R-1 ( ) and IL-11R-2 (Δ)) and (C) SW48 control (•) and IL-11Rα 
transfected stable clones (IL-11R-1 ( ) and IL-11R-2 (Δ)) were inoculated subcutaneously into both 
flanks of BALB/cnu−/nu− female mice and measured for tumor volume. Data shown represents mean ± 
SEM (n = 10 tumors/group). 

2.2. Ponatinib Inhibits STAT3 Phosphorylation and Transcriptional Activity 

It is clear that IL-11-STAT3 signaling plays a central role in cancer progression [17]. However, 
many receptor systems including the EGFR and IL6R activate STAT3, potentially leading to 

Figure 1. IL-11 signaling is associated with poorer survival in colorectal cancer (CRC) patients
and drives increased tumor growth. (A) The relationship between high (Green) and low (Red)
IL-11-IL-11Rα-SOCS3 gene expression with patient survival was determined through mining a
SurvExpress TCGA dataset. Kaplan-Meier survival curves were evaluated from the TCGA, n =
350; Risk group hazard ratio = 1.13 (Conf. Int. 1.15~2.93); * p < 0.05. (B) DLD-1 control ( ) and
IL-11Rα transfected stable clones (IL-11R-1 (�) and IL-11R-2 (∆)) and (C) SW48 control ( ) and IL-11Rα
transfected stable clones (IL-11R-1 (�) and IL-11R-2 (∆)) were inoculated subcutaneously into both
flanks of BALB/cnu−/nu− female mice and measured for tumor volume. Data shown represents mean
± SEM (n = 10 tumors/group).

2.2. Ponatinib Inhibits STAT3 Phosphorylation and Transcriptional Activity

It is clear that IL-11-STAT3 signaling plays a central role in cancer progression [17]. However, many
receptor systems including the EGFR and IL6R activate STAT3, potentially leading to compensatory
re-activation of STAT3 when only one of these receptor systems is inhibited. Thus, we set out to
identify novel inhibitors that could block STAT3 activation driven by all three receptor systems (EGFR,
IL-6R and IL-11R) amongst a panel of 1167 FDA-approved agents. We used a luciferase-based screen
where DIFI and DLD-1 cells were infected with an STAT3 reporter adenovirus and then stimulated
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with either EGF (DIFI cells) or IL-6 (DLD-1 cells) with or without each inhibitor at 10 µM. The DIFI
and DLD-1 cell lines were chosen based on their high STAT3 transcriptional activity in response to
EGF and IL-6 respectively. Our initial screen identified 89 and 92 agents that could inhibit EGF or
IL-6 mediated STAT3 transcriptional activity respectively by at least 50% at 10 µM (Figure 2A; Table
S1). Fifty-one of these agents could inhibit both EGF (in DIFI cells) and IL-6 (in DLD-1 cells) driven
STAT3 activity (Figure 2A,B; Table S2). A secondary screen of these 51 agents identified 18 and 26
agents that could inhibit EGF or IL-6 mediated STAT3 phosphorylation respectively by at least 50% at
10 µM (Figure 2C; Table S2). Fourteen of these agents could inhibit both EGF (in DIFI cells) and IL-6
(in DLD-1 cells) driven STAT3 phosphorylation (Figure 2C,D; Table S2). Amongst these inhibitors,
11 and 9 agents inhibited EGF or IL-6 mediated STAT3 phosphorylation at the lower dose of 1 µM,
respectively (Figure 2C; Table S2). Five of these agents (including Ponatinib) reduced both EGF and
IL-6 induced STAT3 phosphorylation at 1µM (Figure 2C,D; Table S2). Ponatinib also inhibited EGF
and IL-6 induced SOCS3 gene expression (Figure S2).Cancers 2018, 10, x 5 of 19 
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Figure 2. Ponatinib inhibits EGF, IL-6 and IL-11 mediated STAT3 activity. (A) Venn diagram 
summarizing the number of agents that could inhibit EGF, IL-6 or both EGF and IL-6 mediated 
STAT3 transcriptional activity by greater than 50% compared to control treated cells. (B) The effect 
of Ponatinib on EGF and IL-6 mediated STAT3 transcriptional activity. Data represents relative 
luciferase activity relative to control, mean ± SD, * p < 0.001. (C) Venn diagrams summarizing the 
number of agents that could inhibit EGF, IL-6 or both EGF and IL-6 mediated STAT3 
phosphorylation by greater than 50% compared to control treated cells at 1 µM and 10 µM as 
determined by densitometry of western blot bands. Cells were treated with (D) EGF or IL-6 ± 
Ponatinib, or (E) IL-11 ± Ponatinib and then assessed for Phospho-STAT3, STAT3 and GAPDH 
expression by western blot. 

2.3. Reduces STAT3 Localization and Function in the Nucleus 

As Ponatinib reduced STAT3 phosphorylation and transcriptional luciferase activity, we next 
explored whether Ponatinib could inhibit STAT3 localization and transcriptional function in the 
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formation within 15–30 min of stimulation (Figure 3B,C), while Ponatinib significantly inhibited 
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3B–D). Finally, as Ponatinib reduced STAT3 nuclear localization and dimer and tetramer formation 
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Figure 2. Ponatinib inhibits EGF, IL-6 and IL-11 mediated STAT3 activity. (A) Venn diagram
summarizing the number of agents that could inhibit EGF, IL-6 or both EGF and IL-6 mediated
STAT3 transcriptional activity by greater than 50% compared to control treated cells. (B) The effect of
Ponatinib on EGF and IL-6 mediated STAT3 transcriptional activity. Data represents relative luciferase
activity relative to control, mean ± SD, * p < 0.001. (C) Venn diagrams summarizing the number of
agents that could inhibit EGF, IL-6 or both EGF and IL-6 mediated STAT3 phosphorylation by greater
than 50% compared to control treated cells at 1 µM and 10 µM as determined by densitometry of
western blot bands. Cells were treated with (D) EGF or IL-6 ± Ponatinib, or (E) IL-11 ± Ponatinib and
then assessed for Phospho-STAT3, STAT3 and GAPDH expression by western blot.



