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Abstract 

Large-scale inversion methods have been recently developed and permit now to considerably 

reduce the computation time and memory needed for inversions of models with a large amount 

of parameters and data. In this work, we have applied a deterministic geostatistical inversion 

algorithm to a hydraulic tomography investigation conducted in an experimental field site 

situated within an alluvial aquifer in Southern France. This application aims to achieve a 2-D 

large-scale modeling of the spatial transmissivity distribution of the site. 

The inversion algorithm uses a quasi-Newton iterative process based on a Bayesian approach. 

We compared the results obtained by using three different methodologies for sensitivity 

analysis: an adjoint state method, a finite difference method, and a Principal Component 

Geostatistical Approach (PCGA). The PCGA is a large-scale adapted method which was 

developed for inversions with a large number of parameters by using an approximation of the 

covariance matrix, and by avoiding the calculation of the full Jacobian sensitivity matrix. 

We reconstructed high resolution transmissivity fields (composed of up to 25,600 cells) which 

generated good correlations between the measured and computed hydraulic heads. In particular, 

we show that, by combining the PCGA inversion method and the hydraulic tomography 

method, we are able to substantially reduce the computation time of the inversions, while still 

producing high-quality inversion results as those obtained from the other sensitivity analysis 

methodologies. 
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Introduction 

In hydrogeology, the assessment of hydraulic properties of subsurface aquifers, such as 

transmissivity, storage coefficient and solute transport parameters, is a key issue to an adequate 

management and protection of groundwater resources. Generally, aquifer characterization is 

based on the interpretation of hydraulic observations data collected during pumping, 

infiltration, or tracer tests (Carrera and Neuman 1986b; Rao et al. 2003; Lee and Kitanidis 2014; 

Pool et al. 2015). Therefore, hydraulic tomography is considered as one of the most effective 

approaches for characterizing the spatial distribution of hydraulic transmissivity of an aquifer 

(Cardiff et al. 2009; Berg and Illman 2013; Cardiff et al. 2013; Soueid Ahmed et al. 2015; Zha 

et al. 2015; Wang et al. 2016). This method relies on a set of hydraulic head responses recorded 

during cross-hole pumping experiments. Then, the interpretation can be achieved through the 

use of an inverse algorithm to image the spatially varying hydraulic properties in the subsurface. 

The inverse problem for estimating hydraulic parameters involves a formulation of a forward 

problem, which sets up the link between the hydraulic observations and the unknown hydraulic 

parameters (Tarantola and Valette 1982). For a hydraulic tomography inversion, the forward 

modeling is based on a numerical method (e.g. the finite element, finite difference and finite 

volume methods) used to solve the partial differential equation of the groundwater flow. The 

forward problem operator can be formulated as: 

 

( ) +fd s η ,            (1) 

 

where d  represents the hydraulic responses of the model, s  is the logarithm of the m  unknown 

hydraulic transmissivities, to be estimated from a set of n  observed data obsd  and a nonlinear 

forward modeling application : m nf  .  is an additive noise of the numerical modeling.  
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In a probabilistic framework, the inverse problem maximizes a posterior probability density 

function 
post ( )s d . Generally, the problem is ill-posed and the solution is non-unique, therefore 

additional a priori information is required in order to find one physically meaningful solution 

(Carrera and Neuman 1986a). Furthermore, in our case, the problem is under-determined, it 

involves a small number of measurements but a large number of unknown parameters ( n m

). The inverse problem corresponds to recovering the ‘best fitting’ model parameters ŝ  which 

allow the model responses to match the observed data, and at the same time respect the 

constraints imposed by the a priori information on the model. Using the Bayes’ formula, the 

posterior probability density function can be expressed as (Elsheikh et al. 2014):  

 

T 1 T 1

post prior prior

1 1
( ) ( ( ) ) ( ( ) ) ( ) ( )

2 2
s d s d R s d s s Q s s

  
       

 
| exp f f  , (2) 

 

where 
priors  denotes the a priori model; Q  is a m m  covariance matrix of the model 

parameters, which can include geostatistical information about the distribution trend or pattern 

of the unknowns parameters (in that case Q  is defined in a matrix where elements of the matrix 

represent the variogram function associated with the distance between cells of the model) and 

R  denotes a n n  diagonal covariance matrix which accounts for the errors occurred in the 

data measurements. 

