

One new endemic plant species on average per month in New Caledonia, including eight more new species from Île Art (Belep Islands), a major micro-hotspot in need of protection

Gildas Gâteblé, Laure Barrabé, Gordon Mcpherson, Jérôme Munzinger, Neil Snow, Ulf Swenson

▶ To cite this version:

Gildas Gâteblé, Laure Barrabé, Gordon Mcpherson, Jérôme Munzinger, Neil Snow, et al.. One new endemic plant species on average per month in New Caledonia, including eight more new species from Île Art (Belep Islands), a major micro-hotspot in need of protection. Australian Systematic Botany, 2018, 31 (5-6), pp.448-480. 10.1071/SB18016. hal-02057727

HAL Id: hal-02057727 https://hal.umontpellier.fr/hal-02057727

Submitted on 26 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Australian Systematic Botany, 2018, **31**, 448–480 https://doi.org/10.1071/SB18016

One new endemic plant species on average per month in New Caledonia, including eight more new species from Île Art (Belep Islands), a major micro-hotspot in need of protection

Gildas Gâteblé ^[DA,G], Laure Barrabé ^[DB], Gordon McPherson ^C, Jérôme Munzinger ^[DD], Neil Snow ^E and Ulf Swenson ^[DF]

Abstract. The New Caledonian biodiversity hotspot contains many micro-hotspots that exhibit high plant micro-endemism, and that are facing different types and intensities of threats. The Belep archipelago, and especially Île Art, with 24 and 21 respective narrowly endemic species (1 Extinct, 21 Critically Endangered and 2 Endangered), should be considered as the most sensitive micro-hotspot of plant diversity in New Caledonia because of the high anthropogenic threat of fire. Nano-hotspots could also be defined for the low forest remnants of the southern and northern plateaus of Île Art. With an average rate of more than one new species described for New Caledonia each month since January 2000 and five new endemics for the Belep archipelago since 2009, the state of knowledge of the flora is steadily improving. The present account of eight new species from Île Art (Bocquillonia montrouzieri Gâteblé & McPherson, Cleidion artense Gâteblé & McPherson, Endiandra artensis Munzinger & McPherson, Eugenia belepiana J.W.Dawson ex N.Snow, Eugenia insulartensis J.W.Dawson ex N.Snow, Macaranga latebrosa Gâteblé & McPherson, Planchonella serpentinicola Swenson & Munzinger and Psychotria neodouarrei Barrabé & A.Martini) further demonstrates the need both to recognise the Belep Islands as a major New Caledonian micro-hotspot and to formulate concrete conservation programs for the archipelago.

Received 30 March 2018, accepted 10 September 2018, published online 12 December 2018

Introduction

Since the concept of biodiversity hotspots was first proposed (Myers 1988; Myers *et al.* 2000), the recognition of the more recent concept of hotspots within hotspots *sensu* Cañadas *et al.* (2014) has become crucial for effective conservation. Fenu *et al.* (2010) proposed recognition of micro- and nano-hotspots for small regions with high levels of endemism and exemplified this with biodiversity-rich areas in Sardinia (Italy), one of 335 km² (micro-hotspot), and others less than 3 km² (nano-hotspots). This idea may challenge older concepts such as 'key biodiversity areas' *sensu* Eken *et al.* (2004), but we believe that small oceanic islands rich in biodiversity are easy to recognise as micro- or nano-hotspots.

Within the New Caledonian biodiversity hotspot, the Belep archipelago (Fig. 1) is a striking example combining high

endemism and high threat level that could meet the definitions of micro- or nano-hotspots of Fenu *et al.* (2010). The Belep archipelago, ~35 km north-west of the main island of Grande Terre (Fig. 1), is formed by Île Art (51.08 km²), Île Pott (11.69 km²) just north of Île Art, and some other small islands in the south (Dau Âc and Daos), totaling 1.96 km² (Gouvernement de la Nouvelle-Calédonie 2018). Île Art has two low elevation plateaus, plateau Nord (~200–280 m high) and plateau Sud (~200–250 m high) and is the only permanently inhabited island. These quite isolated ultramafic islands are (or were) covered by typical low-elevation maquis (a shrubby sclerophyll vegetation) and by one of the most endangered ecosystems in New Caledonia, i.e. low-elevation rainforest on ultramafic substrate (Isnard *et al.* 2016). According to Wulff *et al.* (2013), Île Art is the fourth-most diverse area in

^AInstitut Agronomique Néo-Calédonien, Equipe ARBOREAL, BP 711, 98810 Mont-Dore, New Caledonia.

^BEndemia, Plant Red List Authority, 7 rue Pierre Artigue, Portes de Fer, 98800 Nouméa, New Caledonia.

^CHerbarium, Missouri Botanical Garden, 4344 Shaw Boulevard, Saint Louis, MO 63110, USA.

^DAMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, F-34000 Montpellier, France.

ET.M. Sperry Herbarium, Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA.

FDepartment of Botany, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden.

^GCorresponding author. Email: gateble@iac.nc

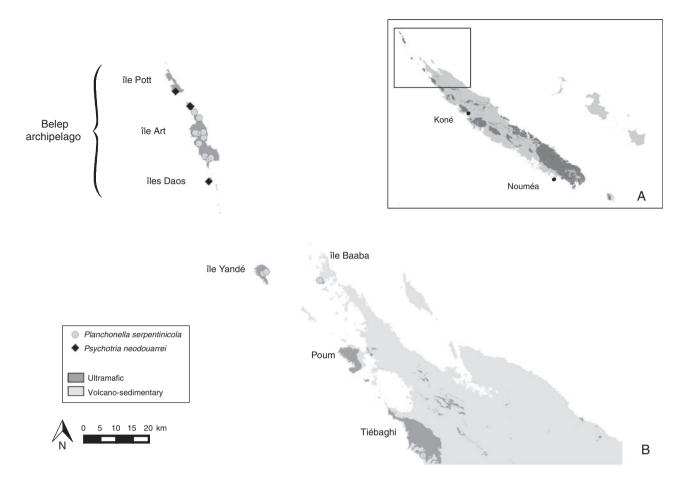


Fig. 1. A. General map of New Caledonia. B. Distribution of *Planchonella serpentinicola* and *Psychotria neodouarrei* in the north of Grande Terre and in the Belep archipelago.

New Caledonia (equaling the Dogny-Rembai-Table Unio-Amieu area) in terms of narrow endemic species richness (NES1) with 12 micro-endemic species (Table 1). Under the New Caledonian Mining Code, 18 mining concessions in Île Art and Île Pott are presently assigned to mining companies, and these mining concessions represent 72% (45.16 km² of 62.77 km²) of the total surface (Gouvernement de la Nouvelle-Calédonie 2009, 2018). However, there is no active nickel mining at the moment because of a memorandum of understanding between the mining company Société Le Nickel and the (local) tribal custom authorities. The Belep Islands also are currently free of a major threat to the mainland flora, the rusa deer (Rusa timorensis), which does not seem to have been introduced (Endemia Red List Authority 2017). Presently, anthropogenic fires are the main threat to the biodiversity in this archipelago. Deliberately set fires are of great concern because they occur regularly between August and January (OEIL 2018) and are usually difficult to fight because of a limited fire brigade and lack of roads in this quite rugged terrain.

New Caledonian biodiversity is facing major threats that led to its early recognition as one of the 10 original world biodiversity hotspots (Myers 1988); however, unfortunately,

these threats have evolved and increased since then. Although the understanding and quantification of the main threats have improved greatly, the need to better assess and undertake concrete and urgent actions to dramatically lower these threats remains. For instance, the preliminary results of the local IUCN Red List Authority, established in 2014 to evaluate the risk of extinction of New Caledonian species, are particularly of concern. Of the 1040 plant species assessed thus far (30.7% of the total New Caledonian native flora), 42% are threatened across all categories, of which 100 are listed as Critically Endangered (CR), 183 as Endangered (EN) and 153 as Vulnerable (VU; Endemia Red List Authority 2017). The main threats associated with these 436 species are anthropogenic fires (62% of the species potentially being affected), nickel mining activities (42%) and invasive species (41%), especially the exotic rusa deer.

The purpose of this paper is to describe eight new species from the Belep Islands and provide IUCN Red List assessments. We also draw attention to the Belep Islands as a micro-hotspot area within the New Caledonian hotspot, and provide a current account of our knowledge of the New Caledonian flora and especially in the Belep archipelago. We emphasise how rich but vulnerable the biodiversity can be in micro- or nano-hotspots.

Table 1. List of species endemic to the Belep Islands

Island distributions are northern (N) and southern (S) plateau distribution for Île Art micro-endemic species. Proposed IUCN statuses are given in the latest reference. Revised IUCN statuses are from assessments made by the local Red List Authority (Endemia Red List Authority 2017), V. Tanguy, pers. comm. EN, Endangered; EX, Extinct; CR, Critically Endangered; NE, not evaluated

Island distribution	Île Art 'NES1' in Wulff et al. (2013)	Taxon name	Date of publication (earliest name)	Oldest specimen (collector and year)	Latest reference	Proposed IUCN status	Revised IUCN status
Art (N)	1	Alphandia resinosa	1873	Balansa 1871	McPherson and Tirel (1987)	NE	
Art (N)	1	Eugenia belepiana	This paper	Veillon 1972	Present paper	CR	
Art (N)	1	Eugenia insulartensis	This paper	MacKee 1975	Present paper	CR	
Art (N)	1	Geissois belema	2012	MacKee 1975	Hopkins et al. (2014)	CR	CR
Art (N)	1	Guettarda artensis	1930	Balansa 1871		NE	
Art (N)	1	Oxanthera fragrans	1860	Montrouzier?	Stone (1985)	NE	
Art (N)	1	Phyllanthus artensis	1991	Veillon 1972	Schmid (1991)	NE	
Art (S)	1	Phyllanthus rozennae	1991	Jaffré 1975	Schmid (1991)	NE	
Art (S)	1	Phyllanthus veillonii	1991	Jaffré 1975	Schmid (1991)	NE	
Art (N, S)	1	Psychotria belepensis	1860	Montrouzier?	Barrabé et al. (2013)	NE	CR
Art (N)	1	Pycnandra belepensis	2010	MacKee 1975	Swenson and Munzinger (2010)	CR	CR
Art (N)	1	Xanthostemon lateriflorus	1934	Balansa 1871	Dawson (1992)	NE	
Art (S)		Bocquillonia montrouzieri	This paper	Montrouzier 1866	Present paper	CR	
Art (N)		Cleidion artense	This paper	MacKee 1975	Present paper	CR	
Art (N, S)		Cyclophyllum cardiocarpum	1878	Balansa 1871	Mouly and Jeanson (2015)	EN	CR
Art (N, S)		Endiandra artensis	This paper	MacKee 1975	Present paper	CR	
Art (N)		Jasminum promunturianum	1933	Däniker 1925	Green (1998)	NE	
Art (N, S)		Macaranga latebrosa	This paper	Veillon 1972	Present paper	CR	
Art (N, S)		Pittosporum artense	1936	Balansa 1871	Tirel and Veillon (2002)	NE	CR
Art (N)		Pleioluma belepensis	2018	Veillon 1978	Swenson et al. (2018)	CR	
Art (?)		Pycnandra micrantha	1901	Montrouzier 1866	Munzinger and Swenson (2015)	EX	EX
Art, Pott		Myrsine belepensis	2009	Balansa 1871	Schmid (2009)	VU	
Art, (Daos)		Pandanus belepensis	2011	Jaffré 1975	Callmander et al. (2011)	VU	CR (EX in Daos)
Art, Daos, Pott		Psychotria neodouarrei	This paper	MacKee 1968	Present paper	EN	

Materials and methods

Species count

A list of putative endemics from the Belep archipelago was compiled using the series *Flore de Nouvelle-Calédonie*, various taxonomic papers, unpublished data and personal communications. The herbarium specimens of each putative Belep endemic were reviewed to crosscheck that each is a true micro-endemic and were mapped according to their label data (Appendix 1). To provide a current overview of the New Caledonian flora, a second robust list of new species described from New Caledonia since 2000 was compiled (Appendix 2), primarily using the International Plant Names Index (see http://www.ipni.org, accessed September 2018) and complemented by bibliographic data gathered by the authors during the past 18 years. The new species awaiting description are listed as 'ined.' and were extracted from Munzinger *et al.* (2016). Various publications were examined to check species names and entities.

We have excluded doubtful species (seven), hybrids (four), taxa of lower taxonomic rank (subspecies and varieties) as well as nomenclatural novelties (*comb. nov.* and *nom. nov.*).

Taxonomy

For the descriptions of the eight new species, careful examination and measurements of morphological characters were taken from fresh material as well as herbarium specimens, and character terminology follows that of previous authors, for example, McPherson and Tirel (1987) for Euphorbiaceae, Kostermans (1974) and Munzinger and McPherson (2016) for Lauraceae, Snow *et al.* (2016*a*, 2016*b*) for *Eugenia* L. (Myrtaceae), Barrabé (2014) and Barrabé *et al.* (2014) for *Psychotria* L. (Rubiaceae), Munzinger and Swenson (2009) and Swenson *et al.* (2007) for *Planchonella* Pierre (Sapotaceae). The species concept used here is based on morphological characters, usually in combination with molecular phylogenetic analyses, as previously used by the

authors. Voucher specimens are deposited primarily in BRI, G, MO, MPU, NOU, P and S (abbreviations follow *Index Herbariorum*, see http://sweetgum.nybg.org/science/ih/, accessed 4 June 2018). Numbers given after herbaria abbreviations are barcode numbers, except for MO and S where they represent accession numbers.

Conservation assessment

The IUCN Standards and Petitions Subcommittee (2017) bases threat analyses on a variety of criteria and subcriteria involving population size and its reduction (Criteria A, C and D), population geographic range, including fragmentation and decline (Criterion B), decline or fragmentation of small to very small populations (Criteria C, D), and quantitative analyses of the probability of extinction (E). Geographic range is measured as extent of occurrence (EOO) and area of occupancy (AOO), where EOO is the minimum convex polygon containing all points of occurrence and AOO is the area estimated by superimposing a grid (2 × 2 km) onto occurrence points and calculating the cumulative area of the cells occupied by the species. Herbarium specimens were georeferenced (Appendix 1), as much as possible, according to label information (locality, coordinates, elevation and type of vegetation). For our assessments, we used the data gathered in Appendix 1 to calculate EOO and AOO with the online 'GeoCAT' software (ver. 9.1, S. Bachman and J. Moat, Botanic Gardens Conservation International, see http://geocat. kew.org, accessed September 2018; Bachman et al. 2011). Criterion B was also applied by characterising the nature and level of the threats.

Systematic progress, endemic species and threats

New Caledonia

Some studies suggest that New Caledonia may be the region with the world's highest vascular plant endemism density, with an estimated 1350 species per 10 000 km² (Kier et al. 2009). A calculation based on the checklist of the indigenous vascular flora of New Caledonia (Morat et al. 2012; Munzinger et al. 2016) leads to a similar value of 1341 endemic species per 10 000 km². With a complete identification key of the Flora known at that time made by Guillaumin (1948), and an ongoing Flore de Nouvelle-Calédonie (et Dépendances) that started in 1967, one might consider that the flora is fairly well known. However, we believe that a significant amount of work still needs to be conducted on the basis of both existing herbarium specimens and on discoveries made in the field (see, for example, the series Novitates neocaledonicae, Munzinger 2015). Supporting this idea are recently published studies estimating that 9% of New Caledonian plant and 12% of New Caledonian animal species have very narrow distributions, i.e. plant species being restricted to one locality (Wulff et al. 2013) and where the total distribution area is less than 5.2 km² for animals (Caesar et al. 2017).

