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Abstract G protein-coupled receptors (GPCRs) are key players in cell communication and are encoded by the
largest family in our genome. As such, GPCRs represent the main targets in drug development pro-
grams. Sequence analysis revealed several classes of GPCRs: the class A rhodopsin-like receptors
represent the majority, the class B includes the secretin-like and adhesion GPCRs, the class F includes
the frizzled receptors, and the class C includes receptors for the main neurotransmitters, glutamate and
GABA, and those for sweet and umami taste and calcium receptors. Class C receptors are far more
complex than other GPCRs, being mandatory dimers, with each subunit being composed of several
domains. In this review, we summarize our actual knowledge regarding the activation mechanism and
subunit organization of class C GPCRs, and how this brings information for many other GPCRs.
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INTRODUCTION: CLASS C GPCRS AND TOPOLOGY

The class C of G protein-coupled receptors (GPCRs) con-
tains 22 members, including the eight metabotropic glu-
tamate receptors (mGlu1–8), the GABAB receptors (GABAB1

and GABAB2), the calcium-sensing receptor (CaS) and the
taste receptors (T1R1–T1R3) (Fredriksson et al. 2003).
ThemGlu receptors have been further classified into three
different groups depending on their similarities in
sequence, pharmacology, signalling and localization:
Group I includes mGlu1 and mGlu5, Group II mGlu2 and
mGlu3 and Group III mGlu4, mGlu6, mGlu7 and mGlu8.

Structurally, most class C GPCRs contain an extracellular
so-called Venus flytrap (VFT) domain, a bilobed structure
with a crevice between the two lobes that encloses the
orthosteric binding site (Fig. 1). Agonist binding stabilizes a
conformationwith a shorter distance between the two lobes
termedtheclosedconformation (Kunishimaetal. 2000).The
VFT domain is connected to the seven-transmembrane

(7TM) domain through a cysteine-rich domain (CRD),which
is notably absent in the GABAB receptor (Kunishima et al.
2000;Muto et al. 2007). The7TMdomain shares similarities
with other class C GPCRs both in topology and in activating
similar G proteins. In addition, class C GPCRs are either
homodimers (e.g. mGlu receptors) or heterodimers (e.g.
GABAB) (Fig. 1). Here, we summarize the insights into the
activation mechanism of this class of dimeric receptors
gained in particular from structural and mutagenesis stud-
ies, and thenwereview the emergingevidence fornewtypes
of class C GPCR heterodimers or higher order oligomers.

DIMERIZATION OF CLASS C GPCRS: A NECESSITY
FOR SIGNAL TRANSDUCTION

Insights from homodimers: mGlu and CaS
receptors

mGlu and CaS receptors are prototypical homodimers
that are stabilized by an inter-protomer disulphide
bond, polar contacts between VFT domains and inter-
actions between 7TM domains. The dimerization of
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these receptors is critical for promoting the activation
mechanism, leading from agonist binding to G protein
activation. Indeed, different studies indicate that the
conformation of one protomer is relative to the other
changes upon activation, and this has been observed in
all the structural domains found in class C GPCRs (Pin
and Bettler 2016).

The dimer of VFT domains is in equilibrium between
a resting and an active orientation, and agonist binding
displaces the equilibrium towards the active state
(Fig. 2). This reorientation is directly linked to G protein
activation and, as a consequence, has been used to
design a FRET-based sensor to monitor the receptor
activation (Doumazane et al. 2013). Recently, single-
molecule analyses using either the isolated dimer of VFT
domains or the full-length mGlu2 receptor dimer have
confirmed that the VFT domains oscillate rapidly
between the resting and active orientations (Olofsson
et al. 2014; Vafabakhsh et al. 2015). In addition, the
studies revealed that agonists with different efficacies
diverge in their ability to shift the conformational

equilibrium towards the fully active state, rather than
stabilizing intermediate conformations.

Because reorientation of the VFT domain dimer is
tightly linked to G protein activation, it is implied that
this conformational change is somehow transmitted to
the 7TM domains. The CRD has been shown to play a
critical role in this process for mGlu receptors. This
domain is highly rigid due to four intramolecular
disulphide bonds (Muto et al. 2007), and disrupting
them by mutagenesis impairs the capacity of orthosteric
agonists to activate G proteins (Huang et al. 2011). In
addition, crosslinking the two CRDs in a dimer results in
a constitutively active receptor (Huang et al. 2011).
Altogether, this indicates that the transmission from VFT
to 7TM domain is mediated by the rigid CRDs coming
into close proximity (Fig. 2).