Cancers 2018, 10, 526 5 of 18

As IL-11 clearly enhances CRC tumorigenicity, we concurrently evaluated whether the 51 agents
that could inhibit EGF and IL-6 mediated STAT3 activity, could also block IL-11 driven STAT3 activation.
Thirteen out of 51 agents reduced IL-11 mediated STAT3 transcriptional activity by greater than 50% at
1 µM in DLD-1, SW48 and LIM1215 cells (Table S2). Of these 13, only Ponatinib demonstrated the ability
to inhibit STAT3 phosphorylation and transcriptional activity driven by all three ligands in all cell
lines tested across our screening process. Ponatinib reduced IL-11 mediated STAT3 phosphorylation
(Figure 2E, Figure S3A). Similarly to IL-6 and IL-11, Ponatinib reduced STAT3 phosphorylation induced
by another IL-6 cytokine family member, LIF in a dose dependent manner in DIFI, DLD-1 and SW48
(Figure S3D).

2.3. Reduces STAT3 Localization and Function in the Nucleus

As Ponatinib reduced STAT3 phosphorylation and transcriptional luciferase activity, we next
explored whether Ponatinib could inhibit STAT3 localization and transcriptional function in the
nucleus. DLD-1 cells transiently transfected with STAT3-GFP and stimulated with IL-11 displayed
an increase in STAT3 nuclear to cytoplasmic ratio compared to unstimulated cells (1.39 vs. 1.06)
(Figure 3A). Ponatinib significantly reduced the STAT3 nuclear to cytoplasmic ratio mediated by IL-11
at both 0.1 µM (1.09) and 1 µM (1.02) (Figure 3A). As STAT3 dimer and tetramer formation in the
nucleus has been shown to be important for regulating gene expression [35] we next determined if
Ponatinib could reduce STAT3 dimer and tetramer formation. DLD-1 cells transiently transfected with
STAT3-GFP and stimulated with IL-11 displayed an increase in STAT3 dimer and tetramer formation
within 15–30 min of stimulation (Figure 3B,C), while Ponatinib significantly inhibited IL-11 induced
STAT3 dimer and tetramer formation in DLD-1 cells equivalent to basal levels (Figure 3B–D). Finally,
as Ponatinib reduced STAT3 nuclear localization and dimer and tetramer formation in the nucleus
we examined if Ponatinib could reduce gene expression driven by STAT3. IL-11 triggered increased
SOCS3 gene expression in DIFI, DLD-1 and SW48 cells while Ponatinib reduced this IL-11 mediated
SOCS3 gene expression in a dose dependent manner (Figure 3E). This was further confirmed in four
other CRC cell lines (Figure S2C).

2.4. Ponatinib Displays a Broader Range of Anti-STAT3 Activity Compared to SRC and JAK Inhibitors

We next sought to investigate how Ponatinib’s additional ability to inhibit STAT3 activity
compared to five other FDA approved agents (Ruxolitinib, Dasatinib, Bosutinib, Ibrutinib and
Tofacitinib) which inhibit amongst other targets the SRC or JAK kinases directly upstream of STAT3.
Ponatinib was the only agent that could significantly inhibit STAT3 activity driven by EGF (Figure 4A,
Figure S4A), IL-6 (Figure 4B, Figure S4B), and IL-11 (Figure 4C,D, Figure S4C,D). Unlike Ponatinib,
the inhibitors that could block SRC and JAK activity could only inhibit STAT3 activity driven by one
or two of the ligand/receptor systems tested but not all three. We also demonstrated that Ponatinib
was able to inhibit IL-11-mediated JAK2 phosphorylation (Figure 4E). Interestingly, the inhibitors
that could block IL-11 mediated STAT3 activity (Ponatinib, Ruxolitinib and Tofacitinib) also blocked
IL-11-mediated JAK2 activity, and those that could not (Dasatinib, Bosutinib, Ibrutinib) also did not
block JAK2 activity. Similarly, Ponatinib was the only agent that could inhibit cell viability in all seven
colon cancer cell lines and three primary CRC cell lines (Figure 4F,G; Figure S4E) by greater than 50%.