Systematic studies since the year 2000 have shown many novelties for New Caledonia (Appendix 2). Between January 2000 and December 2017, no fewer than four endemic genera (McPherson and Lowry 2004; Snow 2009; Schmid 2012; Hopkins *et al.* 2015) and 217 new endemic plant species have

Table 2. Taxonomic novelties (plants) published for New Caledonia (NC) and the Belep Islands (BI) since January 2000

New NC endemic species that are doubtful species and hybrid taxa included in Appendix 2 are excluded here

Year period	New NC endemic genera (n)	New NC endemic species (n)	New BI endemic species (n)	Number of families	Number of genera
2000–2004	1	34	0	15	17
2005-2009	1	81	2	13	19
2010-2014	1	58	3	14	23
2015-2017	1	44	0	14	19
Total	4	217	5	38	65

been described across 38 families and 65 genera (Table 2). This is equivalent to an average description rate of slightly more than one new endemic species per month. According to Munzinger et al. (2016), this rate is likely to be maintained in the near future, given that 71 new species were then listed as 'ined.' and are now at various stages of being described. These data bear on the question of how many additional new plant species are to be expected within the New Caledonian biodiversity hotspot and partly address the 'impossible prediction' formulated by Joppa et al. (2011) who were unable to predict the percentage of the New Caledonian flora remaining to be described. Earlier, this question was also considered by Morat (1993), who tentatively concluded that 5–10% of the vascular plant flora remained to be described. Significantly, in light of the study cited above (Wulff et al. 2013), 40% of the new species described since 2000 have very narrow distributions (data not shown), a trend that we predict will be even more pronounced in the future (e.g. Meve et al. 2018, for Île des Pins) and one that clearly applies to the Belep archipelago, for which 12 micro-endemic (5 between 2009) and 2018 and 7 in the present paper) species have been described during the past 10 years (Table 1).

Belep archipelago

The French naturalist and priest Jean Xavier Hyacinthe Montrouzier (1820-1897) was the first to document the flora of Belep in his Flore de l'Île Art (Montrouzier 1860). Later, the Frenchman Gaspard Joseph Benedict Balansa (1825–1891) and the Swiss Albrecht Ulrich Däniker (1894-1957) visited and collected specimens in 1871 and 1925 respectively. Thereafter, the Belep flora was neglected until the 1960s and 1970s when botanists such as Jean-Pierre Blanchon, Dominique Bourret (1940-present), Pierre Cabalion (1947-present), Jaffré (1942-present), Hugh Shaw MacKee (1912–1995), Philippe Morat (1937–present), Christiane Tirel (1939–present) and Jean-Marie Veillon (1939–present) visited the islands. A few more collections have been made in the 21st Century by four of the authors (L. Barrabé, G. Gâteblé, J. Munzinger and U. Swenson) and by Jean-Pierre Butin (DDEE) and Antony Pain (IAC). The flora of Île Art is the most thoroughly collected, whereas only some hundred specimens have been collected on Île Pott. Specimens from the smaller islands in the south are even fewer, partly because of inaccessibility and partly because of their degraded vegetation.

From the data presented here, the number of species restricted to the Belep archipelago is 17, and we herein add another seven Belep endemic new species (Table 1). Putative Île Art endemics linked to old dubious names that are most probably synonyms or taxa published in Montrouzier (1860), Beauvisage (1894; 1901) and so on, such as Acrostichum forsteri Montrouz., Canavalia bouquete Montrouz., Gardenia artensis Montrouz. and Korthalsella amentacea (Tiegh.) Engl., were considered but rejected. Codia belepensis H.C.Hopkins is excluded because it also occurs in Île Yandé (Poum). Oxanthera (Citrus) fragrans Montrouz. and Guettarda artensis Guillaumin may not be endemic to the Belep Islands, but according to Stone (1985) for the former and the determination of specimens in the Paris herbarium for the latter, these two are here considered endemic to Île Art. Myrsine belepensis (M.Schmid) Ricketson & Pipoly and Pandanus belepensis Callm. & Munzinger also are known from Pott and Daos islands respectively, but the latter is considered extinct on Daos (Table 1). The present account raises the number of strictly Belep endemic species from 17 to 24 (Table 1) and the number of Île Art micro-endemics from 15 (16 with Pandanus belepensis extinct on Daos and now restricted to Île Art) to 21 (22 with *Pandanus belepensis*). Even more significantly, 12 Île Art micro-endemics are restricted to the northern part of the island and three to the southern plateau, whereas five occur on both parts of the island (Table 1). Half of Belep endemic species have been described since 2009, but all are known from collections that date back at least to the 1970s (Table 1).

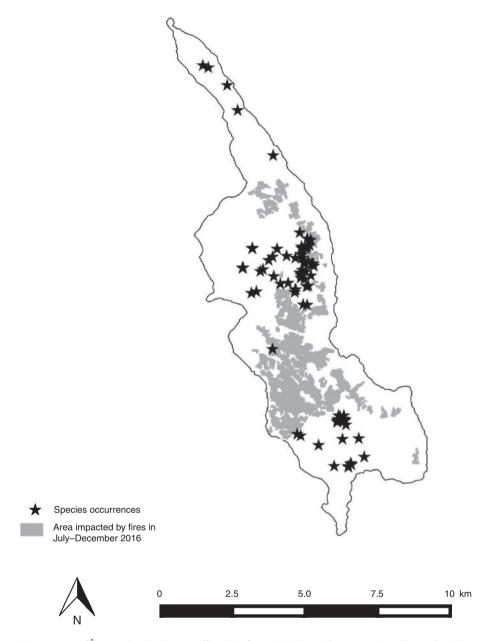
Our addition of seven micro- or narrowly endemic species increases the density of micro-endemic species per square kilometre for the Belep archipelago, and for Île Art in particular, from 0.26 to 0.37 and from 0.29 (0.31) to 0.41 (0.43) respectively. Compared with the data presented by Wulff et al. (2013), Île Art now can be considered the richest area of narrow endemism in New Caledonia, ahead of Mount Panié with its 16 narrowly endemic species (NES1). By itself, the northern plateau of Île Art hosts 12 very narrowly endemic species and could easily qualify as a nano-hotspot. However, it is possible that some Île Art species here considered as micro-endemics are indeed present on the other plateaus, or even on Pott or Daos, as future fieldwork may show. Moreover, we predict that the number of species endemic to the Belep archipelago will increase as future field trips, phylogenetic analyses, population-genetics studies and revisions are conducted, for example, in Alyxia Banks ex R. Br., Arthropodium R.Br., Gynochthodes Blume, Ochrosia Juss., Meryta J.R.Forst. & G.Forst., Pittosporum Banks ex Gaertn., Stigmaphyllon A.Juss. and Vitex L.

Threats to the Belep Islands flora

The most serious threat to the flora in the Belep archipelago, especially in Île Art, is deliberately set fire. For instance, during July–December 2016, more than 1000 ha (20% of the entire surface) of Île Art was burnt, and much of the maquis and remnant forest of this area succumbed to the flames (Fig. 2). Île Art is indeed recognised as one of the worst places in New Caledonia for the number and intensity of fires detected by satellites (see http://geoportail.oeil.nc/AlerteIncendies, accessed September 2018). According to the study of Curt *et al.* (2015) on Grande

Terre, the total area of the ultramafic maquis could be burnt within a 34-year period. Gomez *et al.* (2015, their fig. 3) also considered the potential biodiversity loss as high in the central parts of the southern and northern plateaus of Art and Pott islands.

Nickel mining is also a potential threat to the Belep flora, because three mining concessions (three more being expired) are recorded on Île Pott and no less than 15 (two more being expired) on Île Art (Gouvernement de la Nouvelle-Calédonie 2018). Presently, a *status quo* exists between the local tribal custom authorities and nickel mining companies, and no mining is expected to occur in the near future. Other potential threats to the biodiversity include introduced deer and pigs, feral cattle and horses, exotic and invasive plants, and land clearings for agriculture and infrastructures, but these problems must be ranked as minor in the Belep archipelago.

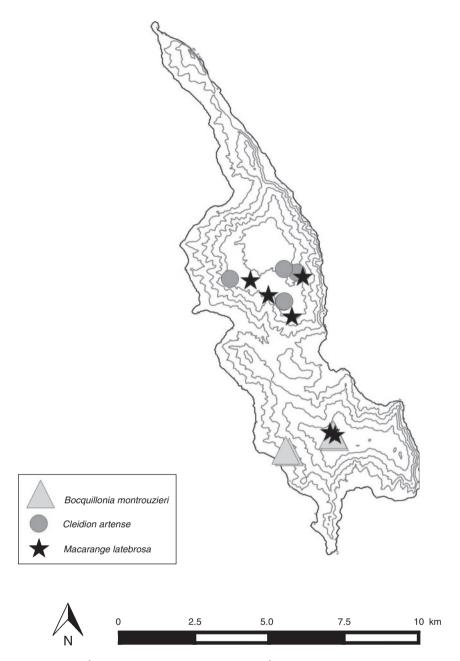

Past, present and future threats to the biodiversity in Belep archipelago have led to the Red Listing of seven micro-endemic species by the local Red List Authority (Endemia Red List Authority 2017), six as Critically Endangered (CR), and one as Extinct (EX, Table 1). Another nine Belep endemics have not yet been assessed against the IUCN criteria by the local Red List Authority (Table 1), but on the basis of the previous evaluations, eight are likely to be Critically Endangered (CR) and one (Myrsine belepensis) Endangered (EN). The seven new Île Art endemic species (six published in the present paper and one in Swenson et al. 2018) also are all assessed as being CR. Once all endemic species of Île Art have been assessed by the local Red List Authority, 21 CR and one EX species, in total, are expected to be listed. Île Art would then be the place with the highest number of Critically Endangered species compared with other areas in New Caledonia. Given its exceptional concentration of micro-endemism and the number of CR and EX taxa, the Belep archipelago, and Île Art in particular, deserves recognition as the hottest plant microhotspot within the New Caledonian biodiversity hotspot. The southern and northern plateaus of Île Art could further be considered each as a nano-hotspot because their total areas above 200 m are just 3.45 and 7.22 km² respectively. Indeed, 88% of occurrences and 20 of the 21 Île Art's CR endemic species would be protected if a reserve were established to include all the area above 200 m (data calculated from Appendix 1, Fig. 2-4). So as to fit exactly to the definition by Fenu et al. (2010) of a nano-hotspot of less than 3 km², it would require being above 209 m for the southern plateau and 247 m for the northern plateau, but this would not be adequate to protect the rainforest remnants of both plateaus.

Eight new species

Euphorbiaceae

Bocquillonia montrouzieri Gâteblé & McPherson, sp. nov.

Diagnosis: Bocquillonia montrouzieri resembles B. brachypoda Baill. in having small leaves with short petioles and condensed ♂ inflorescences, but differs most notably from the latter species in having caducous stipules 1.5–2.0 mm long (v. persistent, 1.5–4.0 mm long), petioles

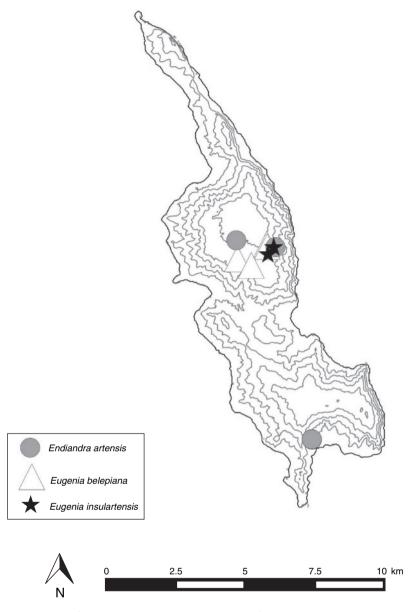

Fig. 2. Map of Île Art, showing the area affected by fires (shaded areas) between July and December 2016 with the distribution of Belep micro-endemic species (stars). The extension of anthropogenic fires are based on data gathered from Observatoire de l'Environnement en Nouvelle-Calédonie (OEIL), Earth Observing System Data and Information System (EOSDIS) and European Union's Earth Observation Programme (COPERNICUS), F. Albouy (OEIL), pers. comm. Belep micro-endemic species are listed in Table 1.

typically with a prominent distal pulvinus (ν . without apparent distal pulvinus), one \mathcal{P} flower per pistillate inflorescence (ν . several), and ovaries and fruits that bear many short, spinelike appendages or crests (ν . ovaries and fruits smooth).

Type: New Caledonia, Province Nord, Belep, Île Art, plateau Sud, 24.viii.1978, *J.-M.Veillon 3685* [\updownarrow] (holo: P 00160297!; iso: NOU 046131!).

Shrubs dioceous 50 cm to 2.5 m tall, usually well branched, young *stems* sparsely appressed-puberulent, quickly glabrescent. *Leaf* simple, blade narrowly elliptic to oblanceolate, $5.0-11.5 \times 10^{-1}$

1.5–3.0 cm, base narrowly obtuse to cuneate, apex acuminate, margin dentate, teeth (3–)6–12 on each side, chartaceous to subcoriaceous, adaxial surface glabrous, abaxial surface sparsely and obscurely appressed-puberulent to glabrous, with many minute, circular gland-like inclusions often visible under the microscope, and with 0–2 larger sunken *laminar glands* on each side of the midvein, ~0.2 mm in diameter, secondary veins ~11–16 on each side of the midrib below the acumen, not or barely raised adaxially, prominent abaxially, tertiary veins not or barely raised on both surfaces. *Petiole* 4–12 mm long, ~1 mm


Fig. 3. Map of Île Art, showing the distribution of the new Île Art endemic species of Euphorbiaceae *Bocquillonia montrouzieri*, *Cleidion artense* and *Macaranga latebrosa*. Elevation is represented by 50-m contour lines that show the two main plateaus (southern and northern) of the island.

in diameter, prominently pulvinate at both ends, flat or shallowly channeled adaxially, sparsely appressed-puberulent or glabrous. *Stipules* subulate, 1.5–2.0 mm long, caducous. *Staminate inflorescence* reduced to axillary sessile glomerules 1–3 mm in diameter and up to 5 mm long; bracts minute; *staminate flower* subsessile when immature (mature flowers unknown). *Pistillate inflorescence* reduced to axillary, solitary flowers; *bracts* ~1 mm long, pubescent, glands not evident; *pistillate flowers* sessile on stout, bracteate bases up to 2 mm long; *sepals* 1.0–1.5 mm long; *ovary* spherical, ~2 mm in diameter, verruculose, pubescent; *stylodia* 2–3 mm long, red.

Fruit capsule 3-lobed, \sim 10 mm in diameter, \sim 8 mm high, bearing many short, spine-like appendages or crests, pubescent; column 5–6 mm long; seeds 5–6 \times 4 mm, covered with low, blister-like swellings.

Recognition

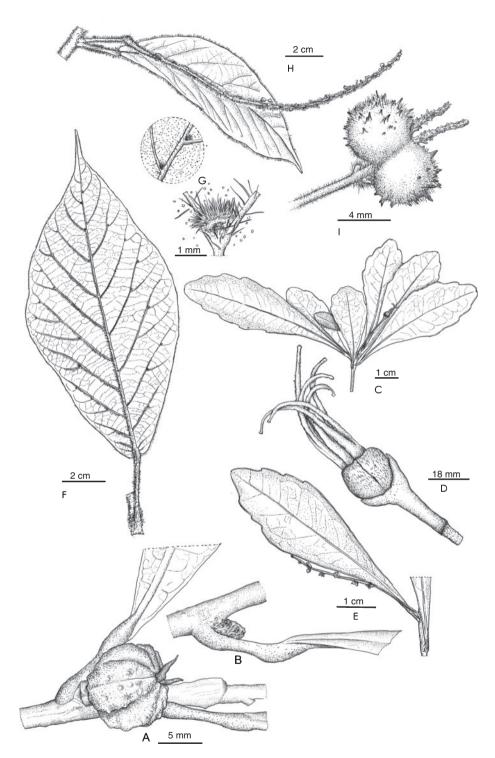
The reduced inflorescences of *Bocquillonia montrouzieri*, glomerulate in staminate and one-flowered in pistillate specimens, recall those of *B. grandidens* Baill., *B. sessiliflora* Baill., *B. castaneifolia* Guillaumin and *B. brachypoda* Baill.

