J. P. Pin and F. Acher, The metabotropic glutamate receptors: structure, activation mechanism and pharmacology, Current drug targets. CNS and neurological disorders, vol.1, pp.297-317, 2002.

J. P. Pin, T. Galvez, and L. Prezeau, Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors, Pharmacology & therapeutics, vol.98, pp.325-354, 2003.

J. Kniazeff, L. Prezeau, P. Rondard, J. P. Pin, and C. Goudet, Dimers and beyond: The functional puzzles of class C GPCRs, Pharmacology & therapeutics, vol.130, pp.9-25, 2011.

V. Binet, Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors, The Journal of biological chemistry, vol.282, pp.12154-12163, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00318820

C. Goudet, Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like receptors, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.378-383, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00319003

P. Rondard and J. P. Pin, Dynamics and modulation of metabotropic glutamate receptors, Current opinion in pharmacology, vol.20, pp.95-101, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01943325

D. E. Featherstone, Intercellular glutamate signaling in the nervous system and beyond, ACS chemical neuroscience, vol.1, pp.4-12, 2010.

C. M. Niswender and P. J. Conn, Metabotropic glutamate receptors: physiology, pharmacology, and disease, Annual review of pharmacology and toxicology, vol.50, pp.295-322, 2010.

F. Nicoletti, Metabotropic glutamate receptors: from the workbench to the bedside, Neuropharmacology, vol.60, pp.1017-1041, 2011.

P. J. Flor and F. C. Acher, Orthosteric versus allosteric GPCR activation: the great challenge of group-III mGluRs, Biochemical pharmacology, vol.84, pp.414-424, 2012.

N. T. Burford, J. Watson, R. Bertekap, and A. Alt, Strategies for the identification of allosteric modulators of G-protein-coupled receptors, Biochemical pharmacology, vol.81, pp.691-702, 2011.

P. J. Conn, A. Christopoulos, and C. W. Lindsley, Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders, Nature reviews. Drug discovery, vol.8, pp.41-54, 2009.

J. P. Pin and R. Duvoisin, The metabotropic glutamate receptors: structure and functions, Neuropharmacology, vol.34, pp.1-26, 1995.

J. Raber and R. M. Duvoisin, Novel metabotropic glutamate receptor 4 and glutamate receptor 8 therapeutics for the treatment of anxiety, Expert opinion on investigational drugs, vol.24, pp.519-528, 2015.

C. J. Swanson, Metabotropic glutamate receptors as novel targets for anxiety and stress disorders, Nature reviews. Drug discovery, vol.4, pp.131-144, 2005.

H. H. Nickols, VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy, The Journal of pharmacology and experimental therapeutics, vol.356, pp.123-136, 2016.

Q. Zhou, Effect of metabotropic glutamate 5 receptor antagonists on morphine efficacy and tolerance in rats with neuropathic pain, European journal of pharmacology, vol.718, pp.17-23, 2013.

M. W. Waung, S. Akerman, M. Wakefield, C. Keywood, and P. J. Goadsby, Metabotropic glutamate receptor 5: a target for migraine therapy, Annals of clinical and translational neurology, vol.3, pp.560-571, 2016.

K. Vincent, Intracellular mGluR5 plays a critical role in neuropathic pain, Nature communications, vol.7, p.10604, 2016.

B. Vilar, Alleviating pain hypersensitivity through activation of type 4 metabotropic glutamate receptor, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.33, pp.18951-18965, 2013.

F. Acher and C. Goudet, Therapeutic potential of group III metabotropic glutamate receptor ligands in pain, Current opinion in pharmacology, vol.20, pp.64-72, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01950127

J. W. Dickerson and P. J. Conn, Therapeutic potential of targeting metabotropic glutamate receptors for Parkinson's disease. Neurodegenerative disease management 2, pp.221-232, 2012.

H. H. Nickols and P. J. Conn, Development of allosteric modulators of GPCRs for treatment of CNS disorders, Neurobiology of disease, vol.61, pp.55-71, 2014.

J. M. Mathiesen, N. Svendsen, H. Brauner-osborne, C. Thomsen, and M. T. Ramirez, Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP, British journal of pharmacology, vol.138, pp.1026-1030, 2003.

J. A. O'brien, A family of highly selective allosteric modulators of the metabotropic glutamate receptor subtype 5, Molecular pharmacology, vol.64, pp.731-740, 2003.

J. A. O'brien, A novel selective allosteric modulator potentiates the activity of native metabotropic glutamate receptor subtype 5 in rat forebrain, The Journal of pharmacology and experimental therapeutics, vol.309, pp.568-577, 2004.

D. J. Sheffler, K. J. Gregory, J. M. Rook, and P. J. Conn, Allosteric modulation of metabotropic glutamate receptors, Adv Pharmacol, vol.62, pp.37-77, 2011.