Continued or re-activated compensatory downstream signaling initiated by alternative
un-inhibited receptors often provides acquire resistance to current targeted therapeutics. Our present
data led us to speculate that Ponatinib may have superior properties in preventing re-activation of
STAT3 compared to other inhibitors that can block SRC and JAK activity due to its ability to inhibit
three key receptors involved in STAT3 activation. To evaluate the potential of acquired resistance to
either Ponatinib or the SRC and JAK inhibitors we co-cultured DLD-1 cells with continuous, increasing
doses of Dasatinib, Bosutinib and Ponatinib for six weeks (Figure 5A). Cells cultured in the presence of
Ponatinib did not proliferate when doses were increased and thus a maintenance dose of 0.1 µM was
used throughout the six weeks treatment period. Cells treated with Dasatinib or Bosutinib however
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could tolerate small incremental dose increases over the six weeks treatment period until a final dose
of 1.5 µM was reached. Strikingly, cells treated long-term with Dasatinib (designated DLD-1-Das) or
Bosutinib (designated DLD-1-Bos) displayed enhanced resistance within six weeks of treatment but
importantly, these Dasatinib-refractory and Bosutinib-refractory cells maintained their sensitivity to
Ponatinib at comparable levels to that of the parental cell line (Figure 5B,C). However, cells that were
co-cultured in the presence of Ponatinib (designated DLD-1-Pon) remained equally as sensitive to
Ponatinib as the Ponatinib-treatment naïve parental DLD-1 cells (Figure 5D).
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to IL-11 stimulated cells (n = 3). DLD-1 cells were transfected with STAT3-GFP and assessed for (B) 
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(D) Intensity and brightness maps of STAT3-GFP oligomerization at 0, 30 and 60 min after IL-11 
stimulation ± Ponatinib in DLD-1 cells. (E) Cells were treated with IL-11 ± Ponatinib and then 
assessed for SOCS3 gene expression by qPCR; * p < 0.05; ** p < 0.01 relative to control. 

Figure 3. Ponatinib Inhibits STAT3 nuclear localization, dimer and tetramer formation and STAT3
regulated gene expression. (A) DLD-1 cells were transfected with STAT3-GFP for 48 h, and then
treated with IL-11 with or without 0.1 µM and 1.0 µM Ponatinib for 1 h. Cells were then fixed,
permeabilized and stained with DAPI. Nuclear and cytoplasmic localization of STAT3 was then
performed and presented as a ratio of nuclear compared to cytoplasmic localization * p < 0.05 relative to
IL-11 stimulated cells (n = 3). DLD-1 cells were transfected with STAT3-GFP and assessed for (B) STAT3
dimer and (C) tetramer formation upon stimulation with IL-11 ± Ponatinib (1 µM) (n = 8 cells). (D)
Intensity and brightness maps of STAT3-GFP oligomerization at 0, 30 and 60 min after IL-11 stimulation
± Ponatinib in DLD-1 cells. (E) Cells were treated with IL-11 ± Ponatinib and then assessed for SOCS3
gene expression by qPCR; * p < 0.05; ** p < 0.01 relative to control.
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Figure 4. Ponatinib displays broader STAT3 inhibition compared to SRC and JAK inhibitors. Cells 
were treated with (A) EGF, 50 ng/mL (DIFI), (B) IL-6, 50 ng/mL (DLD-1), (C) IL-11, 100 ng/L (DLD-1), 
(D) IL-11, 100 ng/L (SW48) ± 1 µM Ponatinib, Ruxolitinib, Dasatinib, Bosutinib, Ibrutinib or 
Tofacitinib for 1 h and then assessed for Phospho-STAT3, STAT3 and GAPDH expression by western 
blot. (E) DLD-1 cells were treated with IL-11, 100 ng/mL ± 1 µM Ponatinib, Ruxolitinib, Dasatinib, 
Bosutinib, Ibrutinib or Tofacitinib for 1 h and then assessed for Phospho-JAK2, JAK2 and GAPDH 
expression by western blot. (F) DLD-1 (), DIFI ( ) and SW48 (horizontal lines) and (G) CPP14 (), 
CPP19 ( ) and CPP35 (horizontal lines) were treated with ± 1 µM Ponatinib (Pon), Ruxolitinib (Rux), 
Dasatinib (Das), Bosutinib (Bos), Ibrutinib (Ibrut) or Tofacitinib (Tof) for 72 h. Cell viability was then 
determined using a commercially available Cell Titer-Glo kit and samples read on a bioluminometer. 
Data is expressed as % viability compared to untreated control cells ± S.D of at least 3 independent 
experiments, each with 3 experimental replicates; * p < 0.05; ** p < 0.01; *** p < 0.001. 

Figure 4. Ponatinib displays broader STAT3 inhibition compared to SRC and JAK inhibitors. Cells were
treated with (A) EGF, 50 ng/mL (DIFI), (B) IL-6, 50 ng/mL (DLD-1), (C) IL-11, 100 ng/L (DLD-1), (D)
IL-11, 100 ng/L (SW48) ± 1 µM Ponatinib, Ruxolitinib, Dasatinib, Bosutinib, Ibrutinib or Tofacitinib
for 1 h and then assessed for Phospho-STAT3, STAT3 and GAPDH expression by western blot. (E)
DLD-1 cells were treated with IL-11, 100 ng/mL ± 1 µM Ponatinib, Ruxolitinib, Dasatinib, Bosutinib,
Ibrutinib or Tofacitinib for 1 h and then assessed for Phospho-JAK2, JAK2 and GAPDH expression by
western blot. (F) DLD-1 (�), DIFI (�) and SW48 (horizontal lines) and (G) CPP14 (�), CPP19 (�) and
CPP35 (horizontal lines) were treated with ± 1 µM Ponatinib (Pon), Ruxolitinib (Rux), Dasatinib (Das),
Bosutinib (Bos), Ibrutinib (Ibrut) or Tofacitinib (Tof) for 72 h. Cell viability was then determined using
a commercially available Cell Titer-Glo kit and samples read on a bioluminometer. Data is expressed as
% viability compared to untreated control cells ± S.D of at least 3 independent experiments, each with
3 experimental replicates; * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 5. Cells do not acquire resistance to Ponatinib as rapidly as Dasatinib and Bosutinib. (A) 
Schematic of long-term treatment with Dasatinib, Bosutinib and Ponatinib. DLD-1 cells were treated 
with continuous, increasing doses of Dasatinib, Bosutinib and Ponatinib for six weeks and then 
assessed for cell viability in comparison to control DLD-1 cells. (B) DLD-1 () and DLD-1-Das cells 
( ), were treated with ± Dasatinib or Ponatinib for 72 h. Cell viability was then determined using a 
commercially available Cell Titer-Glo kit and samples read on a bioluminometer. Data is expressed 
as % viability compared to untreated control cells ± S.D. (C) DLD-1 () and DLD-1-Bos cells ( ), were 
treated with ± Bosutinib or Ponatinib for 72 h. Cell viability was then determined as outlined above. 
(D) DLD-1 () and DLD-1-Pon cells ( ), were treated with ± Ponatinib for 72 h. Cell viability was 
then determined as outlined above. (E) DLD-1 () and DLD-1 cells that had been co-cultured in the 
presence of Ponatinib for 15, 35 and 45 weeks ( ), were treated with ± Ponatinib for 72 h. Cell 
viability was then determined as outlined above. (F) SW48, DIFI and LIM1215 cells () and their 
counterparts that had been co-cultured in the presence of Ponatinib for greater than four months ( ), 
were treated with ± Ponatinib for 72 h. Cell viability was then determined as outlined above from at 
least three independent experiments, each with 3 experimental replicates; * p < 0.05; ** p < 0.01. 