The aim of the inversion problem is to find a set of parameter which maximizes the density of 

probability, 
post ( )s dπ . This corresponds to a model of high probability with respect to the 

measurements and the imposed a priori model (Tarantola and Valette 1982). To solve the 

inverse problem, two main groups of iterative methods are often employed: (1) the deterministic 

methods which assume that the algorithm converges to a local minimum by performing a 

linearization of an objective function and (2) the stochastic methods which converge to a global 
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minimum by selecting different randomly generated parameters fields as probable solutions to 

the model (Pool et al. 2015). Several deterministic and stochastic inversion algorithms have 

been widely applied in hydrogeology, but they are time- and memory-expensive, particularly 

for the cases which involve a fine discretization of the parameter grid and/or a large amount of 

observational data (Kitanidis and Lee 2014). Thereby, one of the main trends in the 

development of inversion theory during the last few years was to develop algorithms which are 

able to solve inversion models with a large number of unknown parameters and data. 

Recently, several time- and memory-saving methods have been developed to reduce the 

memory cost and the computation time of the usually large matrices involved in the inversion 

algorithms. One way for reducing the computational and memory demands is to use some 

approximation methods on matrix operations, such as the Fast Multipole Method (FMM) 

(Greengard and Rokhlin 1987), which is based on Legendre polynomial expansions and 

spherical harmonics. The FMM was associated with the Hierarchical matrices approach 

(Hackbusch and Börm 2002) to compute matrix-vector products for a large-scale application in 

seismic imaging (Ambikasaran et al. 2013). Another way is through using the MINRES Krylov 

subspace method (Paige and Saunders 1975) which can be combined with the Fast Fourier 

Transform (FFT) (Nowak et al. 2003) to iteratively solve inversions of large matrix systems. 

This method has recently been applied to 3-D large-scale transient hydraulic tomography 

problems (Liu et al. 2014). The two approaches mentioned above avoid the calculation of the 

full Jacobian matrix of the forward model at each iteration. A new method has recently been 

developed by Lieberman et al. (2013), in an application of an inversion algorithm for a large-

scale 3-D transient contaminant transport. The authors used a Proper Orthogonal 

Decomposition method (POD) to compute a projection basis with the eigenvectors associated 

to the highest eigenvalues of the Hessian matrix of the forward problem. The inverse problem 

was then solved in a reduced projected subspace.  
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In this paper, we have attempted to achieve an efficient site hydraulic characterization (i.e. to 

obtain high-resolution transmissivity fields at a low computational cost) by applying a recently 

developed geostatistical inversion method, the Principal Component Geostatistical Approach 

(PCGA) (Lee and Kitanidis 2014). This method can considerably reduce the computation time 

and the memory cost of inversions by using an approximation of the covariance matrix Q  based 

on a Singular Value Decomposition method (SVD), and by avoiding the computation of the 

Jacobian matrix through the use of a matrix-free product based on a finite difference method. 

This paper presents an application of the PCGA method, combined with a hydraulic 

tomography investigation, for a large-scale inverse modeling of the hydraulic transmissivity 

field of an alluvial aquifer. First, we present the methodology of the Geostatistical Approach 

(GA) algorithm, and the modifications for large-scale application (PCGA). Then, we describe 

the hydrogeological background of the experimental field site, from which the hydraulic 

measurements were taken, and present the numerical model setup. Finally, we show our 

inversion results. In particular, we compare these results to those obtained by applying the 

classical GA method with two different methods in Jacobian matrix computation (i.e., an adjoint 

state and a finite difference method), which do not use a covariance matrix approximation. We 

have evaluated the computation times, and the sensitivities and accuracies of the inversion 

results for the three different methodologies. Using a hydraulic tomography field application 

on a porous aquifer, we show the advantages of the PCGA inversion method for efficient large-

scale inverse modeling in hydrogeology. 

 

Principal Component Geostatistical Approach 
 

In the Geostatistical Approach (GA) (Kitanidis and Vomvoris 1983; Hoeksema and Kitanidis 

1984; Kitanidis 1995), the prior probability density function of the m  model parameters s  is 

set as a multivariate Gaussian with a mean ( )=E s X  where X  is an m p  known matrix and 
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  a 1p  vector to be determined during the inversion process (generally =1p ), and a 

covariance,      
T

s X s X Q     
 

E . 