Fig. 4. Map of Île Art, showing the distribution of the new Île Art endemic species *Endiandra artensis*, *Eugenia belepiana* and *Eugenia insulartensis*. Elevation is represented by 50-m contour lines that show the two main plateaus (southern and northern) of the island.

However, the first three have much longer and wider leaves than those of the new species, which do not surpass 11.5×3.0 cm, as well as smooth fruit. The similarly small-leaved B. montrouzieri can be most easily distinguished from B. brachypoda by its petioles, which lack a distal pulvinus, as well as by its persistent, longer stipules (1.5-4.0 mm in B. brachypoda v. caducous and 1.5-2.0 mm in B. montrouzieri) and smooth (v. ornamented) fruit. Of these four somewhat similar species, only B. castaneifolia is known to occur on Île Art.

Distribution

Bocquillonia montrouzieri is known only from the southern plateau of Île Art in the remnants of rainforests between 80 and 230 m. This new species is locally common in the forest


surrounding the antenna located at the summit, but was not seen at lower elevations during fieldwork in 2017.

Etymology

The species is named after its first collector, the Marist missionary and naturalist Xavier Montrouzier, who wrote an early account of the Île Art flora (Montrouzier 1860) and who spent the last years of his life and is buried in the tribal area of Saint-Louis, Mont-Dore, where both authors have also lived and worked.

Conservation status

Bocquillonia montrouzieri has been found in only one locality, namely, in the rainforest remnants of the southern plateau, which

Fig. 5. A, B. *Bocquillonia montrouzieri*. C–E. *Cleidion artense*. F–I. *Macaranga latebrosa*. A. Close-up of a sessile ornamented fruit with its elongated stylodia. B. Glomerulate staminate inflorescence and base of a leaf with its prominent distal pulvinus. C. Branch tip showing subverticillate leaves with a solitary long pistillate inflorescence. D. Close-up of the tip of the pistillate inflorescence, showing the articulation between the peduncle and the pedicel, the sparsely pubescent ovary and the long stylodia. E. Leaf shape with a long staminate inflorescence. F. Abaxial surface of a leaf showing the narrowly cordate base, the long-pubescent midrib and secondaries and the domatia. G. Close-up of densely pubescent domatias. H. Leaf with long-pubescent and long staminate inflorescence. I. Bilobed fruit bearing many soft spines. Drawn from *G.Gâteblé 904* (A), *J.-P.Butin 255* (C–D), *G.Gâteblé et al. 885* (E), *G.Gâteblé 901*(F, H–I), *D. Bourret 1885* (G) and G.Gâteblé field image (B). Drawings by Laurence Ramon.

Fig. 6. A, B. Bocquillonia montrouzieri. C–D. Cleidion artense. E, F. Macaranga latebrosa. A, B. G.Gâteblé 904; C, D. G.Gâteblé et al. 885; E. G.Gâteblé 901. Photos: Gildas Gâteblé.

represents a single location (*sensu* IUCN) with respect to the main threat. It is highly threatened by recurrent anthropogenic fires that progressively reduce the surface of the remaining patches of forests, resulting in an observed and projected decline in EOO, AOO, habitat quality and number of mature individuals. The calculated EOO being smaller than the AOO, the AOO value of 8 km² also applies to the EOO. On the basis of IUCN Standards and Petitions Subcommittee (2017) Categories and Criteria, *B. montrouzieri* is assigned the preliminary status of *Critically Endangered* CR B1ab(i,ii,iii,v)+2ab(i,ii,iii,v).

Specimens examined

NEW CALEDONIA, Province Nord. Belep. *s.loc.*, *Montrouzier 342*, (MPU 312123); Île Art, partie Sud, 80 m, *C.Tirel 1277* (P 00160305); Île Art, forêt de Païromé en bordure de marais, sommet du plateau, *D.Bourret 1910* (NOU 046110); Île Art, plateau Sud, forêt autour de l'antenne, 19°44′59.19″S, 163°40′40.30″E, 230 m, *G.Gâteblé 904* (NOU, P).

Cleidion artense Gâteblé & McPherson, sp. nov.

(Fig. 3, 5C–E, 6C–D.)

Diagnosis: Cleidion artense resembles C. verticillatum Baill. and C. marginatum McPherson in that all three species have subverticillate, small (less than 10×4 cm) leaves with acute bases and pistillate inflorescences typically reduced to a solitary flower. However, C. artense has longer staminate inflorescences $(2.0-5.5 \ v.\ 0.1-0.8 \ cm)$, staminate flowers with fewer stamens $(\sim 30-35 \ v.\ 50-60)$ and longer pistillate inflorescences $(1.5-2.0 \ v.\ 0.5-1.5 \ cm)$ than does C. verticillatum, and it has wider leaves $(1.0-3.5 \ v.\ 0.8-2.2 \ cm)$ with attenuate bases $(v.\ cuneate)$ and fewer marginal teeth $(2-5 \ v.\ 5-9 \ per\ side)$ than does C. marginatum, as well as lacking the broad whitish band typical of C. marginatum, having shorter staminate inflorescences (up to $5.5 \ v.\ up$ to $10 \ cm$) and longer pistillate inflorescences $(1.5-2.0 \ v.\ up$ to $\sim 0.6 \ cm)$.

Type: New Caledonia, Province Nord, Belep, Île Art, plateau Nord, 10.xii.1975, *T.Jaffré* 1657 [♂] (holo: P 00066651!; iso: NOU 024370!, P 00066652!).

Shrubs apparently dioecious (only 5 collections known, all unisexual) up to 1.5 m tall, well branched; young stems drying brown, pubescent at first, eventually glabrescent. Leaf simple, loosely clustered near the ends of twigs, blade obovate, $2.5-8.5 \times 1.0-3.5$ cm, base attenuate, apex shortly acuminate or rounded, margin dentate in distal part, the teeth 2–5 on each side; subcoriaceous, adaxial surface glabrous, abaxial surface thinly pubescent when immature, glabrescent, laminar glands 0-4 in the basal half, subcircular to narrowly elliptic, up to 1.0×0.5 mm, secondary veins 6–8 on each side of the midvein, essentially flush adaxially, slightly raised abaxially as are the higher-order veins. Petiole 2.0-3.5 mm long, ~1 mm in diameter, shallowly channeled, pubescent at first then glabrescent. Stipules ovate to subulate, 3 mm long, pubescent, deciduous. Staminate inflorescence spiciform, 2.0–5.5 cm long, the axis ~0.8 mm in diameter, pubescent, bearing 5-11 glomerules of flowers; bracts 1.5 mm long, pubescent, pedicels 1–2 mm long, pubescent; calyx in bud typically glabrous to slightly pubescent except for a tuft of hairs at the apex and around the base, splitting into 4 lobes 1.5 mm long; stamens ~30–35. Pistillate inflorescence reduced to a single axillary flower, the axes totalling 1.5–2.0 cm long, consisting of the peduncle ~1.3–1.7 cm long and the pedicel 2.0–2.5 mm long; peduncle sparsely pubescent; pedicel almost glabrous, articulation between peduncle and pedicel densely pubescent; bracts not seen; sepals ~1 mm long; ovary spherical, ~2.5 mm in diameter, sparsely pubescent, hairs ~0.1 mm long; 4–6 stylodia, 4–5 mm long, densely pubescent abaxially. Fruit unknown.

Recognition

Cleidion artense resembles C. verticillatum Baill. and C. marginatum McPherson in that all three species have subverticillate, small (less than 10×4 cm) leaves with acute bases, and pistillate inflorescences typically reduced to a solitary flower. However, C. artense has longer staminate inflorescences $(2.0-5.5 \ v$. $0.1-0.8 \ cm)$, staminate flowers with fewer stamens $(\sim 30-35 \ v$. 50-60), and longer pistillate inflorescences $(1.5-2.0 \ v$. $0.5-1.5 \ cm)$ than does C. verticillatum, and it has wider leaves $(1.0-3.5 \ v$. $0.8-2.2 \ cm)$ with attenuate bases (v. cuneate) and fewer marginal teeth $(2-5 \ v$. $5-9 \ per$ side) than does C. marginatum, and lacking the broad whitish band typical of C. marginatum, as well as shorter staminate inflorescences (up to $5.5 \ v$. up to $10 \ cm$) and longer pistillate inflorescences $(1.5-2.0 \ v$. up to $\sim 0.6 \ cm$). Cleidion vieillardii Baill., which has much longer leaves and inflorescences, also occurs on $10 \ cm$

Distribution

Cleidion artense is known only from the northern plateau of Île Art in the remnants of rainforests and dense shrubby maquis between 200 and 250 m. The new species is not common at this locality.

Etymology

This species is named after Île Art, where it is a newly recognised micro-endemic.

Conservation status

Cleidion artense has been found in only one locality, in the rainforest and shrubby maquis remnants of the northern plateau, which represents a single location (sensu IUCN) with respect to the main threat. The main threats to it are the frequent anthropogenic fires in the area that progressively reduce the surface of the remaining patches of forests resulting in an observed and projected decline in EOO, AOO, habitat quality and number of mature individuals. The calculated EOO being smaller than the AOO, the AOO value of 8 km² also applies to the EOO. From IUCN Standards and Petitions Subcommittee (2017) Categories and Criteria, C. artense is assigned the preliminary status of Critically Endangered CR B1ab(i,ii,iii,v)+2ab(i,ii, iii,v).

Specimens examined

NEW CALEDONIA, Province Nord. Belep. Île Art, plateau Nord (rebord Est), 250 m, *H.S.MacKee 30383* (MO 3603593, P 00166146); Île Art, plateau Nord, 200 m, *H.S.MacKee 30523* (NOU 024369, P00166147); Île Art, plateau Nord, *J.-P.Butin 255* (NOU 084489); Île Art, sentier du plateau au dessus de chez Donatienne,

19°41′58.91″S, 163°38′41.26″E, 200 m, G.Gâteblé, E.Bourguet & G. Templier 885 (NOU, P).

Macaranga latebrosa Gâteblé & McPherson, sp. nov.

Diagnosis: among New Caledonian members of the genus, *Macaranga latebrosa* is most similar to *M. corymbosa* (Müll. Arg.) Müll.Arg., with which it shares basally obtuse to cordate and domatia-bearing leaves as well as fruits with soft, spine-like appendages, but from which it can be most easily distinguished by its long-pubescent stems (*v.* puberulence appressed-scurfy) and its longer pistillate inflorescences (5.5–15.0 *v.* 1–3 cm).

Type: New Caledonia, Province Nord, Belep, Île Art, plateau Sud, forêt autour de l'antenne, 19°44′55.68″S, 163°40′36.30″E, 230 m, 26.iv.2017, *G.Gâteblé 901* [♀, ♂] (holo: P!; iso: NOU!).

Shrubs dioecious or monoecious, the individual inflorescences unisexual, 1.0-2.5 m tall, multicaulous, with reddish sap; young stems abundantly pubescent with hairs of two lengths, the shorter ones erect, straight, ~0.5 mm long, the longer ones erect, straight or somewhat bent, 1.5–2.2 mm long. Leaf simple, blade elliptic to ovate or oblanceolate, $7.0-18.5 \times 2.5-8.5$ cm, base narrowly obtuse to narrowly cordate; apex acuminate, the acumen typically 1.0-1.5 cm long, margin entire to somewhat irregularly and coarsely dentate, chartaceous, adaxial surface evenly and openly pubescent with long hairs, abaxial surface similarly but more densely pubescent, abundantly granulose-glandular the midvein and secondary veins also bearing some short hairs, secondary veins (6-)10-15 on each side of the midvein, barely raised adaxially, prominent abaxially and many of them abmedially forked 1-4 times, tertiary veins arranged in a scalariform pattern, raised abaxially, proximal embedded laminar glands occasionally present, 0-4 pairs, often more apparent adaxially than abaxially, up to 0.5 mm long, domatia often present in the axils of the midrib and distal secondary veins as well as in the axils at the abmedial forkings of the secondaries, each domatium formed by a triangular to rounded flap of tissue and densely pubescent (medium hair length) within. Petiole 1.0–3.7 cm long, 0.8-1.8 mm in diameter, nearly terete, pubescent like the stem. Stipules ovate, acute, 1.0–1.5 mm long, pubescent, caducous. Staminate inflorescence spiciform or often with a pair of branches arising at the lowest node, 8-17 cm long, the axis ~0.5 mm in diameter, pubescent like the stem; peduncle up to ~0-3 cm long; bracts ~0.3 mm long; staminate flowers subsessile; pedicel ~0.7 mm long, densely pubescent; sepals 3, ~1 mm long; stamens 5–6, ~1 mm long, shorter than the sepals. Pistillate inflorescences 5.5-15.0 cm long, the axis 0.5-1.0 mm in diameter, often flattened distally, 1–3(–4)-flowered, pubescent like the stem; pedicel 2–7 mm long; bracts $1.0-4.0 \times 0.3$ mm; calyx at first apparently suburceolate (only one young flower seen), with 5(?) acute lobes, soon splitting into 5 narrow sepal-like segments ~2 mm long, acute, pubescent; ovary densely long-pubescent and granulose-glandular; stylodia 6-13 mm long. Fruit bilobed, 7-9 mm wide, 5-6 mm high, ~3 mm thick, pubescent with both long and short hairs, densely granulose-glandular, bearing many soft spines ~1 mm long; column 3 mm high, 2.5-3.0 mm wide distally; seeds spherical, 4.0–4.5 mm in diameter, smooth, black.

Recognition

With its narrowly obtuse to narrowly cordate leaf bases, domatia on the abaxial leaf surface, (sub)spiciform staminate inflorescences, and long pistillate inflorescences (5.5–15.0 cm) producing softly spiny fruits, *Macaranga latebrosa* stands apart from its congeners in New Caledonia. *Macaranga vedeliana* (Baill.) Müll.Arg. also occurs on Île Art, in coastal forests and also, atypically, on the ultramafic plateau. The two species are very easily distinguished from each other even with sterile material and were not observed growing in sympatry.

Distribution

Macaranga latebrosa is known only from Île Art on both plateaus (southern and northern) within or at the edges of the remnants of the higher-elevation (200–230 m) rainforests. It is not common on the southern plateau.

Etymology

The species is named after its very distinctive acarodomatia (H. Jourdan, pers. comm.), 'latebrosa' meaning full of hiding places.

Conservation status

This new micro-endemic species occurs in the narrow ecological ecosystem of higher-elevation rainforests of the island. Like most of this island's endemic species, *M. latebrosa* is highly threatened by anthropogenic bushfires that can simultaneously affect the remnant rainforests on both plateaus and that progressively reduce the surface of the remaining patches of forests, resulting in an observed and projected decline in EOO, AOO, habitat quality and the number of mature individuals. Both plateaus represent a single location (*sensu* IUCN) with respect to the fire threat. The calculated EOO being smaller than the AOO, the AOO value of 12 km² also applies to the EOO. According to IUCN Standards and Petitions Subcommittee (2017) Categories and Criteria, *Macaranga latebrosa* is assigned the preliminary status of *Critically Endangered* CR B1ab(i,ii,iii,v).

Specimens examined

NEW CALEDONIA, Province Nord. Belep. Île Art, plateau au nord du terrain d'aviation, *D.Bourret 1885* (NOU 025124); Île Art, plateau Nord (rebord Est), 220 m, *H.S.MacKee 30459* (MO 3603856, NOU 025109, P 00172334); Île Art, plateau Nord, 200 m, *H.S.MacKee 30525* (P 00172335); Île Art, plateau Sud, antenne, 19°44′59″S, 163°40′42″E, *J.Munzinger, U.Swenson & L.Barrabé 5737* (NOU 051015); Île Art, plateau au dessus de Wala, ~230 m, *J.-M.Veillon 2708* (MO 6053173, NOU 025112).

Lauraceae

Endiandra artensis Munzinger & McPherson, sp. nov.

