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Abstract
Glucocorticoids via the glucocorticoid receptor (GR) have effects on a
variety of cell types, eliciting important physiological responses via changes
in gene expression and signaling. Although decades of research have
illuminated the mechanism of how this important steroid receptor controls
gene expression using   and cell culture–based approaches, how GRin vitro
responds to changes in external signals   under normal andin vivo
pathological conditions remains elusive. The goal of this review is to
highlight recent work on GR action in fat cells and liver to affect metabolism 

 and the role GR ligands and receptor phosphorylation play inin vivo
calibrating signaling outputs by GR in the brain in health and disease. We
also suggest that both the brain and fat tissue communicate to affect
physiology and behavior and that understanding this “brain-fat axis” will
enable a more complete understanding of metabolic diseases and inform
new ways to target them.
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Introduction
The glucocorticoid receptor (GR), a glucocorticoid-dependent 
transcription factor widely distributed throughout the brain and 
peripheral tissues, mediates the physiological effects of glucocor-
ticoids. The receptor has a modular architecture characteristic of 
the steroid receptor family and contains an N-terminal transcrip-
tional activation domain, a central DNA binding domain, and a  
C-terminal ligand binding domain (Figure 1A). Upon ligand  
binding, GR undergoes a conformational change that promotes its 
release from the heat shock protein 90 complex and translocation 
to the nucleus, where it modulates the expression of target genes.  
GR can induce and repress gene expression. The mechanism by 
which these distinct transcriptional outputs occur likely revolves 
around allosteric changes in GR evoked by a combination of  
ligand, DNA binding element sequence, post-translation modifi-
cations, and co-activator and co-repressor protein interactions to 
produce gene-specific activation or repression. These mechanisms 
have been recently reviewed and will not be re-examined here1,2.

Adding complexity to GR action is the identification that the GR 
gene (NR3C1) is alternatively spliced to produce GRβ with an 
abbreviated ligand binding domain that does not bind any known 
GR agonists, and acts as a dominant negative inhibitor of GR3. 
Moreover, alternative translation start sites of the GR mRNA 
produce a series of N-terminal isoforms in various tissues and 
are modified post-translationally by phosphorylation to influ-
ence gene expression4 (Figure 1A). Rapid non-genomic actions of 
GR have also been described in neurons and peripheral tissues5.  
GR can also modulate mRNA splicing6, mRNA stability7, and 
microRNA expression and processing8. Thus, GR controls gene 
expression directly as a transcription factor and indirectly by  
stimulating signaling pathways that coalesce on GR while also 
shaping gene expression post-transcriptionally through effects on 
RNA metabolism (Figure 1B).

The endogenous glucocorticoid in humans is cortisol and is pro-
duced by the adrenal gland (Figure 2). Synthesis of cortisol  

Figure 1. Glucocorticoid receptor (GR) architecture and signaling. (A) Schematic diagram showing the genomic organization of GR 
gene (NR3C1) and the encoded GR proteins. A “P” within an oval indicates phosphorylation sites (a complete list of GR phosphorylation 
sites can be found at phosphosite.org). Green and red arrows in the GR gene represent LoxP sites engineered into the mouse genome 
to conditionally delete either exon 2 or exon 3 of GR. DBD, DNA binding domain; LBD, ligand binding domain; NTD, N-terminal domain.  
(B) Signal transduction by GR. Glucocorticoids pass through the cell membrane and bind to the GR/HSP90 complex. Upon ligand binding, 
HSP90 is released and GR translocates to the nucleus where it can bind DNA and interact with co-activators (CoA) and the transcription 
initiation machinery to activate gene expression. GR can also repress gene expression by binding to DNA or via protein-protein interactions. 
For simplicity, only activation by GR is shown. GR can also associate with the cell membrane to evoke rapid signaling via activation of kinase 
pathways.
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depends on anterior pituitary-derived adrenocorticotropic hor-
mone (ACTH). Secretion of ACTH is tightly controlled through 
the hypothalamic-pituitary-adrenal (HPA) axis, where signals (for 
example, daylight) feed into the hypothalamus to promote release 
of corticotrophin-releasing hormone (CRH). This in turn promotes 
ACTH secretion and the synthesis of cortisol from the zona fascicu-
lata of the adrenal gland. As cortisol levels rise, a negative feedback 
loop is engaged that reduces both CRH and ACTH expression and 
secretion. This maintains relatively stable levels of plasma gluco-
corticoids. Cortisol is released in a pulsatile manner throughout 
the day, and the largest peaks are observed right before awakening 
(morning for diurnal animals like humans but evening for nocturnal 
animals like mice and rats), and the secretion of cortisol is linked 
to circadian rhythm9. Stress, either emotional or physical, results 
in acute elevated plasma cortisol levels via activation of the HPA 
axis.