The posterior probability density function  ( | )s d  ln   (also called in inversion problems 

the objective function) then becomes: 

 

T 1 T 11 1
Ψ = ( ( ) ) ( ( ) ) ( ) ( )

2 2
s d R s d s Xβ Q s Xβ

     f f  .                    (3) 

 

The best approximation ŝ  for the model parameters, taking into account the a priori information 

and the observed data, can be found as being the model maximizing the density of probability 

in (Eq. 2), which is also equivalent to minimize the argument of its exponential. Thus, ŝ  is 

found by minimizing the objective function   (Eq. 3). This minimization can be achieved by 

using a Newton linearization iterative approach on s . The iterative process initializes at a 

reasonable 0
s . Then, at iteration step j 1 , the new value 

j+1s  is found in the vicinity of the 

previous model 
j

s  using a first order Taylor approximation: 

 

( )= ( )+ ( )j+1 j j j+1 js s F s sf f  .                                           (4) 

 

Here 
j

F  is the n m  Jacobian matrix of the forward problem f  for 
j

s  :

j

j

s s

F
s 





f
. 

After some matrix manipulations, the updated solution of the parameters in the iterative process, 

found by minimizing the objective function, can be written as (Kitanidis 1995): 

 

T

j+1 j j j
s Xβ QF ξ   ,                                                   (5) 
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where the 1p  matrix 
j

  and the 1n  matrix 
j

  are solutions of the following matrix system 

(Kitanidis 1995):  

 

T

T

( ) +jj j j j j j

jj

ξFQF R FX d s Fs

β(FX) 0 0

     
     
   

f
 .                                (6) 

 

Note that here ‘ 0 ’ represents a p p  matrix of zeros on the left-hand side and a 1p  matrix 

of zeros on the right-hand side.  

At the end of the iterative process, to quantify the model parameter’s uncertainty after 

optimization, we can compute the posterior covariance of s derived as: 

 

1

( )

j j jj j

post

j

FQF R FXFQ FQ
Q Q

FX 0X X



    
       

    

T T

TT T
.   (7) 

 

The GA method as presented above needs the computation of the Jacobian matrix F  for each 

iteration in order to solve the system (Eq. 6), which can usually be done by solving the forward 

problem 1m  times using a finite difference method, or 1n  times using an adjoint state 

method. Even if the adjoint state method may considerably decrease the computation time for 

under-determined problems (see Cardiff and Kitanidis 2008 for a comparison of the finite 

difference and adjoint state method computation times), it is not efficient for large scale 

problems with a large number of measurements and parameters. Another problem which 

appears in the GA method is that when the number of data and/or parameters is high, it requires 

a significant computational power for the calculation and storage of the covariance matrix Q  

(which can be alleviated by FFT, H-matrices or FMM). To overcome these difficulties, 
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Kitanidis and Lee have developed the Principal Component Geostatistical Approach (PCGA), 

on the basis of the GA method. 

In this new approach, the computational and memory costs associated with the manipulation of 

matrix Q  are reduced using a low-rank approximation of a chosen truncation order K m  

through a Singular Value Decomposition (SVD): 

T=Q USV
K

 ,                                                             (8) 

where S  is a K K  diagonal matrix containing the singular values of Q  sorted in descending 

order, U  is a m K  matrix and V  is an m K  matrix. As Q  is defined as a symmetric matrix, 

its SVD simplifies to: T=Q VSVK
. 

This decomposition can also be written as: 

T

=1

=Q ζ ζ
K

i

K i i   with =ζ λ V
i i i

 .                                           (9) 

Here  i  is the i
th singular value (also ( , )i iS ) and V

i  is the i
th column vector of V  associated 

to  i . The error arising from this K -rank decomposition equals to the 1K th singular value (

1 K ) of Q . 

However, this decomposition is a good approximation only for a matrix Q  in which the most 

of its information is contained in its few highest eigenvalues and eigenvectors, meaning a 

relatively smooth pattern. One can also use an eigen-decomposition if Q  is a matrix defined by 

positive eigenvalues or a randomized decomposition approach which is efficient for high-

dimensional matrices with m 1,000,000 (Halko et al. 2011). 

In addition, the PCGA method also avoids the full Jacobian matrix calculation at each iteration. 