Diagnosis: among New Caledonian species of Endiandra, the new species most closely resembles E. lecardii Guillaumin and E. neocaledonica Kosterm. in its mid-sized, glabrescent leaves (blade up to 8 cm long, petiole more than 10 mm long) and glabrescent stems; however, in E. artensis the tepals are

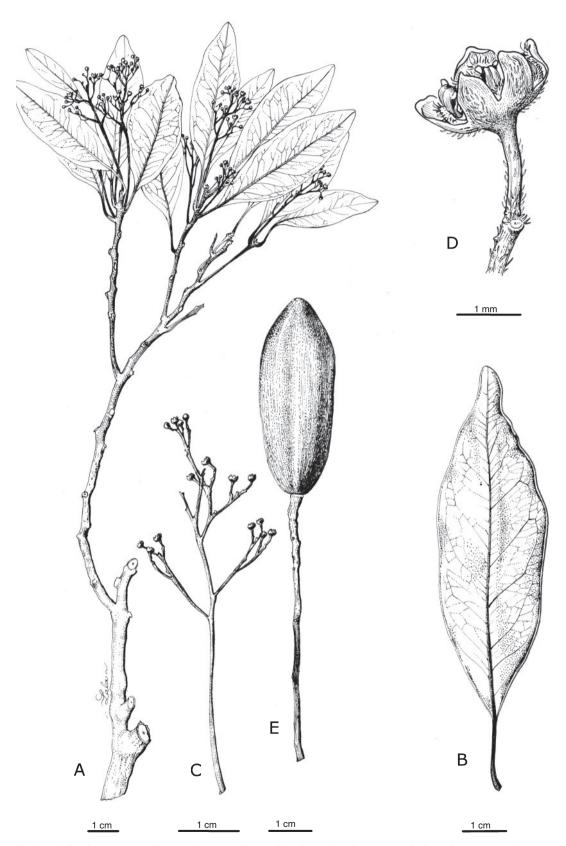


Fig. 7. Endiandra artensis. A. Flowering branch. B. Shape of a leaf (adaxial surface). C. Detail of an inflorescence. D. Close-up of a flower. E. Fruit. Drawn from *H.S.MacKee 30476* (A–D) and *C.Tirel 1298* (E). Drawings by Roger Lala Andriamiarisoa.

Fig. 8. A. View from O'ono of the peninsula in the north of Île Art, showing the degraded vegetation and Île Pott in the background. B. *Psychotria neodouarrei*. C. *Endiandra artensis*. D–F. *Planchonella serpentinicola*. B. *J.Fambart-Tinel (leg. J.-P.Butin) 213*; C. *J.-P.Butin 251*. D. *G.Gâteblé 926*; E. *U.Swenson & J.Munzinger 1117*; F. *U.Swenson & J.Munzinger 715*. Photos: Jean-Pierre Butin (A–C); Gildas Gâteblé (D); Ulf Swenson (E, F).

shorter (1.0-1.5 mm long v. 1.5-2.0 mm in E. lecardii and E. neocaledonica), the staminodes are at least half as long as the fertile stamens (v. up to one-third as long), the leaf blades are thinner and smooth (v. coriaceous and muricate), and the species is restricted to \hat{l} le Art (v. widespread on Grande Terre).

Type: New Caledonia, Province Nord, Belep, Île Art, plateau Nord, rebord Est, 220 m, forêt dense humide, terrain rocheux serpentineux, 9.xii.1975, *H.S.MacKee* 30476 (holo: P 01753198!; iso: MO 6850477!, NOU 016556!, MPU 310777!).

Trees hermaphroditic, 4-10 m tall. Diameter ~35 cm. Bark nearly smooth to rather rough, light brown. Terminal buds densely appressed-pubescent with brownish or greyish hairs, the *young stems* quickly glabrescent, shallowly lined and wrinkled when dry, lenticellate only well below leafy portion, the lenticels somewhat raised. Leaf simple, subopposite to alternate, blade elliptic, 4.0-8.0 × 1.8-4.0 cm, base attenuate to acute, apex obtuse, chartaceous, adaxial and abaxial surfaces sparsely appressed-puberulent at first, quickly glabrescent, muricate only along the midvein, secondary veins 8-9 on each side, slightly raised on both surfaces as is the higherorder venation. Petiole $10.0-16.0 \times \sim 1.5$ mm, flat adaxially, appressed-puberulent at first, quickly glabrescent. *Inflorescence* axillary, paniculate, 1.2–7.5 cm long, the axes sparsely puberulent; peduncle 8-38 mm long, ~0.6 mm in diameter; bracts minute; pedicels 1.0-2.5 mm long. Flowers yellow, 1.5 mm long, up to 3 mm in diameter at full anthesis; tepals ovate, 1.5 mm long, spreading at anthesis, subequal, abaxially glabrous or sparsely pubescent, adaxially densely pubescent except near margins. Fertile stamens 3, ~0.8 mm long, filaments ~0.3 mm long, pubescent, anthers lateral, ~0.5 mm long, glabrous, basal glands sessile, subtriangular, 0.5 mm long, glabrous; staminodes 3, ~0.4–0.6 mm high (i.e. at least half as long as the fertile stamens), pubescent basally. Ovary ovoid, ~1 mm high, glabrous. Fruit ellipsoid, smooth, purple-black, $3.2-4.0 \times 1.6-1.9$ cm.

Recognition

Endiandra artensis is easily recognised in the field, because it is the only member of its genus known to occur on Île Art. The two species that it most closely resembles, namely, *E. lecardii* and *E. neocaledonica*, are restricted to Grande Terre and have more coriaceous leaves with thicker petioles, as well as longer tepals $(1.5-2.0 \,\mathrm{mm}\,v.\,1.0-1.5 \,\mathrm{mm})$ and shorter staminodes (up to 1/3 the length of the fertile stamens).

Distribution

Endiandra artensis is endemic to low rainforests of the ultramafic plateaus of Île Art.

Etymology

This species is named after Île Art, where it is a newly recognised micro-endemic.

Conservation status

Endiandra artensis was seen only in the remnants of rainforest of the northern and southern plateaus of Île Art. The plant is

threatened by anthropogenic bush fires on both plateaus and as a single fire can affect both plateaus, it is considered as a single location (*sensu* IUCN). The successive fires are source of an observed and projected decline in EOO, AOO, habitat quality and the number of mature individuals. The calculated EOO being smaller than the AOO, the AOO value of 12 km² also applies to the EOO. *Endiandra artensis* is assigned the preliminary status of *Critically Endangered* CR B1ab(i,ii,iii,v).

Specimens examined

NEW CALEDONIA, Province Nord. Belep. Île Art, plateau Nord, 200 m, *H.S.MacKee 30524* (MO 6850478, NOU 016553, P 01753201, P 02116875); Île Art, *Ph.Morat 6176* (MO 6850479, NOU 016555, P 02003038); Île Art, partie Sud, *P.Cabalion 663* (NOU 016552); Île Art, partie Sud, *C.Tirel 1298* (P 02194641); Île Art, plateau Sud, *J.-M.Veillon 3703* (MO 6850480, NOU 016554, P 02003056, P 02033072); Île Art, plateau Nord, 220 m, *J.-P.Butin 251* (NOU 084485).

Myrtaceae

Eugenia belepiana J.W.Dawson ex N.Snow, sp. nov.

Diagnosis: among other New Caledonian members of the genus, Eugenia belepianiana resembles E. ericoides Guillaumin but differs from that species by its prostrate to spreading growth habit, narrower and shorter leaves $(6.0-14.0 \times 0.4-0.8 \text{ mm})$, and sessile flowers. The reddish flaking bark and spreading growth habit of the new species resemble those of E. horizontalis Pancher ex Brongn. & Gris, but that species differs by its broader leaves (2-15 mm), its long-pedicellate flowers, and its bark, which peels to a greater extent than that of E. belepiana.

Type: New Caledonia, Province Nord, Belep, Île Art, plateau Nord (rebord Est), 250 m, 8.xii.1975, *H.S.MacKee 30377* (holo: P 05121251!: iso: NOU 082631!).

Shrubs hermaphroditic, prostrate, of low stature (height unconfirmed), comprising a few to several thicker spreading branches, each moderately to densely crowded with thinner short shoots bearing moderate to dense foliage. Plants glabrous and eglandular except as noted. Branchlets terete or slightly laterally compressed, the epidermal layers reddishmaroon to dark brown or nearly blackish and flaking irregularly in thin layers continuously (including older stems). Leaf simple, opposite (rarely 3 per node), blade (4.0-) $6.0-14.0 \times 0.4-0.8(-3.0)$ mm, linear or somewhat falcate, base tapering slightly into petiole, apex obtuse and sometimes somewhat curving downwards, often diverging widely, margin flat, coriaceous, slightly discolorous, surfaces matte, sparsely sericeous on emergence (trichomes dibrachiate) but otherwise glabrous, oil glands few but pronounced (with magnification) and concentrated near margin; secondary veins (and midvein usually) obscure above and below. Petiole ~0.5 mm. Inflorescence of small sessile flowers, axillary or terminal; bracteoles 0.5-0.9 × < 0.5 mm, narrowly triangular to narrowly elliptic. Hypanthium 0.6–1.3 mm, obconic, sparsely glandular; ovary apex glabrous. Calyx lobes 4, 0.6–1.3 mm, broadly triangular, slightly dimorphic, apex broadly acute,

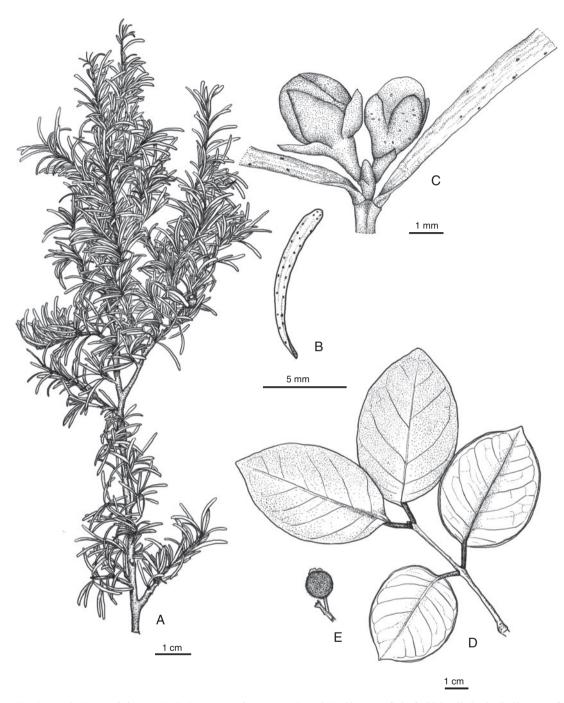


Fig. 9. A–C. Eugenia belepiana. D, E. Eugenia insulartensis. A. Branch. B. Close-up of a leaf with its oil glands. C. Close-up of flower buds D. Branch E. Close-up of a velutinous fruit. Drawn from *H.S.MacKee 30377* (A), *T.Jaffré 1538* (B, C), *H.S.MacKee 30468* (D, E). Drawings by Laurence Ramon.

minutely and sparsely ciliate apically. *Petals* 4, ~1.7–2.5 mm, widely obovate to oblate, minutely sparsely ciliate, white or pinkish. *Staminal ring* sparsely ciliate or glabrous. *Stamens* <30; *filaments* ~2–3 mm, white; *anthers* 0.3–0.4 mm, globular to subglobular, with terminal gland, tawny. *Style* 2.5–5 mm; *stigma* narrow. *Fruit* unknown.

Recognition

The short, linear to falcate leaf blades coupled with the prostrate or nearly prostrate growth and sessile flowers of *E. belepiana* are unmistakable in the genus. The species sometimes has three leaves per node, and individuals may have a few narrowly elliptic

leaves interspersed with the overwhelmingly linear-falcate ones. Its scraggly, spreading growth habit also helps differentiate it from other species of the genus in New Caledonia, such as an undescribed species *Eugenia* sp. 'adenosticta' from Mont Taom, Unio and Tontouta, which consistently has elliptic leaves.

Distribution

Known only from the northern plateau of Île Art on ultramafic substrate up to ~250 m. The label of the type gathering indicates that the plant was quite common in shaded areas, but that was over 40 years ago. From its recent collection and observation (J.-P. Butin, pers. comm.), there are not that many plants left in a secondary type of vegetation mainly composed of *Acacia spirorbis* Labill.

Etymology

The species is named after the Belep archipelago, Île Art being part of this archipelago, where it is a newly recognised microendemic.

Conservation status

Eugenia belepiana has been confirmed so far only in the remnants of rainforest of the northern plateau of Île Art, in one location. However, one of the co-authors (GG) recalls seeing what he believed was the same species in the rainforest of the southern plateau in 2017, but was unable to collect or photograph the specimen. The main threats to it are the anthropogenic fires that occur frequently in the area that are sources of of an observed and projected decline in EOO, AOO, habitat quality and the number of mature individuals. The calculated EOO being smaller than the AOO, the AOO value of 4 km² also applies to the EOO. From IUCN Standards and Petitions Subcommittee (2017) Categories and Criteria, E. belepiana is assigned the preliminary status of Critically Endangered CR Blab(i,ii,iii,v)+2ab(i,ii,iii,v).

Specimens examined

NEW CALEDONIA, Province Nord. Belep. Île Art, plateau Nord, *T. Jaffré* 1538 (NOU 082629, P 05094280); Île Art, plateau vers 220 m, *J.-M.Veillon* 2899 (NOU 082630); Île Art, plateau Nord, *J.-P.Butin* 227 (NOU 084469).

Eugenia insulartensis J.W.Dawson ex N.Snow, sp. nov.

Diagnosis: among other New Caledonian members of the genus, *Eugenia insulartensis* differs by the combination of branchlets that often arch slightly between successive nodes, the glabrous, elliptic to broadly elliptic leaves that sometimes are slightly conduplicate above the petiole, and especially by the densely tomentose fruits bearing a coppery indumentum.

Type: New Caledonia, Province Nord, Belep, Île Art, plateau Nord (rebord Est), 220 m, 9.xii.1975, *H.S.MacKee 30468* (holo: P 05094571!; iso: NOU 082595!).

Shrubs hermaphroditic, 3–4 m, slender. Bark of main stem greyish-brown, becoming irregularly roughened. Branchlets terete or compressed (immature), light brown–grey, glabrous, smooth, eglandular, sometimes somewhat arching between

successive nodes. Leaf simple, opposite, blade (3.0-) $4.5-12.0 \times 2.0-6.8$ cm, elliptic to broadly elliptic, base rounded to somewhat cuneate and sometimes slightly conduplicate at junction with petiole, apex broadly acute to mostly obtuse, margin flat or slightly revolute, coriaceous, eglandular, surfaces matte or slightly glossy above; venation brochidodromous, discolorous, glabrous, adaxial midvein broadly sulcate proximally, typically flush (or nearly so) distally; abaxial secondary veins faint, more or less straight between midvein and marginal vein, marginal vein indistinct, 1.5-3.0 mm from margin at midpoint of blade. Petiole 8-14 mm, sulcate above, coarsely rugose, minutely greytomentose. Inflorescence consisting of monads, triads or short brachyblasts, solitary, cauliflorous, paired, or fascicled ~1–2 cm long; peduncle 5-9 mm, rigid, densely short ferrugineousvelutinous; bracteoles not seen. Hypanthium 3-5 mm, cupulate, pinkish in bud, densely short ferrugineousvelutinous. Calyx lobes 4, 2-4 mm long, broadly rounded to elliptic, apex obtuse, indumentum of both surfaces as on hypanthium, persistent on and more or less crowning mature fruit. Petals 6-7 × 4-5 mm, elliptic to narrowly obovate, minutely ciliate on margins, whitish. Stamens >150, multiseriate; filaments 4-6 mm; anthers 0.5-0.8 mm, globose to subellipsoid, basifixed, eglandular; staminal disk densely short velutinous. Style ~4-5 mm, glabrous; stigma narrowly if at all capitate. Fruit globose or subglobose, rounded at base, ~7–20 mm, sepal lobes persistent and crowning the fruit, densely brownish-velutinous.