At the 7TM domain level, activation of the receptor
requires a rearrangement of the interface between the
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Fig. 1 Structural model and schematic representation of class C
GPCRs. Class C GPCRs are composed of a Venus flytrap (VFT)
domain, a cysteine-rich domain (CRD) and a transmembrane
(7TM) domain. This class of receptors forms obligatory dimers,
either homodimers (e.g. mGlu) or heterodimers (e.g. GABAB)

Resting Active

S-S S-S 

“active”“inactive”

Fig. 2 Mechanism of activation of homodimers and heterodimers.
Both homodimers and heterodimers undergo conformational
changes upon activation. The relative orientation of the VFT
dimer is changed upon agonist binding; the CRDs (not in GABAB)
are getting closer and the 7TM dimer changes conformation such
that a single 7TM is in the active state
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7TM domains in the dimer. Actually, it has been shown
for the mGlu2 receptor that this interface in the inactive
state is formed by transmembrane helix 4 (TM4) and
TM5 in each protomer, while the two TM6 s are facing
each other in the active state (Xue et al. 2015). This
major change in the dimer interface is required for
receptor activity, demonstrated by locking the TM4–
TM5 interface, which prevents activation by agonist, and
locking the TM6 interface, which leads to a constitu-
tively active receptor (Xue et al. 2015). However, the
crystal structure of the mGlu1 receptor 7TM domain in
the presence of a negative allosteric modulator (NAM)
suggested an alternative dimerization interface involv-
ing TM1 (Wu et al. 2014). While this difference might be
attributed to crystal packing or lack of the VFT domain,
further studies are required to determine whether a
common mechanism describing the movement of the
7TM domain dimer can be defined for all class C GPCRs.

The data mentioned above suggest that the activation
of mGlu receptors relies on the conformational changes
of one protomer relative to the other one, which
underlies the strict requirement of the mGlu dimeriza-
tion for glutamate to activate G proteins (Fig. 2). This is
further confirmed by experiments showing that gluta-
mate fails to activate an isolated mGlu monomer
reconstituted in nanodiscs whereas it activates an mGlu
dimer (El Moustaine et al. 2012).

Several studies indicate that a single 7TM domain
reaches the active conformation in an mGlu homodimer
(Goudet et al. 2005; Hlavackova et al. 2005). In addition,
an isolated mGlu monomer purified and reconstituted in
nanodiscs activates G proteins when stimulated by a
positive allosteric modulator (PAM) (El Moustaine et al.
2012). Hence, in the context of a class C GPCR
homodimer, G proteins might be activated through the
ligand-bound subunit (cis-activation) and/or through
the other subunit (trans-activation). It has been shown
for the mGlu5 receptor that Gq protein can be activated
either by cis- or trans-activation (Brock et al. 2007).
However, it is also possible that in some cases,
depending on whether the receptor is cis- or trans-
activated, the pathways activated may differ. For
instance, it has been observed using a combination of
glutamate binding-deficient and G protein coupling-
deficient receptors that the mGlu1 receptor triggers
Gq-coupled signalling through cis- and trans-activation,
while Gi/o and Gs are exclusively activated through cis-
activation (Tateyama and Kubo 2011).

Another point to acknowledge when considering
class C GPCR homodimers is cooperativity. It has been
observed that although glutamate binding to one pro-
tomer could induce receptor activation, binding to both
protomers was required for full activity (Kniazeff et al.

2004). In addition, binding to one protomer can induce
negative cooperativity to the second protomer (Suzuki
et al. 2004), which suggests additional complexity in
mGlu receptor pharmacology.

Altogether, in class C GPCR homodimers, G protein
activation can be achieved upon binding of a single
agonist and by a single protomer with an active 7TM
domain. However, the dimeric structure is an absolute
prerequisite for the conformational transitions from
endogenous agonist binding to G protein activation and
thus for physiological receptor function.

Insights from heterodimers: GABAB and T1Rs

The GABAB, sweet taste and umami taste receptors are
prototypical class C heterodimers: two different sub-
units are required to activate G proteins upon agonist
binding, confirmed in vivo for the GABAB receptor by the
disappearance of all physiological responses attributed
to the heterodimer when either of the two subunits is
knocked out (Prosser et al. 2001; Schuler et al. 2001;
Queva et al. 2003; Zhao et al. 2003; Gassmann et al.
2004). The GABAB receptor is a non-covalently linked
obligatory heterodimer composed of the subunits
GABAB1 and GABAB2 (Jones et al. 1998; Kaupmann et al.
1998; White et al. 1998), while the taste receptors are
composed of T1R3 and either T1R1 or T1R2 resulting in
umami or sweet taste receptors, respectively (Nelson
et al. 2001, 2002) (Fig. 1). For the GABAB receptor, the
GABAB1 subunit contains the binding site for orthosteric
ligands (Galvez et al. 1999, 2000), while the GABAB2