When performing a matrix product, such as 
j

F u  (where 
j

F   is the n m  Jacobian matrix and u

is a 1m  vector), instead of computing it directly, the method finds an approximation to its 

accurate form using a first order Taylor series : 
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2
δ δ

+ = ( ) + + σ(δ )
j j

j j j

s s
s u s Fu

u u

 
 
 
 

f f  ,                                  (10) 

δ
+ ( )

δ

j

j j j

j

su
Fu s u s

us

  
   

    

f f  ,                                    (11) 

 

where   is a finite-difference interval and u  and j
s  are the norm of the vector u  and 

j
s . 

Thus, in the matrix system (Eq. 6) of the GA algorithm the calculation of the full Jacobian F  

is avoided by approximating the computation of 
j j

Fs , 
j

F X , T

j j
FQF  and T

jQF  with (Kitanidis 

and Lee 2014):  

 
1

= ( δ ) ( )
δ

j j j j jFs s s s   f f  ,                                                                       (12) 

 
δ

= ( )
δ

j

j j j

j

sX
F X s X s

Xs

  
   

    

f fi

i i

i

 with i
X  the i

th column of X ,      (13) 

 
T T T T T T

1 1 1

= = ( )( )j j j j j j j jFQF FQ F F ζ ζ F Fζ Fζ η η
  

   
K K K

K i i i i i i

i i i

 ,                      (14) 

 
T T T T T T

1 1 1

= = ( )j j j jQF Q F ζ ζ F ζ Fζ ζ η
  

   
K K K

K i i i i i i

i i i

 ,                                        (15) 

 

where 
δ

= = ( )
δ

j

j j j

j

sζ
η Fζ s ζ

ζs

  
   

    

f fi

i i i

i

s  . 

If we now consider the number of forward model evaluations needed per iteration for the 

calculation of the Jacobian matrix, there are 2K p   runs. One run is needed for evaluating

( )jsf , one is needed for assessing  js s f , K  runs are needed for calculating i  and p  

runs are needed for computing i
X . It can be observed that, with this method, the number of 
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forward model runs per iteration is no longer dependent on m  or n . Hence, the number of 

parameters and observed data can increase without increasing the run time of the algorithm. 

However, if the number of parameter increases, the low-rank approximation order K  might 

also need to be increased slightly in order to maintain a small truncation error for QK . 

The algorithm iteratively updates the parameters set in Eq. 5 by solving the matrix system of 

Eq. 6 with the PCGA approximations until the optimum 
postŝ s  is achieved, that is, the 

objective function has iteratively converged to a local minimum.  

 

Application to an experimental site 

We have applied the PCGA large-scale method as presented in the previous part to an 

experimental site, named ‘la Céreirède’. The field site is located in Montpellier in the South of 

France, on the alluvium of the Lez river, which flows towards the Mediterranean Sea a few 

kilometers downstream (Figure 1). 

 

 

Figure 1 : Location of the studied experimental site 'La Céreirède' (Map and aerial photography 

from geoportail.fr) occupying an area of 720 m². It is situated in the South of France, near the 

town of Montpellier and the Mediterranean Sea. 
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At the field site, the alluvial deposit is composed of a 12 m thick formation of unconsolidated 

sands and silts lying on a 2 m thick layer of pebbles and gravels. Beneath these Quaternary 

formations, there exist clayey sands of the Pliocene, marls of the Miocene, and limestone of the 

Jurassic (Figure 2). Three porous aquifer formations have been characterized in this site: 

 a low permeability aquifer in the upper part of the alluvium (unconsolidated sands and 

silts), 

 a semi-confined aquifer in the pebbles and gravel, 

 a semi-confined to confined aquifer in the clayey sands of Pliocene. 

 

 

Figure 2 : Schematic geological section of the experimental site ‘La Céreirède’. Three aquifers 

formations have been characterized in the sands and silts alluvium, in the gravels and in the 

clayey sands. 

 

The field site comprises 12 wells which fully penetrate the three aforementioned aquifers in an 

area of 36 20 m2 (Figure 3). The hydraulic data were collected by performing two pumping 
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tests in PZ 2 (5 L/min), and in PZ 11 (5 L/min), respectively, while measuring hydraulic head 

variations in the other 10 wells.  

 

 

Figure 3 : Well pattern on the experimental site ‘La Céréirède’ (circles represent the 10 

measurement wells and triangles represent the 2 pumping wells). As hydraulic drawdowns in 

the pumping wells are not measured, the tomography provided 20 observed data. 