Recognition

The glabrous leaves of this new species contrast with the densely pubescent flowers and fruits (of the latter, see especially *MacKee 30385* in fragment packet). Among congeners on Île Art, the slightly arching branchlets between successive nodes, elliptic leaves with sulcate petioles, narrow peduncles of the flowers and fruits, and densely velutinous fruits are reliable diagnostic field traits. Leaves that appear to be pruinose, in fact, are densely ingrown by fungal hyphae; the whitish colour, therefore, is not a waxy covering. *Eugenia insulartensis* might be confused with the widespread *E. gacognei* Montrouz., but its longer petioles (8–14 mm), pedicillate flowers, and sometimes conduplicate leaf bases differ from the latter. *Eugenia insulartensis* also somewhat resembles *E. mendute* Guillaumin in leaf size and shape, but the former has densely velutinous flowers.

Distribution

In dense and (often shaded) rainforests on rocky serpentines on the eastern edge of the northern plateau near the east-central coast on Île Art at 220–250 m. *Eugenia insulartensis* is presently known from only one locality, the gatherings of which were made on consecutive days.

Etymology

A Latin derivation of Île Art, its only known location.

Conservation status

Eugenia insulartensis has been collected only in the rainforest remnants of the eastern border of the northern plateau of Île Art.

The main threats in this area are the anthropogenic fires that progressively reduce the surface of the remaining patches of forests, resulting in an observed and projected decline in EOO, AOO, habitat quality and the number of mature individuals. The calculated EOO being smaller than the AOO, the AOO value of 4 km² also applies to the EOO. From IUCN Standards and Petitions Subcommittee (2017) Categories and Criteria, *E. insulartensis* is assigned the preliminary status of *Critically Endangered CR* Blab(i,ii,iii,v)+2ab(i,ii,iii,v).

Specimens examined

NEW CALEDONIA, Province Nord. Belep. Île Art, plateau Nord, *T. Jaffré 1567* (NOU 054945, P 05094287); Île Art, plateau Nord (rebord Est), 250 m, *H.S.MacKee 30385* (NOU 082593, P 05094570).

Rubiaceae

Psychotria neodouarrei Barrabé & A.Martini, sp. nov.

(Fig. 1B, 8A, B, 10A-I.)

Diagnosis: Psychotria neodouarrei resembles P. gabriellae (Baill.) Guillaumin in having bifid, caducous and free stipules, glabrous leaves, compound cymes, and funnelformed, not pure white corolla, but differs most notably from the latter species in having obovate (ν . elliptic) leaf blades, angular (ν . round) buds, bluish-white (ν . pink) corolla, and bluish-black (ν . white to blue grey) fruits with a thin (ν . white and spongy) mesocarp.

Type: New Caledonia, Province Nord, Belep, Île Art, plateau au nord d'Oono, 29.vii.2009, *J.Fambart-Tinel (leg. J.-P.Butin)* 213 (holo: P!; iso: NOU052690!).

Shrubs hermaphroditic, up to 1 m tall, branched; bark light grey when dry, glabrous, slightly striate longitudinally, without lenticels; young shoots, petioles, and terminal vegetative buds glabrous. Leaf simple, spread along stem, glabrous, blade generally obovate, sometimes elliptic, $2.6-9.0 \times 0.9-4.4$ cm, acute and slightly decurrent at base, briefly acuminate at apex, margin entire and slightly revolute, chartaceous and leathery, concolorous when dry, midvein brown-red when dry, raised and slightly channeled on adaxial surface, raised on abaxial surface, secondary veins 5-11 on each side, spaced at 1.5-11.0 mm, at 38-55° angle with the midvein, slightly raised to impressed on adaxial surface, slightly raised on abaxial surface, tertiary venation obscure on both surfaces. Petiole slightly wrinkled when dry, 0.4–1.7 cm long, 1.0–1.5 mm thick, plano-convex, slightly channeled on adaxial face, dark brown to black when dry. Stipules free, ovate, $3.0-5.0 \times 1.0-2.5$ mm, margins entire, bifid, chartaceous, colour unknown, glabrous, deciduous, lobes narrowly triangular with a base of 1.5–3.0 mm; colleters present on the inner surface, narrowly triangular, brown. Inflorescence erect, a compound cyme, 3 or 4 times branched, glabrous, pedunculate; peduncule 3-16 mm long, 1.25-1.5 mm width, slightly striate longitudinally; bracts axillary to each secondary peduncule, lanceolate, tapered, navicular, acute, $1.5-2.0 \times 0.5$ mm, margin entire, brown when dry, glabrous on adaxial side; pedicel up to 0.5 mm long, 0.75 mm wide; bracteoles 1 or 2, axillary to each flower, narrowly triangular, up to 1.5 mm long. Flowers 5-merous, erect, slightly pedicellate, style heterogeneity unknown; buds obovoid and angular. Hypanthium turbinate, $1.0-1.5 \times 1.0$ mm, colour unknown, glabrous; nectary disk entire, dome-shaped, 1 mm in diameter, glabrous. Calyx coriaceous, light green, glabrous outside, hirsute inside; tube up to 2 mm long, 1 mm wide, colleters lacking; lobes triangular, up to 0.25 mm long, obtuse at apex with a rounded apicule, erect, margin entire. Corolla actinomorphic, funnelform, chartaceous, bluish-white, glabrous outside, sparsely hirsute inside on lobes and on a cylinder of 5.5 mm high, then glabrous 2.8 mm from the base; tube straight, 7.0-9.2 mm long, throat slightly flared, 3.0-4.5 mm wide at mouth, base 1-2 mm wide; lobes narrowly triangular, $2.0-5.5 \times 1.0-2.0$ mm, rounded at apex, erect (at anthesis). Stamens partially included, glabrous; filaments linear, ~0.75 mm long, terete, adnate to corolla ~1 mm below the mouth; anthers oblongoid, ~2.9-1.0 mm, medifixed. Style filiform, $9.0-10.5 \times 0.3$ mm, terete, glabrous, stigma bilobed, papillate, lobes up to 0.3 mm long. Fruit (unripe) globose, 9.7 × 7.5 mm; exocarp smooth, colour unknown, glabrous; mesocarp thin, not spongy; pyrenes (unripe) plano-convex, ovoid, $2.25-2.5 \times 1.1 \times 4.1$ mm, round at base, obtuse at apex; dorsal side convex, strongly wrinkled, 4-channelled; ventral side flat, wrinkled, with a thin raised median crest; pregermination slits lacking, basal aperture present; exotesta unknown.

Recognition

Psychotria neodouarrei shares a similar morphology of its inflorescences, flowers and fruits with a group of 11 New Caledonian species that includes the well known hyperaccumulator P. gabriellae, P. belepensis Barrabé & Mouly, P. ferdinandi-muelleri Guillaumin, P. guillauminiana Barrabé & Mouly, P. oua-tilouensis Guillaumin, P. pininsularis Guillaumin, P. semperflorens (Pancher ex Beauvis.) Guillaumin and four other new species not yet described. The bluish-white corolla and bluish-black fruits of P. neodouarrei recall those of P. oua-tilouensis. However, the latter has narrowly ovate abaxially velutinous leaf blades greater than 9 cm in length, and large, elongated inflorescences with numerous flowers (>50) v. obovate glabrous leaf blades less than 9 cm, and small, compact inflorescences with few flowers (<30). The bifid stipules ressemble those of *P. gabriellae*, and *P. belepensis*; however, P. gabriellae and P. belepensis differ from P. neodouarrei in having a pink corolla, elliptic and narrowly ovate leaf blades with an acute apex and generally acute base. The angular buds of P. neodouarrei are similar to those of P. ferdinandi-muelleri and P. guillauminiana but both P. ferdinandi-muelleri and P. guillauminiana have pink corollas and linear leaf blades with a white prominent adaxially midvein. Psychotria ferdinandi-muelleri has also large persistent light green and involute stipules (>1 cm long) v. small caducous and flat stipules (<5 mm long) in P. neodouarrei. Last, P. pininsularis and P. semperflorens differ from P. neodouarrei by having pink corollas, connate stipules and round buds.

Distribution

Psychotria neodouarrei is known from three islands of the Belep archipelago, namely, Île Art, Île Pott, Île Daos du Nord, where it

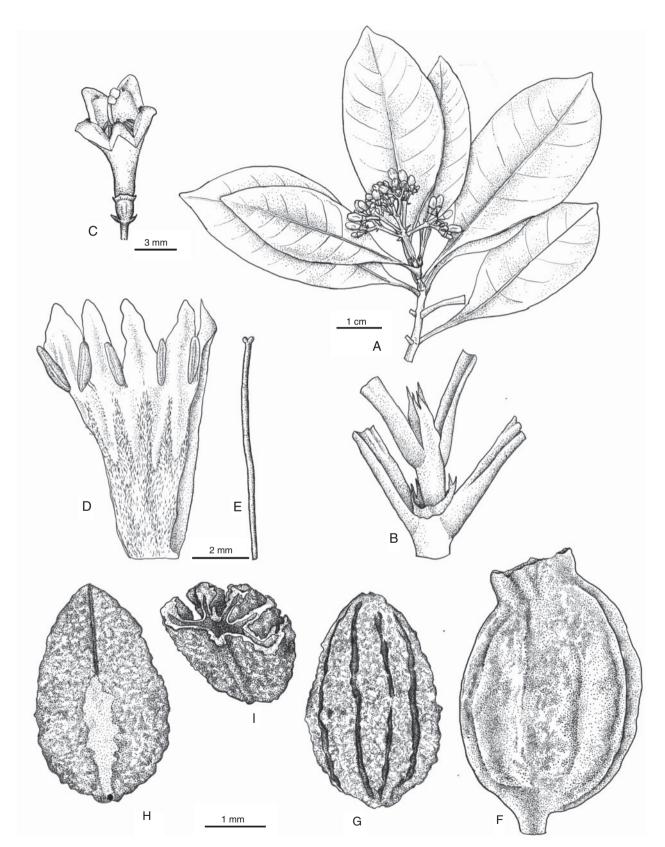


Fig. 10. Psychotria neodouarrei. A. Flowering branch. B. Close-up of the branch tip showing the stipules. C. Flower. D. Inner surface of flower. E. Pistil. F. Fruit. G. Dorsal view of pyrene. H. Ventral view of pyrene. I. Cross-section of pyrene. Drawn from J.Fambart-Tinel (leg. J.-P. Butin) 213 (A-C), J.Fambart-Tinel (leg. J.-P. Butin) 256 (D, E), J.-P.Butin 30 (F-I). Drawings by Laurence Ramon.

occurs in low maquis at elevations near the sea level. This new species is locally rare (only two individuals recorded at O'ono; J.-P. Butin, pers. comm.).

Etymology

Barrabé et al. (2013) raised the question of an uncertain taxon from the Belep archipelago described in 1860 by Montrouzier as Douarrea alba Montrouz., which was later recognised as Mapouria douarrei Beauvis. by Beauvisage in 1894. The type specimen was considered to have been destroyed, and the diagnosis was insufficient to attribute this name precisely to one of the four species occurring in the Belep. One of these four species clearly belongs to the genus Eumachia DC. (i.e. E. collina (Labill.) Barrabé, C.M.Taylor & Razafim., see Taylor et al. 2017). Another has pink flowers (i.e. Psychotria belepensis), and the last two have white to bluish-white corollas (i.e. P. montrouzieri Barrabé & J.Florence with large sepals and a previously nameless species with small sepals). The original diagnosis of D. alba mentioned that it possesses white flowers and a short calyx that correspond better to the un-named species. However, considering that the Belep archipelago could shelter a fifth species that is not rediscovered and that the type specimen of D. alba is lost, it seems best to attribute this name to the species with bluish-white flowers and small calvx. We have, consequently, decided to consider D. alba as a doubtful species and to describe here the species with bluishwhite flower as P. neodouarrrei to recall the names of Montrouzier and Beauvisage.

Conservation status

Psychotria neodouarrei has been found in three localities, namely, Île Art, Île Daos du Nord and Île Pott, which represent three locations with respect to the main threat, the recurrent anthropogenic fires that progressively reduce the surface of the native vegetation and result in an observed and projected decline in EOO, AOO, habitat quality and the number of mature individuals. The calculated EOO and AOO are 31 km² and 16 km² respectively. On the basis of IUCN Standards and Petitions Subcommittee (2017) Categories and Criteria, P. neodouarrei is assigned the preliminary status of Endangered EN B1ab(i,ii,iii,v)+2ab(i,ii,iii,v).

Specimens examined

NEW CALEDONIA, Province Nord. Belep. Île Art, plateau au nord d'Oono, *J.Fambart-Tinel (leg. J.-P.Butin) 256* (NOU 083380); Île Daos du Nord (Dau âc), *Butin 30* (NOU 079682); Île Pott, Mouane, 0–60 m, *H. S.MacKee 19375* (NOU 032616, P 04531115).

Sapotaceae

Planchonella serpentinicola Swenson & Munzinger, sp. nov.

Diagnosis: Planchonella serpentinicola differs from the other members of the genus in New Caledonia, especially *P. contermina* and *P. povilana*, by the combination of its oblanceolate—obovate leaves, with usually four pairs of

secondary veins, tubular flowers with fimbriate corolla margin, and ovoid to pear-shaped fruits.

Type: New Caledonia, Province Nord, Belep, Île Art, north plateau, along the most eastern prospecting track, 19°42′06″S, 163°39′49″E, 256 m alt., 26.viii.2009, *U.Swenson, J.Munzinger & L.Barrabé 921* (holo: P 01156238!; iso: NOU 051206!, S 09-36604!).

Shrub or small tree hermaphroditic, up to 5 m tall, usually much branched. Leaf simple, blade oblanceolate to obovate, $2.8-5.5 \times 1.0-3.0$ cm, base cuneate, apex round to slightly retuse, flat with a pronounced margin, first ferruginous tomentulose on both surfaces, soon glabrous above, turning grevish tomentulose below, partly glabrescent; venation brochidodromous, weak on both surfaces; secondary veins straight, meeting the midvein at 40-55°, usually of 4 pairs (sometimes 3 or 5), intersecondaries rarely present, tertiary veins laxly reticulate, very weak. Petiole 3-8 mm long, tomentulose, ferruginous, turning greyish. Flowers usually solitary, axillary, 5-merous, borne on a pedicel 6-12 mm long with the same indument as the petiole. Sepals 5-10 mm long, glabrous inside, with the same indument as the pedicel outside, the inner sepals usually with a glabrous margin. Corolla tubular, cream or pale greenish, 8–10 mm long, glabrous, the lobes with a ciliate margin. Stamens inserted just above the middle of the corolla tube, not exserted; anthers 1.5–1.8 mm long; staminodes flat, linear or lanceolate, entire. Gynoecium flask-shaped, with a proportionally long style (~8 mm), hispid at base, with 5 round stigmatic areas. Fruit ovoid to pear-shaped, not ridged, $15-25 \times 6-15$ mm, 3-5-seeded, pubescent, partly glabrescent, with a remnant style 4-8 mm long; seeds shaped like segments of an orange, laterally compressed, 10–14 mm long, 3–4 mm wide; seed scar 90–100% of the seed length; testa light brown, shiny, thin, ~0.4 mm thick; cotyledons foliaceous, white, with an exserted radicle below the commissure; endosperm present.

Recognition

Planchonella serpentinicola could be confused with two congeners, P. contermina Pierre ex Dubard and P. povilana Swenson & Munzinger, all belonging to the same clade of 14 endemic species from New Caledonia (Swenson et al. 2007; U. Swenson, unpubl. data). In this clade, P. serpentinicola is sister to the remaining species in the clade. Planchonella serpentinicola is distinguished from these two species by the shape of the leaves, the number of secondary veins, corolla morphology and fruit shape. Leaves of all three are somewhat similar, usually oblanceolate to obovate in P. serpentinicola, spathulate to orbicular in P. povilana, and obovate-oblanceolate-linear in P. contermina, but the former usually has four pairs of secondary veins v. six or more in the latter two species. Moreover, P. serpentinicola has the longest corolla (8–10 mm) with fimbriate corolla-lobe margins v. 6–8 mm long in P. contermina and 7 mm long in P. povilana, both of which have glabrous lobe margins. Around Voh and the Plateau de Tiéa grow populations of P. contermina with small, oblanceolate leaves (Fig. 11H) similar to those of P. serpentinicola, but the fruit of P. contermina is more globose and not ovoid or pear-shaped as in P. serpentinicola (Fig. 11F).