subunit is necessary for G protein activation (Margeta-
Mitrovic et al. 2001a; Robbins et al. 2001; Duthey et al.
2002), confirming the absolute necessity of heterodimer
formation. In contrast, the T1R2 subunit seems to be
responsible for binding of most ligands and for G pro-
tein activation in the sweet taste receptor (Xu et al.
2004). Interestingly, the attempt to create a homomeric
receptor by fusing the ligand binding and the G protein
coupling domains from GABAB resulted in a non-functional
receptor (Galvez et al. 2001), indicating a unique acti-
vation mechanism for these heterodimeric receptors.

In the GABAB receptor, the correct assembly of the
heterodimer is ensured by the C-terminal tail: when
expressed alone, GABAB1 is retained in the ER due to a
RSRR retention motif located in its C-terminal tail
(Couve et al. 1998; Margeta-Mitrovic et al. 2000; Pagano
et al. 2001). In the presence of GABAB2, the retention
motif is masked by a coiled-coil interaction between the
subunits, thus ensuring that only correctly assembled
heterodimers are trafficked to the cell surface (Margeta-
Mitrovic et al. 2000; Pagano et al. 2001). However,
functional GABAB receptors can assemble on the cell
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surface independently of the coiled-coil domains
(Pagano et al. 2001). In addition to the coiled-coil
domain interaction, the GABAB subunits form interac-
tions between the VFT domains (Geng et al. 2013) and
most likely also the 7TM domains. Crystal structures of
the GABAB VFT dimer show that in the resting state,
they interact exclusively via a tight interface involving
only one lobe, whereas in the active state a reorientation
of the GABAB1 VFT domain facilitates an additional,
looser interaction between the second lobes (Geng et al.
2013).

During activation, agonists bind to the VFT domain
of one protomer and promote active conformation of
the 7TM domain of the other protomer (Galvez et al.
2001; Margeta-Mitrovic et al. 2001b), implying that
trans-activation is the main process for G protein
activation in these heterodimers (Fig. 2). Compared to
homodimers, this results from a slightly different
mechanism. For example, in the GABAB receptor, the
GABAB2 VFT domain is unable to bind ligands (Kniazeff
et al. 2002) and its closed conformation is not neces-
sary for full activation (Geng et al. 2012). Total dele-
tion of the GABAB2 VFT domain results in a functional
receptor suggesting that the signal can proceed from
the GABAB1 VFT domain to the GABAB2 7TM domain
through the GABAB1 7TM domain (Monnier et al.
2011). On the other hand, replacing the GABAB1 7TM
domain by a single transmembrane helix also pro-
duced a functional receptor, suggesting that the signal
may also be transmitted through the GABAB2 VFT
domain (Monnier et al. 2011). Altogether, these data
propose that two ways of activation exist in the GABAB

receptor.
Cooperativity between protomers exists also in class

C GPCR heterodimers. It has been shown in the GABAB

receptor that although the GABAB2 VFT and the GABAB1

7TM domains are not directly involved in ligand binding
and G protein activation, they play a key role in defining
the activation potency. Indeed, when expressed alone,
GABAB1 exhibits low-affinity agonists binding; however,
when co-expressed with GABAB2, the interaction with
the GABAB2 VFT domain increases agonist affinity ten-
fold (Kaupmann et al. 1998). Along the same lines, the
GABAB1 7TM domain improves the G protein coupling
efficiency of GABAB2 (Galvez et al. 2001).

Altogether, in class C GPCR heterodimers, such as the
GABAB receptor, one subunit contains the ligand binding
domain, but the other subunit is critical for high-affinity
agonist binding and functional responses. For the
GABAB receptor, the necessity of dimerization and
allosteric transition is ensured by specific targeting of
the heterodimer to the cell surface.

NEW FOLKS IN CLASS C GPCR OLIGOMERS

Heterodimers of mGlu receptors

In addition to homodimers, mGlu receptors have
recently been reported to possibly form eleven different
heterodimers in heterologous systems: the mGlu1 and
mGlu5 receptors can only heteromerize between them,
whereas all combinations are possible among five other
mGlu receptors (mGlu2, mGlu3, mGlu4, mGlu7 and
mGlu8) (Doumazane et al. 2011). These various combi-
nations are likely strict heterodimers and not the result
of association of two homodimers as well demonstrated
for the mGlu2–mGlu4 combination (Yin et al. 2014;
Niswender et al. 2016). Interestingly, all possible com-
binations were found between receptors that share
neuronal localization and G protein coupling, which
suggests that heterodimer formation is not an artefact of
receptor co-expression, but a specific process controlled
by structural and functional properties of the receptors.