 

The pumping were performed at the depth of the pebbles and gravel layer, which is the most 

productive aquifer, because its transmissivity is considerably higher than the transmissivities in 

silts and clayed sands. We considered that the contribution of the two others aquifers to the 

water pumped is negligible compared to the contribution from the pebbles and gravel aquifer. 

From a classic hydrogeological analysis of the soil of each well, we could also estimate values 

of the field transmissivity at these points. Using these punctual values of transmissivities and 

their positions in the field as input in a MATLAB variogram routine (‘variogramfit’ by W. 

Schwanghart), we were able to obtain the transmissivity field variogram function, which will 

be used in the inversion algorithm to create the covariance matrix Q  (Table 1). The variogram 

function is of type exponential with a sill of 0.11 and a range of 8 m. 

The PCGA inversion algorithm was implemented in MATLAB and connected to the flow 

modeling software COMSOL Multiphysics, which solves the forward problem. The inversion 
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algorithm performs, at the end of each iteration, a linear minimum research (‘fminsearch’ 

MATLAB function) to accelerate the convergence of Eq. 3 to a local minima. 

The 2-D flow model is discretized as a grid of m m  transmissivity cells in a rectangular 

zone. This local model is enclosed by a larger buffer zone of 100 100 m² with a constant 

transmissivity of 10-5 m²/s (average value of locally estimated transmissivities at the field site) 

and a 0 m constant head condition at the boundaries (no drawdown induced by the pumping 

wells). This buffer zone was set up in order to minimize the impact of the boundary conditions. 

The flow simulations were performed under steady-state conditions. The inversion of the model 

is set up using the 2 10 drawdown observed during the pumping tests (10 measurement wells 

for each of the 2 pumping tests) representing the observed data in the inversion algorithm. The 

inversion aims to reconstruct the spatially varying T distribution in the local region producing 

the observational data set. 

 

Results 

We have applied the PCGA to assess the equivalent transmissivity field of the multi-layered 

aquifer at the Céreirède field site. The most transmissive part of the aquifer is the pebbles and 

gravels part, but the alluvium and the clayey sands might also be the cause of some variations 

in the estimated equivalent transmissivity field. The inputs to the inversion models are given in 

Table 1.  

 

Table 1 : Values of variables used to perform the PCGA inversion on a model of the site for 

25,600 parameters and 20 observed data. Results of this inversion are shown in Figures 4 and 

5. 

Geometry X (m) = [-18 , 18] ; Y (m) = [-10 , 10] 

Grid (number of 

parameters) 
160   160 cells 

Uncertainty on data  = 0.001 m ;  .R  Id n  
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Experimental variogram 

function 

distance
(distance) 0.11 1

8

  
     

  
Var exp   

Finite-difference step   = 10-5 

 

The inversions were performed on a uniform fine-scale discretization grid (160 160). A 

constant initial transmissivity field was considered in the inverse models. The K th order of 

truncation for the covariance matrix Q was selected such that the first truncated singular value 

of the matrix (the low rank approximation error) fall below 1. This corresponds to an order of 

K  = 128. We will show that this choice of truncation order is acceptable and allows the 

significant information about the prior model structure to be preserved. The low-rank 

covariance matrix was calculated and then imported to the inversion algorithm. The parallelized 

computation of the low-rank decomposition takes only a few minutes (it even takes less than 1 

minute with a 32 cores parallelization). The inversion then converged in 2h 45min on an Intel 

Xeon QuadCore 2.8GHz with 12Go RAM. 

The results from the inversion are presented in Figures 4 and 5. Firstly, from the distribution of 

model parameters (given as negative log transmissivity in Figure 4), it can be seen that the value 

of the inverted transmissivity takes the mean value 10-5 m2/s, which is the mean of the 

transmissivity measurements on the site. A clear contrast in T is observed between the two 

regions on the east and west sides of boreholes PZ1, PZ2 and PZ3. Overall, the eastern part 

which is closer to the Lez river, is slightly less transmissive than the western part (T are 

approximately 2 10-6 m²/s and 1 10-5 m²/s, respectively). An area with a highest T (3 10-5 

m2/s) is also highlighted within the western part, around PZ 7. But it has to be noticed that the 

boreholes and pumping wells are not homogeneously distributed over the site, thus some parts 

of the site (especially on the eastern side) might give more uncertain results. Therefore, it is 

interesting to estimate the values of the transmissivity field uncertainties. 
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Figure 4 : Maps of the log-transmissivity (a, on the left) and parameter’s a posteriori standard 

deviation (b, on the right) for a PCGA inversion method with 25,600 parameters, 20 observed 

data and a covariance matrix decomposition of order K=128 applied to the experimental site. 