The physiological effects of glucocorticoids and GR are  
widespread (Figure 2). GR regulates the nervous, cardiovascular, 
musculoskeletal, immune, respiratory, reproductive, adipocyte, 
and hepatic systems, among others. For example, glucocorticoids 
regulate blood glucose by stimulating hepatic gluconeogenesis, 

which is how the “glucocorticoid” hormone received its name, 
via induction of phosphoenolpyruvate carboxykinase (PEPCK) 
gene10. Glucocorticoids also decrease inflammation and this  
is due in part to GR’s ability to repress pro-inflammatory gene 
expression11. This has permitted the use of synthetic glucocor-
ticoids, such as dexamethasone and prednisone, as potent anti-
inflammatory drugs. GR suppresses bone formation by a number of  
mechanisms, including reducing osteoblast differentiation12, 
inducing osteoblast apoptosis13, and stimulating bone resorb-
ing osteoclasts14, and is a major side effect of pharmacological  
glucocorticoid administration15. Similarly, adipocytes are sensitive 
to glucocorticoids. Effects include (1) increased adipogenesis; 
(2) altered metabolism, including reduced glucose metabolism 
and decreased lipogenesis under basal or fasted conditions, and 
increased lipogenesis when glucocorticoids are paired with insulin 
signaling; and (3) altered adipokine production16. Glucocorticoids 
in the nervous system are important for physiological homeostasis 
and response to stress, and an imbalance in GR signaling results in 
psychiatric disorders (see below).

Given that glucocorticoids are vital for adaptive behaviors upon 
environmental changes17,18, GR signaling must be coordinated 
across tissues and cell types. For example, caloric deficit or  
surplus and concomitant metabolic adjustments are sensed via 
glucocorticoid signaling in the liver, pancreas, gut, and adipocytes 
which culminates in the brain to mediate feeding and satiety19.  
In the hypothalamus, neurons interact with glia and the vascula-
ture to sense metabolic state20. To control food intake, hypotha-
lamic neurons respond to hormones derived from gut (for example,  
ghrelin), pancreas (insulin and glucagon), intestine (glucagon-
like peptide-1, or GLP-1), adrenal glands (glucocorticoids), and  
adipocytes (adipokines such as leptin, adiponectin, resistin, and 
apelin) via cell type–specific receptors21. Disruption of these hor-
monal signals is a common feature of metabolic disorders and 
cognitive impairment. Among these, aberrant secretion of gluco-
corticoids from normally low to chronically high results in meta-
bolic dysregulation featuring fat deposition and impaired synaptic  
plasticity in neuronal circuits controlling learning and memory. 
Examples of the pathophysiology of glucocorticoid excess include 
patients with Cushing syndrome and stress-induced depression and 
anxiety22.

Recently, our understanding of how GR activity is linked to these 
important physiological responses has evolved. This is based on 
new genetically engineered mouse models with alterations in glu-
cocorticoid signaling as well as more sophisticated approaches to 
physiology and imaging demonstrating glucocorticoids as central 
effectors of metabolic and neuronal functions. The goal of this arti-
cle is to review new evidence that GR in adipocytes and in brain 
contributes to the homeostatic balance of energy metabolism and 
neuronal plasticity (Figure 3). This is accomplished by commu-
nication between adipose tissue and the brain via adipokines and 
from the brain to adipocytes by glucocorticoids via activation of the 
HPA axis. Environmental challenges from caloric excess or chronic 
stress (or both) can disrupt this axis and can affect tissue sensitivity 
to glucocorticoids, leading to aberrant GR signaling in target tissue 
with pathological consequences.