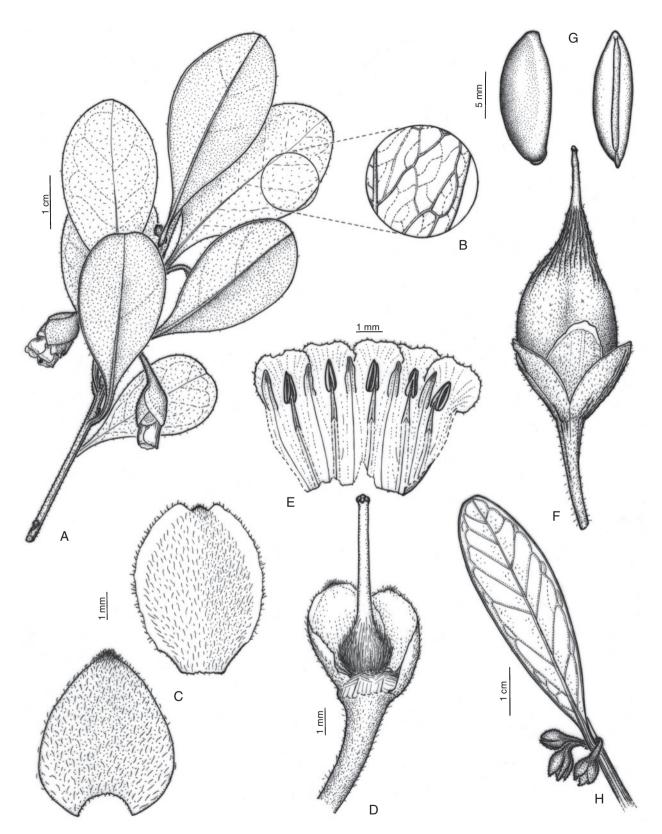


Fig. 11. Planchonella serpentinicola. A. Flowering branch. B. Close-up of leaf venation (upper surface). C. Outer surface of sepals, outer (bottom) and inner (top). D. Gynoecium on its receptacle. E. Open five-merous corolla from the inside showing corolla lobes, stamens, and staminodes. F. Fruit. G. Seed, side view (left) and seed scar (right). H. Planchonella contermina from Plateau de Tiéa (H.S.MacKee 30048), for comparing leaf shape, number of secondary veins, and size of flower. Drawn from U.Swenson & J.Munzinger 1117 (A–E) and U.Swenson & J.Munzinger 715 (F, G). Drawings by Monika Osterkamp.

Distribution

Planchonella serpentinicola is known from Île Art in the Belep archipelago, and also occurs in Baaba and Yandé islands (Poum municipality). The species is a naturally common (at least before the severe fire in August 2016) shrub or small tree on Île Art, being a dominant member of the low and dense forest on ultramafic soil, primarily serpentine (Fig. 1B). One population is known from Grande Terre, on the western slope of Mount Tiébaghi, where it occurs in maquis vegetation.

Etymology

This species is named *serpentinicola* because it occurs (*-cola*, -dweller) on serpentine.

Conservation status

The known distribution of *Planchonella serpentinicola* form an EOO of 700 km² and an AOO of 40 km². None of the locations is protected, but instead half of the known locations are located in mining concessions, and, thus, are under risk from future mining activities. Anthropogenic fires are also an important threat in that area. With an observed and projected decline in EOO, AOO and the number of mature individuals, *Planchonella serpentinicola* is assigned an IUCN preliminary status of *Endangered*, EN B1ab(iii,v)+2ab(iii,v).

Specimens examined

NEW CALEDONIA, Province Nord. Koumac. Western base of Mount Tiébaghi, 50 m, 20°30′22″S, 164°12′50″E, U.Swenson & J.Munzinger 1117 (BRI, G, MO, NOU, P, S 13-19098). Poum. Île Baaba, secteur sudouest (Tiomatch), 30-130 m, H.S.MacKee 23165 (NOU 009869, P 00538591); Île Yandé, 50-100 m, H.S.MacKee 22626 (G, MO, MPU, NOU 009870, NY, P 00352923, S 14-30127); Yandé, on the eastern slope, 120 m, 20°02'49"S, 163°49'19"E, U.Swenson & J.Munzinger 715 (NOU 009932, P, S 05-10376). Belep. Île Art, après le creek Weaa, J.-P.Butin 32 (NOU); Île Art Sud, P.Cabalion 667 (NOU 009867, P 00538592); Île Art, Centre-Ouest, J.-M. Veillon 3671 (NOU 009872); Île Art, northern plateau, along the most eastern prospecting track, 256 m, 19°42′10"S, 163°40′01"E, U.Swenson, J.Munzinger & L.Barrabé 910 (MO, NOU 051200, P 06707415, S 09-36482); Île Art, northern plateau, along the most eastern prospecting track, 256 m, 19°42'21"S, 163°39'58"E, U.Swenson, J.Munzinger & L.Barrabé 914 (BRI, MO, NOU 051211, P 06707408, S 09-36486); Île Art, northern plateau, along the most eastern prospecting track, 256 m, 19°42′06″S, 163°39′49″E, U.Swenson, J.Munzinger & L.Barrabé 919 (NOU 051208, S 09-36602); Île Art, partie Nord, 200 m, *H.S.MacKee 30450* (G, MO, NOU 009866, P 00428189, S 14-33648); Île Art, partie Sud, 50 m, C. Tirel 1295 (P 00292110); Île Art, plateau, T.Jaffré 1528 (NOU 009871, P, S 07-15266); Île Art, plateau Sud, J.-M. Veillon 3699 (NOU 009865, P 02089456); Île Art, s.loc., J.M.Veillon 2701 (P 02089463, S 14-33697); Île Art, s.loc., J.-M.Veillon 3725 (NOU 009868, P 02089455); Île Art, sentier du plateau au dessus de chez Donatienne, 19°41′58.91″S, 163°38′41.26″E, 200 m, G.Gâteblé, E.Bourguet & G. Templier 859 (NOU, P); Île Art, maquis de Keyani au nord, 19°38′53.08″S, 163°38′35.19″E, 80 m, G.Gâteblé 926 (NOU, P).

Concluding remarks

The Belep archipelago, as part of the *Zone du Grand Lagon Nord*, is a part of a site on the UNESCO World Heritage List in recognition of its reef diversity and associated ecosystems. However, its highly endemic and threatened terrestrial biota

also should be considered a major part of this natural heritage. We hope this new taxonomic account will raise public awareness of the unique Belep flora and the need for urgent and concrete actions to ensure its conservation. This could include (1) delineating one or several North Province reserves on both Art and Pott islands, (2) increasing awareness among the local population (custom authorities, local Belep UNESCO management committee) of the importance of preventing deliberately set fires, (3) formalising the memorandum of understanding to ensure that no future nickel mining activities take place on Pott and Art islands and (4) setting up urgent *in situ* and *ex situ* conservation programs for the most *Critically Endangered* and *Endangered* taxa on the brink of extinction.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Declaration of funding

Institut Agronomique néo-Calédonien (IAC) supports this paper by way of Open Access publication.

Acknowledgements

The authors thank the curators of all the herbaria listed for permitting access to their collections, as well as Sandrine Isnard and Jacqueline Fambart-Tinel (NOU) for providing scans, and Pete Lowry (MO and P) for arranging to have duplicate Euphorbiaceae specimens sent to MO. The conservation authorities of North Province (Jean-Jérôme Cassan, DDEE) as well as custom authorities of Belep islands kindly granted access to Île Art for fieldwork. Hervé Jourdan, Edouard Bourguet and Gwenaïs Templier (IRD) are thanked for logistics and help in the field. Dominique Fleurot (DDEE) provided useful GIS data on the Belep archipelago. Many thanks go to Roger Lala Andriamiarisoa, Monika Osterkamp and Laurence Ramon for their fine drawings, to Jean-Pierre Butin who provided permission to use his images and who shared his knowledge and to Armelle Tardivel for mounting Fig. 5 and 8. Fabien Albouy (OEIL) provided the most precise and unpublished shapefile for fire occurrence in Île Art for July-December 2016. Gendrilla Warimavute (Endemia Red List Authority) kindly calculated and provided EOO and AOO data used for conservation assessments. N. Snow thanks Kanchi Gandhi (GH) for assistance with nomenclature. L. Barrabé thanks Aurore Martini who participated actively to the description of Psychotria neodouarrei. G. Gâteblé is most thankful to Vincent Tanguy who coordinated the Endemia local IUCN Red List Authority (2014–February 2018) and who provided the in press IUCN evaluations awaiting formal publication. The three reviewers (Pete Lowry, Martin Callmander and Brendan Lepschi) have provided numerous useful comments on the earlier version of the manuscript and are also gratefully acknowledged. Thanks also go to Darren Crayn for inviting us to submit this paper.

References

Bachman S, Moat J, Hill AW, de la Torre J, Scott B (2011) Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. ZooKeys 150, 117–126.

Barrabé L (2014) Four new species of *Psychotria* (Rubiaceae) from New Caledonia, including one presumed to be extinct. *Phytotaxa* **173**, 101–116. doi:10.11646/phytotaxa.173.2.1

Barrabé L, Mouly A, Florence J (2013) Psychotriae (Rubiaceae) neocaledonicarum specierum nomenclator. Adansonia 35, 281–357. doi:10.5252/a2013n2a6

- Barrabé L, Maggia L, Pillon Y, Rigault F, Mouly A, Davis AP, Buerki S (2014) New Caledonian lineages of *Psychotria* (Rubiaceae) reveal different evolutionary histories and the largest documented plant radiation for the archipelago. *Molecular Phylogenetics and Evolution* 71, 15–35. doi:10.1016/j.ympev.2013.10.020
- Beauvisage G (1894) Révision de quelques genres de plantes néocalédoniennes du R. P. Montrouzier. *Annales de la société Botanique* de Lyon 19, 15–28. doi:10.3406/linly.1894.4638
- Beauvisage G (1901) Genera Montrouzierana. Annales de la société Botanique de Lyon 26, 1–48. doi:10.3406/linly.1901.4710
- Caesar M, Grandcolas P, Pellens R (2017) Outstanding micro-endemism in New Caledonia: more than one out of ten animal species have a very restricted distribution range. *PLoS One* 12, e0181437 doi:10.1371/journal.pone.0181437
- Callmander MW, Munzinger J, Stone BC (2011) Pandanus belepensis (Pandanaceae), a new species from the Belep Archipelago (New Caledonia). Phytotaxa 38, 36–40. doi:10.11646/phytotaxa.38.1.5
- Cañadas EM, Fenu G, Peñas J, Lorite J, Mattana E, Bacchetta G (2014) Hotspots within hotspots: endemic plant richness, environmental drivers, and implications for conservation. *Biological Conservation* 170, 282–291. doi:10.1016/j.biocon.2013.12.007
- Curt T, Borgniet L, Ibanez T, Moron V, Hély C (2015) Understanding fire patterns and fire drivers for setting a sustainable management policy of the New-Caledonian biodiversity hotspot. Forest Ecology and Management 337, 48–60. doi:10.1016/j.foreco.2014.10.032
- Dawson JW (1992) 'Flore de la Nouvelle Calédonie et Dépendances: Myrtacées-Leptospermoïdées. Vol. 18.' (Muséum National d'Histoire Naturelle: Paris, France)
- Eken G, Bennun L, Brooks TM, Darwall W, Fishpool LDC, Foster M, Knox D, Langhammer P, Matiku P, Radford E, Salaman P, Sechrest W, Smith ML, Spector S, Tordoff A (2004) Key biodiversity areas as site conservation targets. *Bioscience* 54, 1110–1118. doi:10.1641/0006-3568(2004)054[1110:KBAASC]2.0.CO;2
- Endemia Red List Authority (2017) La liste rouge de la flore menacée de Nouvelle-Calédonie, synthèse octobre 2017. Available at http://endemia. nc/files/20171107_Resultats_RLA_Oct2017_FR_web2p.pdf [Verified February 2018]
- Fenu G, Mattana E, Congiu A, Bacchetta G (2010) The endemic vascular flora of Supramontes (Sardinia), a priority plant conservation area. *Candollea* **65**, 347–358. doi:10.15553/c2010v652a10
- Gomez C, Mangeas M, Curt T, Ibanez T, Munzinger J, Dumas P, Jérémy A, Despinoy M, Hély C (2015) Wildfire risk for main vegetation units in a biodiversity hotspot: modeling approach in New Caledonia, South Pacific. *Ecology and Evolution* 5, 377–390. doi:10.1002/ece3.1317
- Gouvernement de la Nouvelle-Calédonie (2009) Le schéma de mise en valeur des richesses minières de la Nouvelle-Calédonie. Available at https://dimenc.gouv.nc/sites/default/files/download/2009-05_schema_mise_en_valeur_des_richesses_minières_nc.pdf [Verified February 2018]
- Gouvernement de la Nouvelle-Calédonie (2018) Explorateur cartographique Géorep.nc. Available at https://dtsi-sgt.maps.arcgis.com/apps/webapp viewer/index.html?id=da224a6ff1c24c029de4024d7ae8af26 [Verified February 2018]
- Green PS (1998) 'Flore de la Nouvelle Calédonie et Dépendances: Oleaceae. Vol. 22.' (Muséum National d'Histoire Naturelle: Paris, France)
- Guillaumin A (1948) 'Flore analytique et synoptique de la NouvelleCalédonie, phanerogames.' (Office de la Recherche Scientifique Coloniale: Paris, France)
- Hopkins HCF, Pillon Y, Hoogland R (2014) 'Flore de la Nouvelle Calédonie: Cunoniaceae. Vol. 26.' (Muséum National d'Histoire Naturelle: Paris et IRD Editions: Marseille, France)
- Hopkins HCF, Pillon Y, Stacy EA, Kellermann J (2015) *Jaffrea*, a new genus of Rhamnaceae endemic to New Caledonia, with notes on *Alphitonia* and *Emmenosperma*. *Kew Bulletin* **70**, 42. doi:10.1007/s12225-015-9593-6