Figure 5. Cells do not acquire resistance to Ponatinib as rapidly as Dasatinib and Bosutinib. (A)
Schematic of long-term treatment with Dasatinib, Bosutinib and Ponatinib. DLD-1 cells were treated
with continuous, increasing doses of Dasatinib, Bosutinib and Ponatinib for six weeks and then assessed
for cell viability in comparison to control DLD-1 cells. (B) DLD-1 (�) and DLD-1-Das cells (�), were
treated with ± Dasatinib or Ponatinib for 72 h. Cell viability was then determined using a commercially
available Cell Titer-Glo kit and samples read on a bioluminometer. Data is expressed as % viability
compared to untreated control cells ± S.D. (C) DLD-1 (�) and DLD-1-Bos cells (�), were treated
with ± Bosutinib or Ponatinib for 72 h. Cell viability was then determined as outlined above. (D)
DLD-1 (�) and DLD-1-Pon cells (�), were treated with ± Ponatinib for 72 h. Cell viability was then
determined as outlined above. (E) DLD-1 (�) and DLD-1 cells that had been co-cultured in the presence
of Ponatinib for 15, 35 and 45 weeks (�), were treated with ± Ponatinib for 72 h. Cell viability was
then determined as outlined above. (F) SW48, DIFI and LIM1215 cells (�) and their counterparts
that had been co-cultured in the presence of Ponatinib for greater than four months (�), were treated
with ± Ponatinib for 72 h. Cell viability was then determined as outlined above from at least three
independent experiments, each with 3 experimental replicates; * p < 0.05; ** p < 0.01.

To determine whether acquired resistance to Ponatinib would arise from longer continuous
treatment, we cultured DLD-1, SW48, DIFI and LIM1215 cells in the continuous presence of Ponatinib
for several months. DLD-1 cells treated with Ponatinib for 15 and 35 weeks continued to demonstrate
similar sensitivity to Ponatinib compared to untreated parental DLD-1 cells (Figure 5E). Acquired
resistance was finally observed after 45 weeks of Ponatinib exposure (Figure 5E). Similarly, SW48, DIFI
and LIM1215 cells continuously cultured in the presence of Ponatinib for at least 20 weeks maintained
a similar sensitivity to Ponatinib compared to treatment-naïve parental cells (Figure 5F).

2.5. Ponatinib Inhibits Cell Proliferation, Migration and Tumor Growth In Vivo

Given we demonstrate that Ponatinib could inhibit cell proliferation in seven human CRC cell
lines and three primary CRC cell lines (Figure 4; Figure S4) we next tested the anti-proliferative effects
of Ponatinib on a further 13 human CRC cell lines. Ponatinib facilitated greater than 50% inhibition
of cell proliferation in all 20 CRC cell lines (Figure 6A) and once more displayed more consistent
inhibition of proliferation of these cell lines compared to Dasatinib and Bosutinib (Table S3). Ponatinib
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also inhibited the “wound healing” of six CRC cell lines in a dose dependent manner (Figure 6B–E;
Figure S5). Likewise, Ponatinib doses of 30 mg/kg significantly reduce tumor growth and tumor mass
(Figure 7A–D) compared to tumors from control treated mice. DLD-1 xenografts also demonstrated
significant reduction at the 10 mg/kg dose of Ponatinib. Importantly, Ponatinib significantly reduced
STAT3 phosphorylation in tumor tissue after a single dose of 30 mg/kg compared to vehicle control
(Figure 7E).
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Figure 6. Ponatinib inhibits cell proliferation and migration. (A) Cells were treated with vehicle () 
or 1 µM Ponatinib ( ) for 72 h. Cell viability was then determined using a commercially available 
Cell Titer-Glo kit and samples read on a bioluminometer. Data is expressed as % viability compared 
to untreated control cells ± S.D. (B) DLD-1 and (C) SW48 cells were grown to confluency, then 
“wounded” at time 0 h. Cells were then treated with 0, 0.1, 0.5 and 1 µM of Ponatinib for 48 h. Images 
of wound healing were taken at 0, 24 and 48 h post Ponatinib treatment. Graphical representation of 
% wound remaining relative to control treated cells at time 0 h for (D) DLD-1 and (E) SW48 cells 
treated with Ponatinib at 0 (○), 0.1 (), 0.5 (▲) or 1 µM (•). Results are normalized to untreated 