Figure 2. Hypothalamic-pituitary-adrenal (HPA) axis. Shown 
is a representation of the HPA axis. Light or stress activates the 
hypothalamus to produce corticotrophin-releasing hormone (CRH). 
This secreted protein binds to the pituitary gland and induces 
secretion of adrenocorticotropic hormone (ACTH), which in turn 
signals the adrenal cortex to produce cortisol. Via a negative 
feedback loop, cortisol suppresses CRH and ACTH to maintain an 
optimal, stable level of cortisol in the plasma. In purple are some of 
the physiological responses affected by glucocorticoids.
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Figure 3. Brain-to-fat signaling axis. Shown is a schematic 
of the brain and adipose tissue separated by the endothelium. 
Hypothalamic-pituitary-adrenal (HPA) axis activation promotes 
glucocorticoid secretion from the brain to the fat. Adipokines 
secreted from the adipocytes traverse the endothelium and signal 
to the brain to affect neuronal function. Stress can impact the brain 
and promote expression of corticotrophin-releasing hormone (CRH) 
in the paraventricular nucleus (PVN) of the hypothalamus. CRH 
binds to the pituitary to stimulate the HPA-axis cascade to secrete 
glucocorticoids to influence the brain and adipocyte function via 
glucocorticoid receptor (GR) (blue circle). Brain structures that 
sense stress and signal to the PVN and in turn the pituitary gland 
are shown and include the sensory cortex, prefrontal cortex (PFC), 
amygdala/bed nucleus of the strial terminalis (BNST), hippocampus, 
nucleus tractus solitaries (NTS), arcuate nucleus (ARC), along with 
the ventromedial hypothalamus (VMH) and lateral hypothalamus 
(LH).

Loss of function of glucocorticoid receptor in the 
brain and fat and its impact on physiology
Targeted deletion of GR in various cell types of the brain as well 
as in adipocytes has illuminated our understanding of the impact 
of GR on adaptive physiology and behavior23–25. A list of targeted 
GR deletions in the brain, adipocytes, and liver and their resulting 

phenotypes on the HPA axis, response to high-fat diet feeding, 
metabolic syndrome as well as effects on anxiety and depression 
are shown in Table 1.

Glucocorticoid receptor inactivation in the brain
Deletion of GR in the forebrain (Camk2a-Cre), a region encompass-
ing the cerebral hemispheres and hippocampus that control many of 
our senses, resulted in HPA-axis hyperactivity and impaired nega-
tive feedback regulation and increased depression and anxiety26,27. 
This is direct evidence that GR in the forebrain participates in the 
HPA-axis activity to control depression and anxiety. By contrast, 
deletion of GR from the central nucleus of the amygdala (Cre 
expressing virus injected into GR floxed mice), a structure within 
the limbic system that is responsible for emotions (including fear), 
had no effect on the HPA axis but reduced fear28,29. Although a dele-
tion of GR in the paraventricular nucleus (PVN) of the hypothala-
mus (Sim1-Cre) had no effect on anxiety or cognition, it did result 
in the dysregulation of the HPA axis30,31. Similarly, the inactivation 
of GR gene in the pituitary gland (POMC-Cre) resulted in aberrant 
HPA-axis activity but without affecting anxiety or cognition32,33. 
Combined inactivation of GR in both hypothalamus and pituitary 
results in extreme dysregulation of the HPA axis and is not consist-
ent with life34.

To test the relevance of GR to specific neuronal circuits, GR was 
selectively inactivated in dopaminoceptive neurons (Drd1-cre). 
This resulted in social aversion and reduced drug-seeking behavior 
without affecting anxiety or HPA-axis activity35–37. Inactivation of 
GR in glutamatergic neurons of the forebrain (Nex-Cre) deregulated 
the HPA axis and reduced fear, whereas deletion of GR in GABAer-
gic neurons (Dl5/6-Cre) affected neither the HPA axis nor response 
to fear28. Taken together, these results suggest that the actions of 
GR on the regulation of the HPA axis and synaptic physiology, 
circuitry, and behavior are cell type–dependent38. To produce these 
effects, GR deploys both rapid non-genomic mechanisms affect-
ing neurotransmitter signaling and slower genomic actions that 
alter transcription to provide morphological (synapse and cytoskel-
eton) and metabolic (mitochondria) adaptation39. In addition, GR 
responds to signals from the environment by post-translationally 
modifying the receptor (for example, by phosphorylation) and this 
conveys contextual differences with the potential to alter GR tran-
scriptional programs and ultimately physiology and behavior.