- Isnard S, L'huillier L, Rigault F, Jaffré T (2016) How did the ultramafic soils shape the flora of the New Caledonian hotspot? *Plant and Soil* **403**, 53–76. doi:10.1007/s11104-016-2910-5
- IUCN Standards and Petitions Subcommittee (2017) Guidelines for using the IUCN Red List categories and criteria: version 13. Prepared by the Standards and Petitions Subcommittee. Available at http://www.iucn. org/RedListGuidelines.pdf [Verified February 2018]
- Joppa LN, Roberts DL, Myers N, Pimm SL (2011) Biodiversity hotspots house most undiscovered plant species. *Proceedings of the National Academy of Sciences of the United States of America* **108**, 13171–13176. doi:10.1073/pnas.1109389108
- Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences of the United States of America 106, 9322–9327. doi:10.1073/pnas.0810306106
- Kostermans AJGH (1974) 'Flore de la Nouvelle Calédonie et Dépendances: Lauracées. Vol. 5.' (Muséum National d'Histoire Naturelle: Paris, France)
- McPherson G, Lowry PP II (2004) *Hooglandia*, a newly discovered genus of Cunoniaceae from New Caledonia. *Annals of the Missouri Botanical Garden* **91**, 260–265.
- McPherson G, Tirel C (1987) 'Flore de la Nouvelle Calédonie et Dépendances: Euphorbiacées I. Vol. 14.' (Muséum National d'Histoire Naturelle: Paris, France)
- Meve U, Gâteblé G, Liede-Schumann S (2018) Two new species from Ile des Pins (New Caledonia), and a not so new species from Grande Terre (New Caledonia). *Phytotaxa* **349**, 201–213. doi:10.11646/phytotaxa.349.3.1
- Montrouzier X (1860) Flore de l'Île Art (près de la Nouvelle-Calédonie).
 Mémoires de l'Académie impériale des Sciences, Belles-Lettres et Arts de Lyon. Classe des Sciences 10, 173–254.
- Morat P (1993) Our knowledge of the flora of New Caledonia: endemism and diversity in relation to vegetation types and substrates. *Biodiversity Letters* 1, 72–81. doi:10.2307/2999750
- Morat P, Jaffré T, Tronchet F, Munzinger J, Pillon Y, Veillon J-M, Chalopin M, Birnbaum P, Rigault F, Dagostini G, Tinel J, Lowry PP II (2012) The taxonomic reference base Florical and characteristics of the native vascular flora of New Caledonia. *Adansonia* 34, 179–221. doi:10.5252/a2012n2a1
- Mouly A, Jeanson M (2015) Specialization to ultramafic substrates and narrow endemism of *Cyclophyllum* (Rubiaceae) in New Caledonia: contribution of novel species to the understanding of these singular patterns. *Acta Botanica Gallica: Botany Letters* **162**, 173–189. doi:10.1080/12538078.2015.1062799
- Munzinger J (2015) Novitates neocaledonicae I: an additional new species of Planchonella (Sapotaceae) endemic to the Roches de la Ouaième. Phytotaxa 201, 71–78. doi:10.11646/phytotaxa.201.1.5
- Munzinger J, McPherson G (2016) Novitates neocaledonicae IV: three new species of *Cryptocarya* R.Br. (Lauraceae). *Adansonia* **38**, 165–174. doi:10.5252/a2016n2a3
- Munzinger J, Swenson U (2009) Three new species of *Planchonella*Pierre (Sapotaceae) with a dichotomous and an online key to the genus in New Caledonia. *Adansonia* 31, 175–189.
 doi:10.5252/a2009n1a12
- Munzinger J, Swenson U (2015) Revision of *Pycnandra* subgenus *Leptostylis* and description of subgenus *Wagapensia* (Sapotaceae), a genus endemic to New Caledonia. *Australian Systematic Botany* **28**, 91–110. doi:10.1071/SB15010
- Munzinger J, Morat Ph, Jaffré T, Gâteblé G, Pillon Y, Tronchet F, Veillon J-M, Chalopin M (2016) FLORICAL: checklist of the vascular indigenous flora of New Caledonia. ver. 22.IV.2016. Available at http://www.botanique.nc/herbier/florical [Verified February 2018]

- Myers N (1988) Threatened biotas: 'hot spots' in tropical forests. *The Environmentalist* **8**, 187–208. doi:10.1007/BF02240252
- Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. *Nature* 403, 853–858. doi:10.1038/35002501
- OEIL (2018) Alerte incendies, géoportail vulcain. (Observatoire de l'environnement Nouvelle-Calédonie) Available at http://geoportail.oeil.nc/AlerteIncendies [Verified February 2018]
- Schmid M (1991) 'Flore de la Nouvelle Calédonie et Dépendances: Euphorbiacées II, Phyllanthoïdées, *Phyllanthus*. Vol. 17.' (Muséum National d'Histoire Naturelle: Paris, France)
- Schmid M (2009) Contribution à la connaissance des Primulaceae (ex Myrsinaceae) de Nouvelle-Calédonie. II. Le genre Rapanea Aubl. Adansonia 31, 341–395. doi:10.5252/a2009n2a8
- Schmid M (2012) Contribution à la connaissance des Primulaceae (ex Myrsinaceae) de Nouvelle-Calédonie. III. Les genres *Tapeinosperma* Hook.f. et *Mangenotiella* gen. nov. *Adansonia* 34, 279–341. doi:10.5252/a2012n2a7
- Snow N (2009) Kanakomyrtus (Myrtaceae): a new endemic genus from New Caledonia with linear stigma lobes and baccate fruits. Systematic Botany 34, 330–344. doi:10.1600/036364409788606253
- Snow N, Dawson JW, Callmander MW, Gandhi K, Munzinger J (2016a) New species, new combinations, and lectotypifications in New Caledonian *Eugenia* L. (Myrtaceae). *Candollea* 71, 67–81. doi:10.15553/c2016v711a9
- Snow N, Munzinger J, Callmander MW (2016b) Novitates neocaledonicae V: Eugenia plurinervia N.Snow, Munzinger & Callm. (Myrtaceae), a new threatened species with distinct leaves. Candollea 71, 211–215. doi:10.15553/c2016v712a7

- Stone BC (1985) New and noteworthy paleotropical species of Rutaceae. Proceedings. Academy of Natural Sciences of Philadelphia 137, 213–228.
- Swenson U, Munzinger J (2010) Revision of *Pycnandra* subgenus *Achradotypus* (Sapotaceae), with five new species from New Caledonia. *Australian Systematic Botany* 23, 185–216. doi:10.1071/SB09049
- Swenson U, Munzinger J, Bartish IV (2007) Molecular phylogeny of Planchonella (Sapotaceae) and eight new species from New Caledonia. Taxon 56, 329–354.
- Swenson U, Nylander JAA, Munzinger J (2018) Phylogeny, species delimitation and revision of *Pleioluma* (Sapotaceae) in New Caledonia, a frequently gynodioecious genus. *Australian Systematic Botany* 31, 120–165. doi:10.1071/SB17040
- Taylor CM, Razafimandimbison SG, Barrabé L, Jardim JG, Barbosa MRV (2017) Eumachia expanded, a pantropical genus distinct from Psychotria (Rubiaceae, Palicoureeae). Candollea 72, 289–318. doi:10.15553/c2017v722a6
- Tirel C, Veillon JM (2002) 'Flore de la Nouvelle Calédonie et Dépendances: Pittosporaceae. Vol. 24.' (Muséum National d'Histoire Naturelle: Paris, France)
- Wulff AS, Hollingsworth PM, Ahrends A, Jaffré T, Veillon J-M, L'Huillier L, Fogliani B (2013) Conservation priorities in a biodiversity hotspot: analysis of narrow endemic plant species in New Caledonia. *PLoS One* 8, e73371doi:10.1371/journal.pone.0073371

Handling editor: Darren Crayn

Appendix 1. List of species endemic to the Belep archipelago (New Caledonia) with reference to the vouchers and coordinates used

Species	Vouchers	X	Y
Alphandia resinosa	Jaffré 1648	163,6532825	-19,6972613
Alphandia resinosa	MacKee 30388	163,6640489	-19,6927889
Bocquillonia montrouzieri	Bourret 1910	163,678211	-19,7501341
Bocquillonia montrouzieri	Gâteblé 904	163,6777818	-19,7494878
Bocquillonia montrouzieri	Tirel 1277	163,6626327	-19,754476
Bocquillonia montrouzieri	Veillon 3685	163,6637807	-19,7549809
Cleidion artense	Butin 255	163,6620426	-19,6965365
Cleidion artense	Gâteblé et al. 885	163,6448658	-19,699688
Cleidion artense	Jaffré 1657	163,6619568	-19,7069807
Cleidion artense	MacKee 30383	163,6662698	-19,6976678
Cleidion artense	MacKee 30523	163,6621714	-19,7068595
Cyclophyllum cardiocarpum	Barrabé 950	163,6642742	-19,7004557
Cyclophyllum cardiocarpum	Gâteblé 909	163,6778462	-19,7496292
Cyclophyllum cardiocarpum	Jaffré 1541, MacKee 30429	163,6659265	-19,6901727
Cyclophyllum cardiocarpum	Jaffré 1636	163,6763549	-19,7497806
Cyclophyllum cardiocarpum	Morat 6155	163,6779749	-19,7483771
Endiandra artensis	MacKee 30476	163,6679649	-19,6984759
Endiandra artensis	MacKee 30524	163,6545539	-19,6961324
Endiandra artensis	Morat 6176	163,6804506	-19,7645378
Endiandra artensis	Tirel 1298	163,6803943	-19,7644318
Endiandra artensis	Veillon 3703	163,6804157	-19,7644772
Eugenia belepiana	Butin 227	163,6596823	-19,7047384
Eugenia belepiana	Jaffré 1538	163,6651325	-19,6983143
Eugenia belepiana	MacKee 30377	163,6650038	-19,6974658
Eugenia belepiana	Veillon 2899	163,6549616	-19,7025566
Eugenia insulartensis	Jaffré 1567	163,6673427	-19,6986173
Eugenia insulartensis	MacKee 30385	163,66539	-19,7010213
Eugenia insulartensis	MacKee 30468	163,6673856	-19,6985567
Geissois belema	Barrabé 960	163,6638719	-19,6952335
Geissois belema	MacKee 30438	163,6642206	-19,6934354
Guettarda artensis	Jaffré 1652, MacKee 30517	163,6479074	-19,6934178
Jasminum promunturianum	Däniker 1681	163,6396623	-19,6396774
Macaranga latebrosa	Bourret 1885	163,6645961	-19,7118591
Macaranga latebrosa	Gâteblé 901	163,676776	-19,7487885
Macaranga latebrosa	MacKee 30459	163,6680937	-19,6991628
Macaranga latebrosa	MacKee 30525	163,6571074	-19,7050212
Macaranga latebrosa	Munzinger et al. 5737	163,6783397	-19,7497201
Macaranga latebrosa	Veillon 2708	163,6513996	-19,7002941
Myrsine belepensis	Jaffré 1603	163,595953	-19,5868819
Myrsine belepensis	Morat 6221, Tirel 1343, Veillon 3746	163,5986996	-19,5841527
Myrsine belepensis	Tirel 1316	163,6492646	-19,7075766
Oxanthera fragrans	Jaffré 1523, MacKee 30436	163,6678362	-19,6983951
Pandanus belepensis	Gâteblé et al. 874	163,6446512	-19,6998395
Pandanus belepensis	Jaffré 1591	163,676827	-19,7496191
Pandanus belepensis	MacKee 30446	163,6656046	-19,6934455
Pandanus belepensis	Munzinger et al. 5736	163,6780822	-19,7496696
Pandanus belepensis	Veillon 3681	163,6811614	-19,8186121
Pandanus belepensis	Veillon 3698	163,6757755	-19,7500634
Pandanus belepensis	Veillon 3711	163,6828566	-19,7559199
Phyllanthus artensis	Jaffré 1550, MacKee 30434, Veillon 2719	163,6659908	-19,6928395
Phyllanthus artensis	Munzinger 5743	163,66402	-19,69533
Phyllanthus rozennae	Cabalion 666	163,6760008	-19,7495686
Phyllanthus rozennae	Jaffré 1644	163,6765695	-19,7499725
Phyllanthus rozennae	Veillon 3702	163,677063	-19,7496191
Phyllanthus veillonii	Cabalion 665	163,674767	
•		· · · · · · · · · · · · · · · · · · ·	-19,7649972
Phyllanthus veillonii	Jaffré 1641 Tirol 1200 Voillon 3708	163,6775136	-19,7561118
Phyllanthus veillonii	Tirel 1299, Veillon 3708	163,6802119	-19,7641036
Pittosporum artense	Jaffré 1624 MacKon 20424	163,675797	-19,7505481
Pittosporum artense	MacKee 30424	163,665905	-19,6924556
Pittosporum artense	Pain s.n.	163,6591566	-19,6958496

Appendix 1. (continued)

Species	Vouchers	X	Y
Planchonella serpentinicola	Butin 32	163,6547524	-19,662765
Planchonella serpentinicola	Cabalion 667	163,6696601	-19,7581212
Planchonella serpentinicola	Gâteblé 926	163,6431062	-19,6479302
Planchonella serpentinicola	Gâteblé et al. 859	163,6448604	-19,6997789
Planchonella serpentinicola	Jaffré 1528	163,665154	-19,6979102
Planchonella serpentinicola	MacKee 22626	163,8146281	-20,0511944
Planchonella serpentinicola	MacKee 23165	163,955487	-20,0685084
Planchonella serpentinicola	MacKee 30450	163,665905	-19,7120106
Planchonella serpentinicola	Swenson & Munzinger 1117	164,2139769	-20,5061389
Planchonella serpentinicola	Swenson & Munzinger 715	163,8220417	-20,0470395
Planchonella serpentinicola	Swenson et al. 910	163,6671603	-19,7023243
Planchonella serpentinicola	Swenson et al. 914	163,6663449	-19,7056878
Planchonella serpentinicola	Swenson et al. 919	163,6635903	-19,7013496
Planchonella serpentinicola	Swenson et al. 921	163,6635661	-19,701491
Planchonella serpentinicola	Tirel 1295	163,6794448	-19,7650477
Planchonella serpentinicola	Veillon 2701	163,6505413	-19,7009001
Planchonella serpentinicola	Veillon 3671	163,6545754	-19,7265138
Planchonella serpentinicola	Veillon 3699	163,6794448	-19,7653102
Planchonella serpentinicola	Veillon 3725	163,684659	-19,7619984
Pleioluma belepensis	Swenson et al. 917	163,6641347	-19,6955718
Pleioluma belepensis	Tirel 1311, Veillon 3719	163,6476016	-19,7080715
Psychotria belepensis	Barrabé 951	163,6643493	-19,7004759
Psychotria belepensis	Barrabé 958	163,6786616	-19,7513963
Psychotria belepensis	Barrabé 962	163,6642957	-19,6964506
Psychotria belepensis	Butin 107	163,66323	-19,71455
Psychotria belepensis	Jaffré 1554	163,6560452	-19,6935263
Psychotria belepensis	MacKee 19410	163,6634803	-19,6881524
Psychotria belepensis	MacKee 30431	163,6670905	-19,6905666
Psychotria belepensis	MacKee 30516	163,6479181	-19,6932132
Psychotria belepensis	Veillon 3689	163,6762342	-19,7483493
Psychotria neodouarrei	Butin 30	163,6786938	-19,8214988
Psychotria neodouarrei	Fambart-Tinel 213	163,6334825	-19,633857
Psychotria neodouarrei	Fambart-Tinel 256	163,6316586	-19,6331497
Psychotria neodouarrei	MacKee 19375	163,5958778	-19,5964235
Pycnandra belpensis	Cabalion 671	163,6638236	-19,7030415
Pycnandra belpensis	Jaffré 1666	163,6638236	-19,7021627
Pycnandra belpensis	MacKee 30482	163,6667633	-19,6923849
Pycnandra belpensis	Swenson 913	163,6657333	-19,7058848
Pycnandra belpensis	Veillon 3720	163,6649823	-19,7035061
Xanthostemon lateriflorus	Butin 59	163,66277	-19,6995
Xanthostemon lateriflorus	Jaffré 1658	163,6618441	-19,7077938

Appendix 2. List of published and unpublished (ined.) new taxa for New Caledonia between January 2000 and December 2017

All endemic except for Hymenophyllum braithwaitei and Sphaeromorphaea subintegra. Species statuses are: D, doubtful taxon; H, hybrid taxon; V, valid species; ined., unpublished species