The transmissivities vary around a mean of 10-5 m²/s which is consistent with transmissivity 

values estimated from pumping test analysis. The aquifer is less transmissive in the eastern part 

and more in the western part especially in a zone around PZ 7 (see Figure 3). But we got a better 

precision in zones with more information: at the center and the western part of the map, while 

in the eastern part where we didn’t have piezometers, the results show a larger standard 

deviation. 

 

Figure 4b presents a map of the uncertainty for each parameter value (given by the diagonal 

entries of the posterior covariance matrix 
postQ ). The standard deviation for the log-

transmissivity varies between 0.2 for the parameter cells near the investigation wells, and 0.33 

in both the area with very few information and close to the model’s boundaries. In particular, 

the uncertainty in the eastern part, where the number of wells is small, is much higher.  

Good correlations between the calculated and measured hydraulic heads were obtained (Figure 

5). The root mean square error calculated at the end of the inversion was computed as 0.194 m. 

The hydraulic heads with the most significant difference between the inverted and the measured 

values are observed on PZ1 and PZ9. 
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Figure 5 : Graph showing the differences between the 20 observed drawdowns and modeled 

drawdowns after convergence of a PCGA inversion method with 25,600 parameters and a 

covariance matrix decomposition of order K=128 applied to the experimental site. The 

drawdowns are globally well reproduced. 

 

It is clear that the PCGA method is reliable for the modeling of the porous aquifer considered 

in this work because it produces a set of good inversion results with a high resolution (each cell 

represents a rectangle of 22.5 cm 12.5 cm on the site) from a few measurements (20 observed 

data for 720 m²) in less than 3 hours. However, the main problem of this method is that the 

SVD of the covariance matrix needs a considerably large amount of time and memory. The 

computational demands increase squarely with the number of model parameters, m . In this 

work, the decomposition was only performed once before the inversion, and the resulting low-

rank covariance matrix was used at all iteration steps throughout the inversion (i.e., the 

variogram function remaining the same). Otherwise, if a variable variogram model is desired at 

different iteration steps, the computation of the covariance matrix decomposition can also be 

accelerated by specific linear algebra methods (FFT, FMM and H-matrices) and a 

parallelization on several cores to achieve a reasonable computational time (Lee and Kitanidis 

2014).  

Comparison of results between PCGA simulations with different decomposition 

order, and between PCGA and GA simulations 
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In addition to the PCGA experimental application presented above, several other inversions 

were also conducted for the same field site but with a smaller number of parameters and using 

different methods for the computation of sensitivity matrix (input for each inversion is shown 

in Table 1). These numerical experiments allows us to compare (1) the results from PCGA with 

varied low-rank truncation K ; and (2) the results from PCGA to those obtained from the GA 

method with a 1st order finite-difference Jacobian matrix computation, and an adjoint-state 

Jabobian matrix computation (the integral was solved using the Gauss-Legendre quadratic 

method as described in Soueid Ahmed et al. 2014) The inversion results are compared with 

respect to the total computation time and relative accuracy of the results.  

Comparison of inversion results for using different decomposition order  

First, we assess the effect of the chosen truncation order for the covariance matrix. Three PCGA 

inversions, with 10,000 parameters and using different K -order truncations of the covariance 

matrix corresponding to singular values (truncation errors) of 1 K 1 ( K =69), 1 K 0.1 ( K

=313) and 1 K 0.01 ( K =1,532), were performed. Figure 6 shows a relationship between the 

singular value and the truncation order, on which the position of the three K  orders that were 

adopted in our inversions are indicated. Figure 7 shows the results obtained from these 

inversions. 
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Figure 6 : Covariance matrix singular values decrement curve for 10,000 parameters. Three 

decomposition order (a to c) corresponding to truncation error of 1, 0.1 and 0.01 have been 

chosen for the results comparison of the PCGA inversion method (see Figure 7). 