Glucocorticoid receptor inactivation in adipocytes
Multiple adipocyte-specific GR knockout mice have been generated 
and assessed for effects on the HPA axis and metabolism, including 
protection against diet-, age-, or dexamethasone-induced obesity 
(Table 1). The first fat-specific GR knockout mouse (adiponectin-
Cre) was reported by de Kloet et al.40. They observed changes in the 
regulation of the HPA axis, including increased secretion of gluco-
corticoids following acute stress and decreased response to exog-
enous glucocorticoid suppression, suggesting a role for adipocytes 
in the negative feedback of the HPA axis. Theoretically, this could 
happen via a loop involving sensory innervation of adipose tissue41 
or, as the authors suggested, occur as a result of “leaky” expression 
of the Cre recombinase in a non-adipocyte cell type. In addition, 
these mice were protected from diet-induced obesity. This suggests 
communication between the fat cells and the brain in regulating 
metabolism and the HPA axis.
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Table 1. Summary of the glucocorticoid receptor tissue-specific null mice discussed in this review.

Study 
author

GR 
deletion

GR 
flox

CRE driver Phenotype Reference

HPA axis High-fat 
diet

Dexamethasone 
treatment

Anxiety Depression

De Kloet 
et al.

Adipocyte Exon 2 Adiponectin High, 
resistant 
to DST

Protected ND ND ND 40

Mueller et al. Adipocyte Exon 3 Adiponectin ND Protected ND ND ND 42

Bose et al. Adipocyte Exon 3 Adiponectin No 
change

Not 
protected

Mild protection ND ND 44

Bose et al. Liver Exon 3 Albumin No 
change

Not 
protected

Moderate 
protection

ND ND 44

Desarzens 
and Faresee

Adipocyte Exon 3 Adiponectin ND Not 
protected

Not protected ND ND 45

Hartmann 
et al.

Glu 
neurons

Exon 3 CamK2a High ND ND Increased No change 28

Hartmann 
et al.

Glu 
Neurons

Exon 3 Nex High ND ND Increased No change 28

Hartmann 
et al.

GABA 
neurons

Exon 3 DL5/6 No 
change

ND ND No change No change 28

Hartmann 
et al.

Amygdala Exon 3 AAV-
CamK2a-cre 
injection

No 
change

ND ND Reduced 
fear

No change 28

Kolber et al. Amygdala Exon 2 AAV-cre 
injection

No 
change

ND ND Reduced 
fear

No change 29

Schmidt 
et al.

Pituitary Exon 3 POMC No 
change in 
adult

ND ND No change No change 32

Wagner et al. Pituitary Exon 3 POMC High in 
juveniles

ND ND No change No change 33

Jeanneteau 
et al.

PVN Exon 2 Sim1 High ND ND ND ND 30

Laryea et al. PVN Exon 2, 
exon 3

Sim1 High ND ND No change Increased 
despair

31

CRE, Cre recombinase; DST, dexamethasone suppression test; GR, glucocorticoid receptor; HPA, hypothalamic-pituitary-adrenal; ND, not determined; PVN, 
paraventricular nucleus.

Mueller et al. also developed an adipocyte-specific GR knockout 
mouse (adiponectin-Cre) and too found that diet- and age- 
associated obesity was reduced42. The impact on the HPA axis was 
not examined. They also performed metabolomics from serum 
and found differences in metabolite abundance in fed and fasted  
states between wild-type and adipocyte-specific GR knockout 
mice. For example, under steady-state conditions, the abundance 
of certain fatty acid species and branched-chain amino acids was 
increased in the fat-specific GR knockout mouse. Another interest-
ing phenotype displayed by this GR knockout mouse was resist-
ance to lipolysis during fasting such that adipose depot mass was 
preserved at the expense of lean mass in the knockout compared 
with wild-type mice. The lipolytic defect was studied further  
in vitro and was seen with adrenergic agonists but not direct  
activators of adenylate cyclase. This led the authors to suggest that 
there was an alteration in the signaling between the adrenergic 
receptor and adenylate cyclase, specifically at the level of  

G-proteins. This might suggest a level of crosstalk between GR 
and G-proteins in fat cells. Such a link between arrestins, well-
known regulators of G-protein signaling, and GR has been shown  
previously43.