J. A. Christopher, Fragment and Structure-Based Drug Discovery for a Class C GPCR: Discovery of the mGlu5 Negative Allosteric Modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile, Journal of medicinal chemistry, vol.58, pp.6653-6664, 2015.

A. S. Dore, Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain, Nature, vol.511, pp.557-562, 2014.

H. Wu, Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator, Science, vol.344, pp.58-64, 2014.

J. A. Dalton, Shining Light On An mGlu5 Photoswitchable NAM: A Theoretical Perspective, Current neuropharmacology, 2015.

X. Rovira, Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors, FASEB journal: official publication of the Federation of American Societies for Experimental Biology, vol.29, pp.116-130, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01943324

K. A. Bennett, A. S. Dore, J. A. Christopher, D. R. Weiss, and F. H. Marshall, Structures of mGluRs shed light on the challenges of drug development of allosteric modulators, Current opinion in pharmacology, vol.20, pp.1-7, 2015.

L. Xue, Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer, Nature chemical biology, vol.11, pp.134-140, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01943326

, Scientific RepoRts |, vol.7

V. Hlavackova, Sequential inter-and intrasubunit rearrangements during activation of dimeric metabotropic glutamate receptor 1, Science signaling, vol.5, p.59, 2012.

V. Binet, The heptahelical domain of GABA(B2) is activated directly by CGP7930, a positive allosteric modulator of the GABA(B) receptor, The Journal of biological chemistry, vol.279, pp.29085-29091, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00318926

K. Ray, Calindol, a positive allosteric modulator of the human Ca(2+) receptor, activates an extracellular ligand-binding domain-deleted rhodopsin-like seven-transmembrane structure in the absence of Ca(2+), The Journal of biological chemistry, vol.280, pp.37013-37020, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00021965

N. R. Latorraca, A. J. Venkatakrishnan, R. O. Dror, and . Gpcr, Dynamics: Structures in Motion. Chemical reviews, 2016.

S. Hertig, N. R. Latorraca, and R. O. Dror, Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations, PLoS computational biology, vol.12, 2016.

Y. Miao and J. A. Mccammon, G-protein coupled receptors: advances in simulation and drug discovery, Current opinion in structural biology, vol.41, pp.83-89, 2016.

J. M. Perez-aguilar, J. Shan, M. V. Levine, G. Khelashvili, and H. Weinstein, A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2, Journal of the American Chemical Society, vol.136, pp.16044-16054, 2014.

C. Ozgur, P. Doruker, and E. D. Akten, Investigation of allosteric coupling in human beta2-adrenergic receptor in the presence of intracellular loop 3, BMC structural biology, vol.16, 2016.

N. Stanley, L. Pardo, and G. D. Fabritiis, The pathway of ligand entry from the membrane bilayer to a lipid G protein-coupled receptor, Scientific reports, vol.6, p.22639, 2016.

R. Nygaard, The dynamic process of beta(2)-adrenergic receptor activation, Cell, vol.152, pp.532-542, 2013.

W. Huang, Structural insights into micro-opioid receptor activation, Nature, vol.524, pp.315-321, 2015.

L. Ye, N. Van-eps, M. Zimmer, O. P. Ernst, and R. S. Prosser, Activation of the A2A adenosine G-protein-coupled receptor by conformational selection, Nature, vol.533, pp.265-268, 2016.

M. Casiraghi, Functional Modulation of a G Protein-Coupled Receptor Conformational Landscape in a Lipid Bilayer, Journal of the American Chemical Society, vol.138, pp.11170-11175, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02114802

I. Kufareva, V. Katritch, R. C. Stevens, and R. Abagyan, Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges, Structure, vol.22, pp.1120-1139, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01078660

J. Huang and A. D. Mackerell, CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data, Journal of computational chemistry, vol.34, pp.2135-2145, 2013.

T. J. Piggot, A. Pineiro, and S. Khalid, Molecular Dynamics Simulations of Phosphatidylcholine Membranes: A Comparative Force Field Study, J Chem Theory Comput, vol.8, pp.4593-4609, 2012.

K. Pluhackova, A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers, The journal of physical chemistry. B, vol.120, pp.3888-3903, 2016.

K. Vanommeslaeghe, CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM allatom additive biological force fields, Journal of computational chemistry, vol.31, pp.671-690, 2010.

K. Vanommeslaeghe and A. D. Mackerell, Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing, Journal of chemical information and modeling, vol.52, pp.3144-3154, 2012.

K. Vanommeslaeghe, E. P. Raman, and A. D. Mackerell, Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges, Journal of chemical information and modeling, vol.52, pp.3155-3168, 2012.

C. G. Mayne, J. Saam, K. Schulten, E. Tajkhorshid, and J. C. Gumbart, Rapid parameterization of small molecules using the Force Field Toolkit, Journal of computational chemistry, vol.34, pp.2757-2770, 2013.