 

 

Figure 7 : Maps of the log-transmissivity for a PCGA inversion method with 10,000 

parameters, 20 observed data and three different covariance matrix decomposition applied to 

the experimental site. The map (a) was obtained for K=69, the map (b) for K=313 and the map 

(c) for K=1,532 (see Figure 6). The results obtained for these three decomposition are relatively 

the same (same transmissivity values, same zones) so, for this site, there is no significant loss 

of information when using a truncation order corresponding to an error of 1 (map (a)) for the 

covariance matrix which allows us to reduce the computation time of the inversion without 

decreasing the accuracy of the results. 
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Note that very similar T fields (e.g. similar trend and location of high T zones) were obtained 

from the inversions using different truncation order. Therefore, the influence of reducing the K

-order, as long as the truncation error is below 1, on the inversion results is mild. The most 

information regarding the spatial structure of the prior model is preserved in its first few 

singular values, so it is acceptable to consider a truncation order for a truncation error 1 K

1 for the covariance matrix. 

PCGA and GA results comparison 

In this section, we compare the inversion results obtained for the PCGA method using an 

approximated Q  matrix, with those of the GA method using two different methods for Jacobian 

matrix computation (i.e., the finite-difference and adjoint state methods), where the entirety of 

the Q  matrix were used. All the inverse simulations were performed on a 100   100 grid. 

Figure 8 shows the inverted transmissivity distributions and the corresponding distributions of 

standard deviation of each model parameter.  
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Figure 8 : Maps of the log-transmissivity (a, c, e) and parameter’s a posteriori standard 

deviation (b, d, f) for three different inversion methods with 10,000 parameters and 20 observed 

data applied to the experimental site. The maps (a) and (b) were obtained with the GA adjoint-

state method, the maps (c) and (d) with the GA finite-difference method and the maps (e) and 

(f) with the PCGA method with a covariance matrix decomposition of order K=69. The results 

between the three methods are relatively the same for this site, except for the map a which 

presents a slightly higher contrast of the transmissivity distribution leading to a better data 

matching (see Figure 9), though the PCGA inversion method is much more efficient for the 

calculation time (see Table 2). 

 

It can be seen that in the three transmissivity fields, the calculated T value for each cell varies 

around the mean 10-5 m2/s. In general, the three approaches produced similar spatial distribution 

of the transmissivity, however the range of the inverted transmissivities from the GA-adjoint 

state method (i.e., 2 10-6 to 1 10-4 m2/s) is larger than that of the PCGA and that of the GA-
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finite difference method (i.e., 2 10-6 to 3 10-5 m2/s). Since the PCGA method is based on a 

finite difference matrix vector product approximation, it is expected to obtain a similar 

parameter range from this method and the GA-finite difference method. The difference between 

the results from these two methods and the GA-adjoint state method may come from the 

definition of the finite-difference step  . In addition, the resolved transmissivity field from 

PCGA is smoother compared to that from the method where an adjoint state method is used to 

compute the sensitivity matrix. This is caused by the low-rank truncation in PCGA and also the 

finite difference approach, which tends to reduce the heterogeneity of the inverted T field. 

The spatial distributions of the standard deviation of the inverted parameters is presented in 

Figure 8. For each method, the uncertainty of the reconstruction is mainly dependent on the 

number and position of the wells. The correlation between inverted and measured hydraulic 

head data for the three inversion models are presented in the cross-plots of Figure 9.  
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Figure 9 : Graphs showing the differences between the 20 observed drawdowns and modeled 

drawdowns after convergence of three different inversion methods with 10,000 parameters 

applied to the experimental site. The graph (a) was obtained with the GA adjoint-state method, 

the graph (b) with the GA finite-difference method and the graph (c) with the PCGA method 

with a covariance matrix decomposition of order K=69. Regarding the mathematical norm 2 

the GA adjoint-state method has a slightly better convergence on the data than the other 

methods but the PCGA inversion method is much more efficient for the calculation time (see 

Table 2). 
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It can be seen that, with the same inversion inputs, the GA-adjoint-state method generated a 

slightly better correlation compared to the other two methods, which is reflected by the smaller 

RMSE values (0.165 m compared to 0.182 m and 0.188 m). The performance of the three 

methods in terms of simulation time is compared in Table 2.  