Figure 6. Ponatinib inhibits cell proliferation and migration. (A) Cells were treated with vehicle (�) or
1 µM Ponatinib (�) for 72 h. Cell viability was then determined using a commercially available Cell
Titer-Glo kit and samples read on a bioluminometer. Data is expressed as % viability compared to
untreated control cells ± S.D. (B) DLD-1 and (C) SW48 cells were grown to confluency, then “wounded”
at time 0 h. Cells were then treated with 0, 0.1, 0.5 and 1 µM of Ponatinib for 48 h. Images of wound
healing were taken at 0, 24 and 48 h post Ponatinib treatment. Graphical representation of % wound
remaining relative to control treated cells at time 0 h for (D) DLD-1 and (E) SW48 cells treated with
Ponatinib at 0 (#), 0.1 (�), 0.5 (N) or 1 µM ( ). Results are normalized to untreated control. Data
points represent mean ± SD of at least three independent experiments, each with three experimental
replicates; * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 7. Ponatinib inhibits tumor growth in vivo. (A,B) DLD-1 and (C,D) SW48 cells were 
subcutaneously injected into BALB/cnu/nu female mice. On day 14 when mean tumor volume had 
reached 100–150 mm3, mice were randomly separated into three groups and treated orally with daily 
doses of Ponatinib at 0 (○), 10 () or 30 mg/kg (▲) for 10 days between days 14–23 post inoculation. 
(A) DLD-1 and (C) SW48 data shown represents mean ± SEM (n = 10–12 tumors/group), and tumor 
mass at the end of the experiment were weighed for (B) DLD-1 and (D) SW48 and presented as mean 
tumor mass ± S.D. (n = 10–12/group) ** p < 0.01 and *** p < 0.001 relative to the vehicle treated group. 
(E) Mice bearing DLD-1 xenografts of approximately 200 mm3 were treated orally with Ponatinib at 
doses of 0 or 30 mg/kg for 2 h. Xenografts were then removed, embedded in paraffin and sections 
were stained for phosphorylated STAT3. H Scores were assigned based on staining intensity of at 
least three random fields of view from four sections from each group; * p < 0.05; ** p < 0.01; *** p < 
0.001. 

Figure 7. Ponatinib inhibits tumor growth in vivo. (A,B) DLD-1 and (C,D) SW48 cells were
subcutaneously injected into BALB/cnu/nu female mice. On day 14 when mean tumor volume had
reached 100–150 mm3, mice were randomly separated into three groups and treated orally with daily
doses of Ponatinib at 0 (#), 10 (�) or 30 mg/kg (N) for 10 days between days 14–23 post inoculation.
(A) DLD-1 and (C) SW48 data shown represents mean ± SEM (n = 10–12 tumors/group), and tumor
mass at the end of the experiment were weighed for (B) DLD-1 and (D) SW48 and presented as mean
tumor mass ± S.D. (n = 10–12/group) ** p < 0.01 and *** p < 0.001 relative to the vehicle treated group.
(E) Mice bearing DLD-1 xenografts of approximately 200 mm3 were treated orally with Ponatinib at
doses of 0 or 30 mg/kg for 2 h. Xenografts were then removed, embedded in paraffin and sections
were stained for phosphorylated STAT3. H Scores were assigned based on staining intensity of at least
three random fields of view from four sections from each group; * p < 0.05; ** p < 0.01; *** p < 0.001.

3. Discussion

The tumor microenvironment contains pro-oncogenic factors that support receptor activation
and subsequent tumor growth and metastasis [36]. Amongst the most recognized receptors for
promoting CRC progression are the EGFR, IL-6R and IL-11R systems which all activate the transcription
factor, STAT3 [14,16,17]. However, STAT3 inhibitors that have entered clinical trial have produced
modest results [20,21]. This is highlighted by the most recently reported trial of the STAT3 inhibitor,
Napabucasin which failed to improve overall survival of patients with advanced CRC [37]. Although
not a direct STAT3 inhibitor, our current study identifies an additional anti-STAT3 inhibitory property
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of the multi-kinase inhibitor, Ponatinib, with potent activity against STAT3 driven by the EGF/EGFR,
IL-6/IL-6R and IL-11/IL-11R ligand/receptor systems.

Targeting the EGFR, which is over-expressed in up to 80% of CRC, with specific inhibitors
(cetuximab, panitumumab, gefitinib and erlotinib) represents a key component of clinical management
of patients with CRC [38,39]. However, considerable evidence has demonstrated that EGFR blockade,
or inhibition of other receptor systems such as HER2, MET and IGF-IR leads to enhanced or re-activated
STAT3 activity and subsequent continued tumor progression [24,25]. Furthermore, several reports
indicate that this reactivation of STAT3 occurs through increased expression and secretion of IL-6
following EGFR blockade [24,40,41]. Our current data demonstrated that EGFR inhibitors such as
gefitinib and erlotinib could not inhibit IL-6 or IL-11 mediated STAT3 activation. Thus, our current
data and previous studies suggests that blockade of one receptor system that drives STAT3 activity,
may not be sufficient to prevent overall STAT3 activation as other un-inhibited receptors can provide
compensatory signaling to re-activate STAT3. Collectively, these studies emphasize the requirement to
obstruct multiple pathways that lead to STAT3 activation, a feature unique to Ponatinib from the 1167
FDA-approved agents we screened in our study. Therefore, our findings demonstrating that Ponatinib
can inhibit EGF, IL-6 and IL-11 mediated STAT3 signaling may potentially offer an improved approach
to targeted therapy compared to agents that show specificity to only one pathway.