In addition, in the adipose-deficient GR knockout mice, the  
authors observed reduced liver steatosis, protection against  
pyruvate overload, and increased insulin sensitivity. This is likely 
due to changes in lipolysis and reduced fatty acid trafficking  
to the liver and might explain in part the reduced fat mass on  
high-fat diet. These findings also imply a link between adipocytes 
and liver that is mediated by GR.

To directly compare the contribution of adipocyte versus  
hepatic GR inactivation to diet-induced obesity and glucocorticoid-
mediated metabolic syndrome, Bose et al. created both fat-specific 
and liver-specific GR knockout mice44. Whereas the fat-specific GR 
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knockout mice (adiponectin-Cre) were only mildly protected from 
metabolic dysfunction induced by high-fat diet or dexamethasone, 
the protection was more evident in liver-specific GR knockout mice 
(albumin-Cre). This suggests that liver GR is also an important con-
duit in the development of metabolic syndrome elicited by caloric 
excess and dexamethasone. Bose et al. also uncovered a homeo-
static mechanism to compensate for the loss of GR in the liver such 
that the kidney increased the expression of gluconeogenic enzymes 
when treated with dexamethasone, an effect not seen in wild-type 
mice. This reveals an unexpected mechanism that compensates for 
the loss of GR activity in one tissue by another to maintain meta-
bolic integrity.

A recent study by Desarzens and Faresee demonstrated that when 
GR was deleted in adipocytes (adiponectin-Cre), there was little 
effect on body weight or adipose tissue growth when challenged 
with a high-fat, high-sucrose diet45. However, GR inactivation in 
adipocytes upon high-fat, high-sucrose diet did result in enhanced 
macrophage infiltration, increased inflammation, and modified glu-
cose tolerance. This shows that in addition to the cell-autonomous 
effect of GR on adipocytes, there are cell–non-autonomous effects 
of GR on adipocyte biology via modulation of the inflammatory 
response.

It is well recognized that sequence-specific transcription factors, 
such as GR, interact with other transcription factors to control 
gene expression under particular metabolic or environmental  
states46,47. In fact, it was recently shown that the forkhead box 
protein A3 (FOXA3) not only is regulated by GR in adipose  
tissues but is required for the binding of GR to a subset of its  
target genes to promote the physiological response of glucocor-
ticoids in adipocytes48. Functionally, removing FOXA3 from the 
fat protected against dexamethasone-induced obesity without  
affecting the pathological response of chronic glucocorticoid  
treatment in other tissues. This indicates that GR and FOXA3  
cooperate to promote fat expansion upon chronic dexamethasone 
treatment.

Although there are similarities among the studies with respect to 
metabolic phenotypes of GR adipocyte-inactivation, differences 
were also observed. This likely reflects variations in the GR floxed 
alleles employed, genetic backgrounds, diets, age of the mice, 
or additional uncontrolled factors such as the microbiota. For  
example, the study by de Kloet et al. used GR exon 2 floxed mice 
which may not promote full recombination with some Cre lines31. 
Moreover, GR exon 2 “deleted” mice have been shown to produce 
residual GR protein in the form of a truncated GR that lacks the  
N-terminal activation domain (this domain is contained within  
exon 2). This portion of GR still contains the DNA and ligand  
binding domains and remains competent for signaling and mod-
ulating the expression of a subset of genes49. It is not clear from  
Bose et al. why their adipocyte-specific GR knockout mice were 
only mildly protected from diet-induced obesity. Likewise, the 
study by Desarzens and Faresee failed to demonstrate any protec-
tion against diet-induced obesity of GR inactivation in adipocytes. 
One possibility is the difference in age at which the mice were 
placed on a high-fat diet. In addition, all of these studies used  

different high-fat diets. Another potential confounder is the dif-
ference in gut microbiota between mice housed at different  
institutions, which could affect the outcome50. This reflects the  
complexities of designing in vivo experiments to determine the 
impact of GR deletion in adipocytes to physiological responses to 
diet.