 

Table 2 : Comparison of the efficiency between three algorithm of geostatistical inversion 

methods (GA adjoint-state, GA finite-difference and PCGA) on a same under-determined 

modeling. Results of these inversions are shown in Figures 8 and 9. The convergence on data 

was slightly better for an adjoint-state method but the calculation time was considerably 

reduced by using a PCGA method. 

 
GA adjoint-state 

method 

GA finite-difference 

method 

PCGA method (truncation 

order K =69) 

Number of parameters 100 100 100 100 100 100 

Computation time 10h 43min 72h 10min 1h 33min 

Value of objective function 

to be minimized after 

convergence 

23.0602 26.6526 27.4641 

2 -norm between 

observed and modeled 

data 

0.165 m 0.182 m 0.188 m 

 

Table 3 : Convergence times for different methods using different grid sizes. An Intel Xeon 

QuadCore 2.8GHz with 12Go RAM has been used to perform the computations. The PCGA 

method (with a truncation error of approximately 1) is always the fastest because it involves 

less forward problems than the GA finite-difference method and that the Gauss-Legendre 

resolution of the integral in the GA adjoint-state method requires a calculation of a number of 

nodes proportional to the number of cells in the grid in each forward problem. 

Grid resolution 
GA adjoint-state 

method 

GA finite-difference 

method 

PCGA method (truncation 

error +1


K 1) 

10 10 5min 16min 1min 

30 30 9min 1h 40min 3min 

50 50 45min 8h 21min 6min 

80 80 3h 19min 41h 44min 29min 

100 100 10h 43min 72h 10min 1h 33min 

 



25 

 

A significant reduction in computational time is observed for the GA-adjoint-state method 

compared to the GA-finite difference method (Table 3). This reduction is mainly related to the 

calculation of the Jacobian sensitivity matrix (Cardiff and Kitanidis 2008). As the grid 

discretization increases, the significance of reduction in computational time of the GA-adjoint-

state method compared to the GA-finite difference based method become more apparent. 

However, an even more significant time reduction was observed in using the PCGA method. 

Note that in Table 3 the computation time for PCGA includes the time from both the covariance 

matrix decomposition and the inversion calculation. The computational time of PCGA is 

observed to be 10 time less than that of the GA-adjoint state method and 70 time less than that 

of the GA-finite difference method. Altogether, the advantage of PCGA in obtaining a fast 

solution without compromising the inversion quality makes it a promising candidate in solving 

large-scale inversion problems.  

 

Conclusion 

The GA finite-difference method is useful and straightforward for inversions with a few 

parameters and a large number of observational data. In contrast, the GA adjoint-state method 

is advantageous in dealing with inversion models with a few observational data but a relatively 

large parameters set. On the contrary, the PCGA is an efficient method for both cases. It is also 

helpful for extremely under-determined problems where a large number of unknown parameters 

is present. In fact, the time and memory required by this method to perform the iterative process 

of the inversion is less sensitive to the number of parameters or measurements, but more 

dependent on the approximation order of the covariance matrix chosen by the modeler. A higher 

order approximation will lead to higher computational costs but the error introduced in the 

inversions will be much smaller.   
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The comparison of different methodologies has shown that PCGA approach appears to be the 

most efficient strategy for carrying out large-scale inversions in porous aquifers.  We noticed 

that, in the studied case, the errors introduced by the approximation in the PCGA methods were 

not significant. Thus, we obtained the same accuracy in results from the PCGA inverse 

modeling compared to the GA inverse modeling. Thereby, with this strategy, only the principal 

components of the covariance matrix are kept in the inversion process, and the computational 

and memory costs necessary for the inversion algorithm are optimized. Additionally, the PCGA 

method significantly reduces the computational time. With the PCGA method we divided the 

computation time by seven compared to the GA adjoint state method, and by 50 compared to 

the GA finite-difference method.  

In summary, by applying the PCGA for a hydraulic tomography in a porous aquifer, we found 

an especially adapted strategy, which produces accurate inversion results with a good resolution 

in a reduced time, and which manages optimally the computer memory involved in the 

inversion algorithm. Nevertheless, the PCGA method is efficient specifically for models with 

a smooth distribution of the targeted parameters (which could typically be used for a good 

average representation of porous aquifers) so that the covariance matrix can be approximated 

by much smaller matrices. 
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