Our current data demonstrating that Ponatinib can reduce STAT3 phosphorylation, transcriptional
activity, nuclear localization, dimer and tetramer formation and gene regulation indicates that Ponatinib
can inhibit many critical properties of STAT3-driven tumorigenesis. Although we did not specifically
show that Ponatinib could block STAT3 binding to DNA, recent evidence suggests that STAT3 dimers
are required to bind DNA before forming tetramers [35]. Our data showing that Ponatinib blocked
STAT3 tetramer formation indicates indirectly that Ponatinib may be able to inhibit STAT3-DNA
binding. Importantly, our current data revealed that Ponatinib could induce significantly anti-tumor
activity in in vivo CRC xenograft models at doses in line with that previously used in other studies in
the CML and thyroid cancer settings [42,43]. As indicated by De Falco and colleagues [42] these doses
are clinically relevant and thus comparable scale-up for clinical application as performed previously
for CML patients would apply to CRC patients. Thus, our encouraging in vivo tumor inhibition data
further advocates the repurposing of Ponatinib in the treatment management of CRC patients.

Ponatinib was structurally designed to inhibit BCR-ABL and the BCR-ABL T315I point mutation
variant that confer resistance to existing tyrosine kinase inhibitors in chronic myeloid leukemia [44].
However, our data showing that Ponatinib can also inhibit STAT3 activity, correlates with other reports
suggesting that Ponatinib displays broad inhibitory effects against several other targets including FLT3,
c-KIT, FGFR, RET, VEGFR and PDGFR [32,42,45,46]. Collectively, these results allow for the possibility
of repurposing Ponatinib for other indications including the large sub-population of patients with
tumors that are dependent on STAT3 signaling. Indeed, clinical trials (NCT02272998 and NCT01813734)
are ongoing based on Ponatinib’s ability to inhibit FGFR, KIT and RET [47,48]. Our current data should
accelerate clinical evaluation of Ponatinib in CRC (and other tumor types) due to its anti-STAT3 activity
particularly selecting patients with high STAT3 activity.

Most recently, chemical proteomics and quantitative mass spectrometry revealed that Ponatinib
could bind to over 30 kinases including SRC and JAK1 [49,50]. Therefore, we compared Ponatinib’s
STAT3 inhibition profile with that of five clinically approved inhibitors that have been shown to
inhibit either SRC or JAK. Our data identified that Ponatinib’s broad range of anti-STAT3 inhibition
is not shared by these SRC and JAK inhibitors. Ponatinib was able to inhibit STAT3 activity driven
by EGF, IL-6 and IL-11 (and LIF) while Ruxolitinib, Dasatinib, Bosutinib, Ibrutinib and Tofacitinib
failed to simultaneously inhibit all 3 signaling pathways. Importantly, the blockade of all three central
signaling pathways that drive STAT3 activity may also lead to the delayed occurrence of acquired
resistance to Ponatinib. This was evident here, as several cell lines required over four months of
constant exposure to Ponatinib before we observed significant levels of acquired resistance. In contrast,
we observed acquired resistance in DLD-1 cells within six weeks of continuous exposure of both
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Dasatinib and Bosutinib. Notably, we demonstrated that Ponatinib significantly inhibited Dasatinib
and Bosutinib-refractory DLD-1 cells in vitro. This is in line with the clinical use of Ponatinib where it
is used as a third line treatment option for patients that are intolerant or resistant to two or more prior
TKI therapies, including Dasatinib, Nilotinib and/or Imatinib. Our current data further supports the
potential clinical use of Ponatinib as an anti-STAT3 therapeutic as we speculate that patients which
receive Ponatinib will require prolonged treatment regimens before acquired resistance is observed (if
at all).

4. Materials and Methods

4.1. Survexpress Data Mining

SurvExpress (http://bioinformatica.mty.itesm.mx/SurvExpress) [51] was used to analyse
differential gene expression of STAT3-related regulators: IL-11, IL-11R and SOCS3 comparing CRC
patients with low and high expression vs. survival.

4.2. Antibodies and Reagents

The rabbit polyclonal antibody directed against STAT3 was obtained from Santa Cruz
Biotechnology (Santa Cruz, CA, USA), while the phospho-STAT3 phospho-JAK2, JAK2 and GAPDH
rabbit polyclonal antibodies were from Cell Signaling Technology (Danvers, MA, USA). IL-6, LIF and
EGF were acquired from Life Technologies and IL-11 was generated in-house (Walter and Eliza Hall
Institute for Medical Research, Parkville, Australia). The drug library containing 1167 FDA approved
agents (including Ponatinib, Ruxolitinib, Dasatinib, Bosutinib, Ibrutinib and Tofacitinib) was obtained
from SelleckChem (, Houston, TX, USA). The Luciferase Reporter Assay reagents were purchased from
Promega (Madison, WI, USA). The APRE Luciferase STAT3 reporter adenovirus has been previously
described [16].