Glucocorticoid receptor insufficiency (glucocorticoid 
resistance) in the brain-fat axis
Decreased tissue responsiveness to glucocorticoid is common in 
human diseases (inflammatory, immune, neuropsychiatric, and 
neurodegenerative) characterized by a state of excessive secretion 
of glucocorticoids due to the loss of feedback inhibition of the HPA 
axis by defects in GR signaling51,52. This state of glucocorticoid 
resistance, which can result from chronic stress53, coincides with 
decreased expression of brain-derived neurotrophic factor (BDNF) 
in the cortex and hippocampus and increased expression of BDNF 
in amygdala and dopaminergic neurons54.

Phosphorylation of GR has been suggested to be a mechanism  
contributing to glucocorticoid resistance in multiple disease  
models55.Although a majority of GR phosphorylation is gluco-
corticoid-dependent56, recent data indicate that GR phosphoryla-
tion can also be glucocorticoid-independent. This implies that 
GR activity could be influenced by signals in addition to gluco-
corticoids57,58. For example, the activation of the BDNF-TrkB  
pathway results in phosphorylation of the human GR at serine 134 
(S134) (conserved in rat GR S155 and mouse GR S152), thereby 
fostering the recruitment of co-factor proteins (for example, 
CREB1) and changing the target genes in response to glucocorti-
coid stimulation57,58. TrkB is a receptor tyrosine kinase that upon  
binding of neurotrophins, such as BDNF, elicits downstream 
signaling events, including activation of the mitogen-activated  
protein kinases, to affect the connectivity of neuronal circuits. This 
molecular pathway, among others triggering GR phosphorylation 
at S134, could provide a cell- and signal-dependent context to 
GR signaling. In fact, we have shown that the crosstalk between  
BDNF-TrkB signaling and the glucocorticoid-GR pathway in 
neurons alters the repertoire of genes transcribed by GR through 
changes in GR phosphorylation58. This suggests that disruption of 
BDNF expression in the brain would compromise GR signaling. 
Consistent with this idea, chronic stress, which decreases BDNF 
levels in cortex, decreased GR phosphorylation at S134 with 
effects on synapse number in cortex59. Furthermore, deletion of a  
BDNF-sensitive GR phosphorylation site in cortical neurons 
resulted in glucocorticoid resistance in mice and reduced expres-
sion of GR target genes (for example, DUSP1), decreased  
numbers of synapses, and promoted Tau phosphorylation60. 
Such crosstalk appears to be physiologically relevant in humans 
as DUSP1 expression and markers of synapses in the cortex  
correlated with cognitive performance in human subjects with  
diagnosed cognitive impairment.

It is noteworthy that the BDNF-dependent GR phosphorylation sites 
reside near a caspase 1 (CASP1) cleavage site in GR that is respon-
sible for glucocorticoid resistance observed in acute lymphoblastic 
leukemia61. Mechanistically, by virtue of lower methylation of the 
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CASP1 promoter in glucocorticoid-resistant leukemic cells, CASP1 
expression becomes elevated, which in turn mediates the cleav-
age of GR at its N-terminal transactivation domain causing partial  
loss of GR transcriptional activity. This is sufficient to produce 
glucocorticoid resistance. Consistent with this idea is the finding 
of a GR variant lacking the N-terminus in the selection of mouse 
lymphoma cells resistant to glucocorticoid-induced cell death62. 
CASP1 inhibitors are promising compounds to explore for  
alleviating glucocorticoid resistance disorders with a chronic 
inflammatory component. Whether this holds in models of  
neuropathology or metabolic disease has not been explored.

Glucocorticoid resistance by alterations in GR activity as a  
function of stress and linked to changes in GR phosphorylation 
has also been observed in vivo. For example, a recent analysis of  
GR-mediated transcriptional activity through a GRE-linked luci-
ferase reporter gene in the hippocampus of mice revealed decreased 
GR activity upon exposure to chronic stress despite high levels 
of circulating glucocorticoid63. Remarkably, treatment with the 
anti-depressant fluoxetine restored GR transcriptional activity and 
corrected behavioral deficits induced by chronic stress. Phosphor-
ylation of the N-terminal transcriptional activation domain of GR 
correlated with treatment efficacy59. These results indicate that in 
stress-induced depressive-like disorder, defects in GR signaling 
operate at least in part through changes in receptor phosphorylation. 
Therefore, therapeutic strategies aiming at enhancing GR signal-
ing directly with selective agonists or indirectly via conditioning 
pathways (for example, BDNF) are promising options. Whether 
changes in glucocorticoid sensitivity by affecting GR phosphor-
ylation through extracellular signals are evident in adipocytes to 
influence metabolic responses has not been explored. It is tempt-
ing to speculate that the differential response in adipocytes to  
glucocorticoids in the absence and presence of insulin could  
reflect alterations in GR phosphorylation and transcription repro-
graming via crosstalk with the insulin signaling pathway akin to 
what we observed for BDNF-mediated signaling effects on the GR 
response in neurons58.