I. Lans, J. A. Dalton, and J. Giraldo, Selective Protonation of Acidic Residues Triggers Opsin Activation. The journal of physical chemistry, B, vol.119, pp.9510-9519, 2015.

P. J. Conn, C. W. Lindsley, J. Meiler, and C. M. Niswender, Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders, Nature reviews. Drug discovery, vol.13, pp.692-708, 2014.

K. J. Gregory, Identification of specific ligand-receptor interactions that govern binding and cooperativity of diverse modulators to a common metabotropic glutamate receptor 5 allosteric site, ACS chemical neuroscience, vol.5, pp.282-295, 2014.

J. P. Pin, J. Gomeza, C. Joly, and J. Bockaert, The metabotropic glutamate receptors: their second intracellular loop plays a critical role in the G-protein coupling specificity, Biochemical Society transactions, vol.23, pp.91-96, 1995.

M. Yanagawa, T. Yamashita, and Y. Shichida, Activation switch in the transmembrane domain of metabotropic glutamate receptor, Molecular pharmacology, vol.76, pp.201-207, 2009.

T. Yamashita, A. Terakita, T. Kai, and Y. Shichida, Conformational change of the transmembrane helices II and IV of metabotropic glutamate receptor involved in G protein activation, Journal of neurochemistry, vol.106, pp.850-859, 2008.

K. J. Gregory, Probing the metabotropic glutamate receptor 5 (mGlu(5)) positive allosteric modulator (PAM) binding pocket: discovery of point mutations that engender a "molecular switch, PAM pharmacology, vol.83, pp.991-1006, 2013.

D. Chivian and D. Baker, Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection, Nucleic acids research, vol.34, p.112, 2006.

D. E. Kim, D. Chivian, and D. Baker, Protein structure prediction and analysis using the Robetta server, Nucleic acids research, vol.32, pp.526-531, 2004.

J. Pei, B. H. Kim, and N. Grishin, PROMALS3D: a tool for multiple protein sequence and structure alignments, Nucleic acids research, vol.36, pp.2295-2300, 2008.

, Schrödinger Release 2014-2: Maestro, version 9, vol.8, 2014.

G. M. Morris, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, Journal of computational chemistry, vol.30, pp.2785-2791, 2009.

E. F. Pettersen, UCSF chimera -A visualization system for exploratory research and analysis, Journal of computational chemistry, vol.25, pp.1605-1612, 2004.

S. Jo, T. Kim, V. G. Iyer, and W. Im, CHARMM-GUI: a web-based graphical user interface for CHARMM, Journal of computational chemistry, vol.29, pp.1859-1865, 2008.

M. A. Lomize, A. L. Lomize, I. D. Pogozheva, and H. I. Mosberg, OPM: orientations of proteins in membranes database, Bioinformatics, vol.22, pp.623-625, 2006.

M. J. Harvey, G. Giupponi, and G. De-fabritiis, ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale, J Chem Theory Comput, vol.5, pp.1632-1639, 2009.

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, Journal of molecular graphics, vol.14, pp.27-38, 1996.
DOI : 10.1016/0263-7855(96)00018-5

, Scientific RepoRts |, vol.7

J. A. Dalton, I. Michalopoulos, and D. R. Westhead, Calculation of helix packing angles in protein structures, Bioinformatics, vol.19, pp.1298-1299, 2003.

J. A. Dalton, I. Lans, and J. Giraldo, Quantifying conformational changes in GPCRs: glimpse of a common functional mechanism, BMC bioinformatics, vol.16, 2015.

W. Kabsch and C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.22, pp.2577-2637, 1983.

K. T. Simons, C. Kooperberg, E. Huang, and D. Baker, Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions, Journal of molecular biology, vol.268, pp.209-225, 1997.

A. Nowroozi and M. Shahlaei, A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3, Journal of biomolecular structure & dynamics, pp.1-23, 2016.

K. Harpsoe, Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors -A Structural Perspective of Ligands and Mutants, Scientific reports, vol.5, p.13869, 2015.

B. G. Tehan, A. Bortolato, F. E. Blaney, M. P. Weir, and J. S. Mason, Unifying family A GPCR theories of activation, Pharmacology & therapeutics, vol.143, pp.51-60, 2014.

S. G. Rasmussen, Crystal structure of the beta2 adrenergic receptor-Gs protein complex, Nature, vol.477, pp.549-555, 2011.

A. C. Kruse, Activation and allosteric modulation of a muscarinic acetylcholine receptor, Nature, vol.504, pp.101-106, 2013.

I. Lans, J. A. Dalton, and J. Giraldo, Helix 3 acts as a conformational hinge in Class A GPCR activation: An analysis of interhelical interaction energies in crystal structures, Journal of structural biology, vol.192, pp.545-553, 2015.

A. S. Tora, Allosteric modulation of metabotropic glutamate receptors by chloride ions, FASEB journal: official publication of the Federation of American Societies for Experimental Biology, vol.29, pp.4174-4188, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02065116