4.3. Cell Culture

Culture of human CRC cell lines was described previously [52]. The human primary CRC cell
lines CCP14, CCP19 and CPP35 were prepared from fresh biopsies as previously reported [53,54]. The
DLD-1 and SW48 transfected clones were generated by transfecting cells with the IL-11Rα construct
(R&D Systems, Minneapolis, MN, USA) using FuGENE HD transfection reagent (Promega, Madison,
WI, USA) following the manufacturer’s instructions and selected with Geneticin (Sigma Aldrich, St.
Louis, MO, USA). All cells were maintained in Dulbecco’s Modified Eagle’s Medium (Life Technologies,
Carlsbad, CA, USA) contained 5% fetal bovine serum (FBS) (Life Technologies), 100 U/mL penicillin
and 100 µg/mL streptomycin (Life Technologies). Cells were incubated in a humidified atmosphere of
90% air and 10% CO2 at 37 ◦C.

4.4. Luciferase Assay

Cells were infected with the adenoviral STAT3 reporter (Ad-APRE-luc) as outlined previously [16]
and allowed to adhere overnight. After 24 h, cells were stimulated with EGF (50 ng/mL), IL-6 (50
ng/mL), IL-11 (100 ng/mL) or DMSO in serum free media ± each of the 1167 inhibitors at 10 µM for
our initial screen and at 1 µM for subsequent experiments where indicated further 24 h. Following
another 24 h, cells were lysed and assessed for STAT3 luciferase activity with the use of the Luciferase
Reporter Assay Kit (Promega) following the manufacturer’s instructions. Readings from lysed cells
that were ligand stimulated (i.e., without inhibitors) were normalized to 100% and all subsequent
readings were adjusted accordingly relative to ligand stimulated readings.

4.5. Western Blotting

Cells were lysed in a lysis buffer (50 mM Tris (pH 7.4), 150 mM NaCl, 1% Triton-X-100, 50 mM
NaF, 2 mM MgCl2, 1 mM Na3VO4 and protease inhibitor cocktail (Roche, Basel, Switzerland)) and

http://bioinformatica.mty.itesm.mx/SurvExpress
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clarified by centrifugation (13,000× g for 15 min at 4 ◦C). Proteins were then separated by SDS-PAGE
(Life Technologies), blotted onto nitrocellulose and probed with the indicated primary antibodies. The
signal was visualized using an ECL chemiluminescence detection kit (GE Healthcare, Chicago, IL,
USA) following incubation with appropriate secondary antibodies (Biorad Laboratories, Hercules, CA,
USA).

4.6. Cell Viability Assays

Cells were seeded in 96-well plates and allowed to adhere overnight. Triplicate wells were then
treated with varying concentrations of inhibitors where indicated for 72 h. Cells were subsequently
lysed and cell viability relative to the vehicle control was determined using a commercially
available Cell Titer-Glo kit (Promega) following manufacturer’s instructions. Samples were read
on a bioluminometer.

4.7. RNA Extraction and RT-PCR

Cells were seeded in 6-well plates and allowed to adhere overnight. Following serum starvation
for 24 h, cells were stimulated with ± IL-11 ± inhibitor for 8 h at 37 ◦C, 10% CO2. Total RNA
was extracted with the RNeasy Mini Kit (Qiagen, Hilden, Germany) following the manufacturer’s
instructions. Reverse transcription was performed using the High Capacity RNA-to-cDNA Kit
(Applied Biosystems, Waltham, MA, USA) following the protocol provided from the manufacturer.
Reverse Transcription-PCR was performed using the GeneAmp PCR System 2400 (Perkin Elmer,
Waltham, MA, USA) under the conditions of 37 ◦C for 60 min and 95 ◦C for 5 min at a reaction volume
of 20 µL. In order to quantify the transcripts of the genes of interest, real-time PCR was performed
using the ViiA 7 Real-Time PCR system (Applied Biosystems) for IL-11Rα (Applied Biosystems,
Hs00234415_m1), SOCS3 (Applied Biosystems, Hs02330328_s1) and GAPDH (Applied Biosystems,
Hs02758991_g1). Amplified RNA samples was calculated using the 2−∆∆CT method [55].

4.8. Wound Healing Assay

Cells were seeded into 12-well plates and were cultured until 100% confluent. After which a
wound was created with a p200 pipette tip. Cells were then treated with Ponatinib (0, 0.1, 0.5, 1 µM)
and phase-contrast images were acquired at 0, 24 and 48 h post-scratch. An inverted microscope (IX50,
Olympus, Notting Hill, Australia) and the Leica Application Suite (LAS v4.5) were used to process
and capture images. ImageJ was utilized to quantify wound closure.

4.9. Immunohistochemistry Analysis

Paraffin-embedded tumor sections were heated to 60 ◦C for 1 h and deparaffinized in 100% Xylene.
Slides were rehydrated in 100%, 90% and 70% ethanol followed by tap water. Antigen retrieval was
performed using the BioCare Decloaking Chamber (Metagene, Redcliffe, Australia) at 110 ◦C for 10
min in citrate buffer pH 6.0 (Life Technologies) and cooled for 5 min in TBST. Slides were blocked in
5% goat serum followed by an endogenous peroxidases block (EnvisionTM, DAKO, North Sydney,
Australia). Slides were washed in TBST followed by incubation of pSTAT3 primary antibody (1:100
dilution) overnight at 4 ◦C. Sections were subsequently incubated with an anti-rabbit HRP labelled
polymer (EnvisionTM, DAKO) as per manufacturer’s instructions and then washed in TBST. DAB
(EnvisionTM, DAKO) was then added on the sections for 5 min (RT) followed by immediate immersion
in distilled water. Slides were then stained with hematoxylin for 15 s and placed in Scott’s tap water
for 15 s. Following dehydration, slides were then mounted with DPX mounting media onto a coverslip
and analyzed using Leica DM2000 microscope (Leica Microsystems, North Ryde, Australia). Random
images were then taken and staining intensity was assessed to calculate a H-score using the following
formula: 3 × percentage of cell with strong staining + 2 × percentage of cells with moderate staining +
1 × percentage of cells with weak staining. A minimum of 3 random fields were scored for each tumor
section (n = 4/treatment group).