Chronic stress, which activates the HPA axis to raise glucocorti-
coid levels systemically, promotes both psychiatric and metabolic 
disorders as a result of impaired synaptic plasticity of brain cir-
cuits that mediate reward36,64. In fact, reinforcement by stress of 
the reward circuitry enhances the consumption of highly caloric 
foods65. Conversely, limiting the consumption of food can reverse 
HPA-axis dysregulation and improve behavior upon stress19.  
Consistent with the reciprocal effects of the BDNF-TrkB and  
glucocorticoid-GR pathways on the regulation of the HPA axis54 
is that deletion of the BDNF receptor TrkB in cholecystokinin  
(CCK)-GABAergic neurons resulted in HPA-axis hyperactivity  
and obesity in mice66. Although it is possible that some of the  
CCK neurons synapse directly with the PVN, it is more likely that 
the effect of these neurons is indirect and relayed through other 
structures that signal to the hypothalamus to affect HPA-axis activity.  
Importantly, blocking BDNF signaling in CCK neurons induced  

glucocorticoid resistance, resulting in increased CRH expression, 
elevated plasma glucocorticoid levels, adrenocortical hyperpla-
sia, glucose intolerance, and enhanced lipogenesis reminiscent 
of patients with Cushing syndrome66. In the hypothalamus, CRH 
expression is induced by activation of the CREB transcription fac-
tor through BDNF-TrkB signaling via activation of protein kinase 
A. CRH expression is repressed by glucocorticoids due in part to 
GR binding to CREB and repressing its transcriptional activity  
and through GR interfering with the nuclear import of the CREB  
co-activator CRTC230,58. Behaviorally, a functional interaction 
between the BDNF-TrkB and glucocorticoid-GR pathways has 
been demonstrated to be essential to learn inhibitory avoidance, 
contextual fear, coping with stress, and control of the appetite  
balance67–69.

Moving forward: linking glucocorticoid receptor-
regulated brain function and metabolism
The contributions of GR in the brain and peripheral tissues involved 
in metabolism are not mutually exclusive, and many studies high-
lighted here have begun to shed light on these actions. The next 
frontier of GR research in vivo will continue to meld these areas.  
A polymorphism in BDNF (Val66Met) that diminishes BDNF 
secretion and signaling results in enhanced anxiety70 and altera-
tions in vulnerability to stress71 and energy balance and obesity 
in humans and rodents72. Therefore, it would seem important to  
examine the effects of BDNF/GR crosstalk by testing how mice 
with the BDNF Val66Met allele compare with mice lacking the 
BDNF-sensitive GR phosphorylation sites in various regions  
of the brain to protect or exacerbate anxiety- or diet-induced 
obesity or both. In addition, behavioral response to food 
preferences and satiety could be assessed in such models.  
Conversely, alterations in glucocorticoid signaling pathways in 
metabolic tissues could be modeled in combination with altera-
tions in neurotropic pathways to determine the crosstalk between 
GR activity in the brain and metabolic tissues. In fact, BDNF 
is present not only in brain but also in blood at high levels,  
indicating possible peripheral effects of BDNF signaling on GR73. 
Therefore, desynchronization of BDNF/GR axis could impact  
multiple physiological functions (for example, inflammatory, 
immune, metabolic, and cognitive) and escalate vulnerability 
to stress-induced illnesses. Although these pathways are often 
investigated separately, future research will need to consider GR  
signaling in an integrated manner to better understand homeostatic 
and pathological processes modulating GR action and to harness 
this information for therapeutic benefit.
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