The study of mGlu heterodimers is a difficult issue to
address due to twomain points: the lack of specific ligands
(especially for receptors from the same group) and the
presence of both homodimers and heterodimers in cells
co-expressing two mGlu receptors (Doumazane et al.
2011). However, some studies have tried to address the
topic focusing on heterodimers betweenmGlu2 andmGlu4
receptors. Although the precise function and pharmaco-
logical properties of these heterodimers in native tissues
remain open questions, mGlu2 and mGlu4 receptors were
found to co-immunoprecipitate in rat dorsal striatum and
medial prefrontal cortex (Yin et al. 2014). Regarding
orthosteric agonist activation, partial agonists such as
DCG-IV seem to have a reduced effect in heterodimer
activation in comparison with mGlu2 homodimers (Kam-
mermeier 2012), and full agonists such as LY379268 seem
to be less potent in activating mGlu2–mGlu4 heterodimers
and exhibit dose–response curveswith reduced slope (Yin
et al. 2014). Regarding heterodimer activation by PAMs,
mGlu2 PAMs do not activate the heterodimer (Kammer-
meier 2012), whereas the effect of mGlu4 PAMs depends
strongly on their scaffold: VU0155041 seems to activate
the heterodimer, but not PHCCC (Yin et al. 2014) or
VU0418506 (Niswender et al. 2016). Further research in
the binding site of these PAMs could lead to compounds
activating only mGlu2/4 heterodimers, which could help to
understand their physiological role.

Higher order GABAB oligomers

The existence of higher order oligomers of GPCRs is still
a topic open for discussion, especially because most of
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the observations have been done in heterologous cells
and not validated in native tissues (Vischer et al. 2015).
However, increasing experimental evidence suggests
that the GABAB receptor forms oligomers larger than
heterodimers. First, in time-resolved FRET experiments,
a strong FRET signal was measured between GABAB1

subunits, whereas the signal between GABAB2 subunits
was weak. This led to the proposal that the GABAB

receptor forms at least dimers of heterodimers associ-
ated through the GABAB1 subunits (Maurel et al. 2008;
Comps-Agrar et al. 2011, 2012). Notably, the FRET/re-
ceptor ratio was constant over a wide range of receptor
densities, including expression levels similar to the
endogenous levels in the brain (Maurel et al. 2008). In
addition, the existence of oligomers larger than tetra-
mers was suggested by single-molecule microscopy
experiments in CHO cells, which showed that at low
densities, the majority of GABAB receptors were dimers
with a smaller population (*30%) of tetramers,
whereas at higher densities the dimer population dis-
appeared and complexes larger than tetramers
appeared, representing *60% at the highest density
(Calebiro et al. 2013).

In native tissues, the existence of GABAB oligomers is
more complex to prove, but some evidence supports the
proposal. Indeed, a FRET signal between anti-GABAB1a

antibodies was detected in brain membrane from wild-
type animals, but not from GABAB1a knockout animals
(Comps-Agrar et al. 2011), and the migration of GABAB

receptors from brain membranes on native gels is con-
sistent with complexes larger than dimers (Schwenk
et al. 2010).

A possible function of the oligomerization of the
GABAB heterodimer is modulation of receptor signalling.
Indeed, it was found that inhibiting GABAB1–GABAB1

interactions using either a non-functional GABAB1 sub-
unit as competitor or introducing a mutation in the
GABAB1 VFT domain increased signalling efficacy by
approximately 50% (Maurel et al. 2008; Comps-Agrar
et al. 2011). It was further shown that one ligand or one
G protein per oligomer was sufficient to achieve full
activation, suggesting negative cooperativity between
heterodimers (Comps-Agrar et al. 2011).

CONCLUSIONS

Class C GPCRs are acknowledged to be dimeric. Over the
last two decades, an increasing number of studies have
shed light on the necessity of this dimerization for their
mechanism of activation. These studies also proposed
general concepts for the activation of GPCR dimers. In
recent years, new combinations of class C GPCRs with

specific pharmacological properties have been reported
in heterologous systems and may reveal an even higher
complexity of the glutamatergic and GABAergic modu-
lation of the synaptic activity.

Abbreviations
7TM domain Seven-transmembrane domain
CaS receptor Calcium-sensing receptor
CRD Cysteine-rich domain
GABA c-Aminobutyric acid
GPCR G protein-coupled receptor
mGlu receptor Metabotropic glutamate receptor
NAM Negative allosteric modulator
PAM Positive allosteric modulator
TM Transmembrane
VFT Venus flytrap
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