Cancers 2018, 10, 526 14 of 18

4.10. STAT3 Dimer and Tetramer Analysis

DLD-1 cells were transfected with the STAT3-EGFP construct (from Prof. Pravin Sehgal; New York
Medical College, Valhalla, NY, USA). Twenty-four hours later the transfected cells were stimulated
with IL-11 (100 ng/mL) with or without Ponatinib (1 µM) and immediately imaged on an Olympus
FV3000 laser scanning microscope using a 60× water immersion objective (1.2 numerical aperture). The
STAT3-EGFP construct was excited with a 488 nm diode pump solid state laser and its emission was
detected by a GaAsP PMT between 500–600 nm. Image acquisition for number and brightness analysis
of STAT3-EGFP oligomerization followed the protocol carried out previously [35,56]. Calibration of
the monomeric brightness of the EGFP based construct was performed by measurement of DLD-1 cells
transfected with free EGFP under identical experimental conditions. This enabled extrapolation of
the expected apparent brightness of higher order EGFP oligomers (dimers and tetramers) a palette to
pseudo-color brightness maps of monomeric STAT3-EGFP oligomerization upon stimulation with IL-11
± Ponatinib. The data acquired were processed by the SimFCS software developed at the Laboratory
for Fluorescence Dynamics (www.lfd.uci.edu).

4.11. STAT3 Nuclear Localization Analysis

DLD-1 cells were transfected with the STAT3-EGFP construct. Forty-eight hours later, the
transfected cells were stimulated with IL-11 (100 ng/mL) with or without Ponatinib (1 µM) for another
1 h, before being washed twice in PBS, fixed in formaldehyde, permeabilized with PBS containing
0.2% Triton-X-100 and stained in DAPI for 2 min. Cells were then washed twice in PBS and levels of
STAT3-GFP present in the cytoplasm and nucleus was determined using an Operetta High-Content
Imaging System.

4.12. Subcutaneous Xenograft Mouse Model

DLD-1, DLD-1-IL-11R-1 and DLD-1-IL-11R-2 (2.5 × 106) and SW48 SW48-IL-11R-1 and
SW48-IL-11R-2 (5 × 106) cells were inoculated subcutaneously into both flanks of 6–8 weeks old
BALB/c nude mice (Animal Research Centre, Western Australia, Australia). Tumor volume in mm3

was determined as previous [57]. For experiments involving Ponatinib administration, mice were
separated into three groups of five mice when tumors had reached approximately 100–150 mm3. Mice
were subsequently treated daily by oral gavage with Ponatinib at doses of 0, 10 or 30 mg/kg for 10
days [31]. At the end of the study, tumors were collected and weighed. This research project was
approved by the Animal Ethics Committee of the University of Melbourne (Ethics agreement number
1613824).

4.13. Statistical Analysis

All statistical analyses were performed using an unpaired, two-tail Student’s t test. All data
sets were generated using the program GraphPad Prism6 (Prism 6.04, San Diego, CA, USA) and
representing mean ± SD. Values were considered statistically significant if the p values was * p < 0.05,
** p < 0.01, *** p < 0.001.

5. Conclusions

In summary, we performed a large screen of 1167 FDA-approved agents with the purpose
to isolate candidate agents that could inhibit EGF, IL-6 and IL-11 mediated STAT3 activity. We
successfully identified a novel mechanism for the currently FDA-approved agent Ponatinib with
inhibitory properties against STAT3 activity in CRC. Moreover, we demonstrated that Ponatinib has
broader and superior anti-STAT3 inhibition compared to five inhibitors with anti-SRC or anti-JAK
properties and that CRC cells displayed prolonged acquired resistance to Ponatinib compared to
Dasatinib and Bosutinib. Ponatinib treatment also demonstrated a significant reduction in cell viability
and migration in vitro and tumor reduction in CRC xenograft mice models. Overall, our findings

www.lfd.uci.edu
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provide proof-of-principle evidence for the re-purposing of Ponatinib into the clinical management of
CRC patients with tumors harboring elevated STAT3 activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/10/12/526/
s1, Figure S1: Stable transfection of IL-11Rα increase STAT3 activity and SOCS3 gene expression, Figure S2:
Ponatinib inhibits EGF and IL-6 mediated SOCS3 gene expression, Figure S3: Ponatinib inhibits IL-11 mediated
STAT3 activity, Figure S4: Ponatinib displays broader STAT3 inhibition compared to JAK and SRC inhibitors,
Figure S5: Ponatinib inhibits Cell Migration, Table S1: The effect of 1167 agents on EGF and IL-6 mediated STAT3
activity, Table S2: The effect of 50 “lead” compounds on EGF, IL-6 and IL-11 driven STAT3 transcriptional activity
and phosphorylation, Table S3: The effect of Ponatinib, Dasatinib and Bosutinib on the proliferation of human
colon cancer cell lines.
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