Year	Family	Taxon name	Reference	Species status
2000	Myrtaceae.	Metrosideros rotundifolia J.W.Dawson	Blumea 45: 437	V
2000	Myrtaceae	Metrosideros whitakeri J.W.Dawson	Blumea 45: 435	V
2001	Violaceae	Agatea lecointei Munzinger	Bot. J. Linn. Soc. 137: 93	V
2001	Violaceae	Agatea veillonii Munzinger	Bot. J. Linn. Soc. 137: 91	V
2002	Apocynaceae	Alyxia veillonii D.J.Middleton	Blumea 47: 73	V
2002	Pittosporaceae	Pittosporum cherrieri Tirel & Veillon	Fl. N. Caléd. 24: 103	V
2002	Pittosporaceae	Pittosporum sessilifolium Tirel & Veillon	Fl. N. Caléd. 24: 165	V
2002	Simaroubaceae	Soulamea dagostinii Jaffré & Fambart	Adansonia 24: 160	V
2002	Simaroubaceae	Soulamea moratii Jaffré & Fambart	Adansonia 24: 162	V
2002	Simaroubaceae	Soulamea pelletieri Jaffré & Fambart	Adansonia 24: 166	V
2002	Simaroubaceae	Soulamea rigaultii Jaffré & Fambart	Adansonia 24: 162	V
2003	Podocarpaceae	Podocarpus beecherae de Laub.	New Zealand J. Bot. 41: 715	D
2003	Malvaceae	Acropogon grandiflorus Morat & Chalopin	Adansonia 25: 194	V
2003	Malvaceae	Acropogon macrocarpus Morat & Chalopin	Adansonia 25: 198	V
2003	Malvaceae	Acropogon merytifolius Morat & Chalopin	Adansonia 25: 192	V
2003	Malvaceae	Acropogon schistophilus Morat & Chalopin	Adansonia 25: 196	V
2003	Pandanaceae	Freycinetia modica Huynh	Candollea 58: 298	V
2003	Pandanaceae	Freycinetia panica Huynh	Candollea 58: 298	V
2003	Pandanaceae	Freycinetia pseudograminifolia Huynh	Candollea 58: 300	V
2003	Pandanaceae	Freycinetia separata Huynh	Candollea 58: 301	V
2003	Hymenophyllaceae	Hymenophyllum paniense Ebihara & K.Iwats.	Syst. Bot. 28: 229	V
2003	Rutaceae	Neoschmidia calycina T.G.Hartley	Adansonia 25: 10	V
2003	Rutaceae	Picrella glandulosa T.G.Hartley	Adansonia 25: 253	V
2003	Winteraceae	Zygogynum fraterculus Vink	Blumea 48: 183	V
2004	Fabaceae	Canavalia veillonii I.C.Nielsen	Adansonia 26: 150	V
2004	Celastraceae	Dicarpellum paucisepalum Hürl. ex M.P.Simmons	Fl. N. Caléd. 25: 14	V
2004	Ericaceae	Dracophyllum mackeeanum S.Venter	New Zealand J. Bot. 42: 747	V
2004	Pandanaceae	Freycinetia delicata Huynh	Candollea 59: 175	V
2004	Pandanaceae	Freycinetia involuta Huynh	Candollea 59: 176	V
2004	Pandanaceae	Freycinetia subulata Huynh	Candollea 59: 177	V
2004	Lamiaceae	Gmelina magnifica Mabb.	Fl. N. Caléd. 25: 23	V
2004	Lamiaceae	Gmelina tholicola Mabb.	Fl. N. Caléd. 25: 26	V
2004	Cunoniaceae	Hooglandia ignambiensis McPherson & Lowry	Ann. Missouri Bot. Gard. 91: 261	V
2004	Cunoniaceae	Pancheria minima J.Bradford	Biodivers. & Conservation 13: 2262	V
2004	Cunoniaceae	Pancheria ouaiemensis J.Bradford	Biodivers. & Conservation 13: 2263	V
2004	Cunoniaceae	Hooglandia McPherson & Lowry	Ann. Missouri Bot. Gard. 91: 261	V
2004	Hymenophyllaceae	Hymenophyllum braithwaitei Ebihara & K.Iwats.	Taxon 53: 943	V
2005	Malvaceae	Acropogon bosseri Morat & Chalopin	Adansonia 27: 261	V
2005	Malvaceae	Acropogon chalopiniae Morat	Adansonia 27: 258	V
2005	Malvaceae	Acropogon jaffrei Morat & Chalopin	Adansonia 27: 256	V
2005	Malvaceae	Acropogon margaretae Morat & Chalopin	Adansonia 27: 263	V
2005	Fabaceae	Callerya neocaledonica I.C.Nielsen & Veillon	Adansonia 27: 82	V
2005	Fabaceae	Storckiella neocaledonica I.C.Nielsen, Labat & Munzinger	Adansonia 27: 219	V
2006	Elaeocarpaceae	Elaeocarpus tremulus Tirel & McPherson	Adansonia 28: 138	V
2006	Cunoniaceae	Geissois velutina Guillaumin ex H.C.Hopkins	Adansonia 28: 320	V
2006	Primulaceae	Maesa jaffrei M.Schmid	Adansonia 28: 146	V
2006	Cucurbitaceae	Zehneria neocaledonia W.J.de Wilde & Duyfjes	Blumea 51: 67	V
2007	Podocarpaceae	Dacrydium × suprinii Nimsch	Feddes Repert. 118: 52	Н
2007	Malvaceae	Acropogon calcicola Morat & Chalopin	Adansonia 29: 96	V
2007	Malvaceae	Acropogon paagoumenensis Morat & Chalopin	Adansonia 29: 94	V

Appendix 2. (continued)

Year	Family	Taxon name	Reference	Species status
2007	Malvaceae	Acropogon pilosus Morat & Chalopin	Adansonia 29: 101	V
2007	Malvaceae	Acropogon tireliae Morat & Chalopin	Adansonia 29: 99	V
2007	Cunoniaceae	Codia belepensis H.C.Hopkins	Kew Bull. 62: 260	V
2007	Cunoniaceae	Codia jaffrei H.C.Hopkins & Fogliani	Kew Bull. 62: 265	V
2007	Cunoniaceae	Codia mackeeana H.C.Hopkins & Fogliani	Kew Bull. 62: 263	V
2007	Cunoniaceae	Codia triverticillata H.C.Hopkins & Pillon	Kew Bull. 62: 268	V
2007	Cunoniaceae	Geissois bradfordii H.C.Hopkins	Kew Bull. 62: 275	V
2007	Annonaceae	Goniothalamus dumontetii R.M.K.Saunders & Munzinger	Bot. J. Linn. Soc. 155: 497	V
2007	Rubiaceae	Ixora aoupinieensis Hoang & Mouly	Adansonia 29: 124	V
2007	Ericaceae	Paphia paniensis S.Venter & Munzinger	New Zealand J. Bot. 45: 505	V
2007	Sapotaceae	Planchonella crenata Munzinger & Swenson	Taxon 56: 338	V
2007	Sapotaceae	Planchonella glauca Swenson & Munzinger	Taxon 56: 340	V
2007	Sapotaceae	Planchonella latihila Munzinger & Swenson	Taxon 56: 341	V
2007	Sapotaceae	Planchonella luteocostata Munzinger & Swenson	Taxon 56: 342	V
2007	Sapotaceae	Planchonella mandjeliana Munzinger & Swenson	Taxon 56: 344	V
2007	Sapotaceae	Planchonella povilana Swenson & Munzinger	Taxon 56: 346	V
2007	Sapotaceae	Planchonella roseoloba Munzinger & Swenson	Taxon 56: 348	V
2007	Sapotaceae	Planchonella rufocostata Munzinger & Swenson	Taxon 56: 348	V
2008	Stemonuraceae	Gastrolepis alticola Munzinger, McPherson & Lowry	Bot. J. Linn. Soc. 157: 776	V
2008	Rubiaceae	Ixora clarae Mouly & Pisivin	Nordic J. Bot. 25: 14	V
2008	Rubiaceae	Ixora elisae Mouly & Pisivin	Nordic J. Bot. 25: 16	V
2009	Araucariaceae	Araucaria bernieri J.Buchholz subsp. buchholzii Silba	J. Int. Conifer Preserv. Soc. 16: 104	D
2009	Cunoniaceae	${\it Cunonia} \times {\it koghicola}$ H.C.Hopkins, J.Bradford & Pillon	Kew Bull. 63: 423	Н
2009	Cunoniaceae	Cunonia dickisonii Pillon & H.C.Hopkins	Kew Bull. 63: 420	V
2009	Myrtaceae	Kanakomyrtus dawsoniana N.Snow	Syst. Bot. 34: 338	V
2009	Myrtaceae	Kanakomyrtus longipetiolata N.Snow	Syst. Bot. 34: 337	V
2009	Myrtaceae	Kanakomyrtus mcphersonii N.Snow	Syst. Bot. 34: 340	V
2009	Myrtaceae	Kanakomyrtus prominens N.Snow	Syst. Bot. 34: 334	V
2009	Myrtaceae	Kanakomyrtus revoluta N.Snow	Syst. Bot. 34: 332	V
2009	Cunoniaceae	Pancheria ajiearoana H.C.Hopkins, Pillon & J. Bradford	Kew Bull. 64: 442	V
2009	Cunoniaceae	Pancheria dognyensis H.C.Hopkins, Pillon & J. Bradford	Kew Bull. 64: 438	V
2009	Cunoniaceae	Pancheria mcphersonii H.C.Hopkins, Pillon & J. Bradford	Kew Bull. 64: 436	V
2009	Sapotaceae	Planchonella cauliflora Munzinger & Swenson	Adansonia 31: 177	V
2009	Sapotaceae	Planchonella ericiflora Munzinger & Swenson	Adansonia 31: 179	V
2009	Sapotaceae	Planchonella minutiflora Munzinger & Swenson	Adansonia 31: 182	V
2009	Sapotaceae	Pycnandra atrofusca Swenson & Munzinger	Austral. Syst. Bot. 22: 444	V
2009	Sapotaceae	Pycnandra cylindricarpa Swenson & Munzinger	Austral. Syst. Bot. 22: 450	V
2009	Sapotaceae	Pycnandra glaberrima Swenson & Munzinger	Austral. Syst. Bot. 22: 450	V
2009	Sapotaceae	Pycnandra linearifolia Swenson & Munzinger	Austral. Syst. Bot. 22: 456	V
2009	Sapotaceae	Pycnandra longipetiolata Swenson & Munzinger	Austral. Syst. Bot. 22: 456	V
2009	Sapotaceae	Pycnandra paucinervia Swenson & Munzinger	Austral. Syst. Bot. 22: 461	V
2009	Sapotaceae	Pycnandra viridiflora Swenson & Munzinger	Austral. Syst. Bot. 22: 461	V
2009	Primulaceae	Rapanea albiflorens M.Schmid	Adansonia 31: 362	V
2009	Primulaceae	Rapanea arborea M.Schmid	Adansonia 31: 382	V
2009	Primulaceae	Rapanea belepensis M.Schmid	Adansonia 31: 356	V
2009	Primulaceae	Rapanea boulindaensis M.Schmid	Adansonia 31: 361	V
2009	Primulaceae	Rapanea discocarpa M.Schmid	Adansonia 31: 366	V
2009	Primulaceae	Rapanea dumbeaensis M.Schmid	Adansonia 31: 356	V
2009	Primulaceae	Rapanea humboldtensis M.Schmid	Adansonia 31: 372	V
2009	Primulaceae	Rapanea katrikouensis M.Schmid	Adansonia 31: 390	V
2009	Primulaceae	Rapanea koghiensis M.Schmid	Adansonia 31: 385	V
2009	Primulaceae	Rapanea kuebiniensis M.Schmid	Adansonia 31: 366	V

Appendix 2. (continued)

	Appendix 2. (continued)					
Year	Family	Taxon name	Reference	Species status		
2009	Primulaceae	Rapanea mcphersonii M.Schmid	Adansonia 31: 366	V		
2009	Primulaceae	Rapanea memaoyaensis M.Schmid	Adansonia 31: 382	V		
2009	Primulaceae	Rapanea munzingeri M.Schmid	Adansonia 31: 374	V		
2009	Primulaceae	Rapanea nigricans M.Schmid	Adansonia 31: 362	V		
2009	Primulaceae	Rapanea nitens M.Schmid	Adansonia 31: 370	V		
2009	Primulaceae	Rapanea oblanceolata M.Schmid	Adansonia 31: 388	V		
2009	Primulaceae	Rapanea obovalifolia M.Schmid	Adansonia 31: 362	V		
2009	Primulaceae	Rapanea ouameniensis M.Schmid	Adansonia 31: 394	V		
2009	Primulaceae	Rapanea ouazangouensis M.Schmid	Adansonia 31: 364	V		
2009	Primulaceae	Rapanea ovicarpa M.Schmid	Adansonia 31: 391	V		
2009	Primulaceae	Rapanea paniensis M.Schmid	Adansonia 31: 384	V		
2009	Primulaceae	Rapanea parvicarpa M.Schmid	Adansonia 31: 377	V		
2009	Primulaceae	Rapanea poumensis M.Schmid	Adansonia 31: 392	V		
2009	Primulaceae	Rapanea spissifolia M.Schmid	Adansonia 31: 383	V		
2009	Primulaceae	Rapanea taomensis M.Schmid	Adansonia 31: 384	V		
2009	Primulaceae	Rapanea tchingouensis M.Schmid	Adansonia 31: 374	V		
2009	Primulaceae	Rapanea verrucosa M.Schmid	Adansonia 31: 368	V		
2009	Primulaceae	Rapanea yateensis M.Schmid	Adansonia 31: 370	V		
2009	Symplocaceae	Symplocos paniensis Pillon & Noot.	Adansonia 31: 192	V		
2009	Myrtaceae	Kanakomyrtus N.Snow	Syst. Bot. 34: 330	V		
2010	Rhizophoraceae	Rhizophora × tomlinsonii N.C.Duke	Blumea 55: 185	Н		
2010	Araliaceae	Polyscias mackeei Lowry & G.M.Plunkett	Pl. Diversity Evol. 128: 69	V		
2010	Sapotaceae	Pycnandra belepensis Swenson & Munzinger	Austral. Syst. Bot. 23: 189	V		
2010	Sapotaceae	Pycnandra blaffartii Swenson & Munzinger	Austral. Syst. Bot. 23: 191	V		
2010	Sapotaceae	Pycnandra bourailensis Swenson & Munzinger	Austral. Syst. Bot. 23: 337	V		
2010	Sapotaceae	Pycnandra bracteolata Swenson & Munzinger	Austral. Syst. Bot. 23: 192	V		
2010	Sapotaceae	Pycnandra caeruleilatex Swenson & Munzinger	Austral. Syst. Bot. 23: 339	V		
2010	Sapotaceae	Pycnandra canaliculata Swenson & Munzinger	Adansonia 32: 244	V		
2010	Sapotaceae	Pycnandra confusa Swenson & Munzinger	Austral. Syst. Bot. 23: 341	V		
2010	Sapotaceae	Pycnandra elliptica Swenson & Munzinger	Austral. Syst. Bot. 23: 347	V		
2010	Sapotaceae	Pycnandra glabella Swenson & Munzinger	Austral. Syst. Bot. 23: 202	V		
2010	Sapotaceae	Pycnandra ouaiemensis Swenson & Munzinger	Austral. Syst. Bot. 23: 210	V		
2010	Sapotaceae	Pycnandra pubiflora Swenson & Munzinger	Austral. Syst. Bot. 23: 360	V		
2010	Sapotaceae	Pycnandra sessiliflora Swenson & Munzinger	Austral. Syst. Bot. 23: 364	V		
2011	Arecaceae	Basselinia moorei Pintaud & F.W.Stauffer	Candollea 66: 150	V		
2011	Araliaceae	Meryta rivularis Lowry	Candollea 66: 264	V		
2011	Orchidaceae	Microtatorchis labatii M. Pignal & Munzinger	Adansonia 33: 185	V		
2011	Pandanaceae	Pandanus belepensis Callm. & Munzinger	Phytotaxa 38: 37	V		
2011	Pandanaceae	Pandanus taluucensis Callm.	Candollea 66: 268	V		
2011	Iridaceae	Patersonia neocaledonica Goldblatt & J.C.Manning	Adansonia 33: 203	V V		
2011	Malpighiaceae	Stigmaphyllon mackeeanum C.E.Anderson Stigmaphyllon mcphersonii C.E.Anderson	Blumea 56: 88	V V		
2011 2011	Malpighiaceae		Blumea 56: 91 Adansonia 33: 140	V		
2011	Rubiaceae Rubiaceae	Thiollierea dagostinii Barrabé & Mouly Thiollierea rigaultii Barrabé & Mouly	Adansonia 33: 140 Adansonia 33: 137	v V		
2011	Cyperaceae	Chorizandra gigantea J.Raynal ex K.L.Wilson	Telopea 14: 129	V		
2012	Cunoniaceae	Cunonia bopopensis Pillon & H.C.Hopkins	Kew Bull. 66: 406	V		
2012	Cunoniaceae	Geissois belema Pillon & H.C.Hopkins	Kew Bull. 66: 409.	V		
2012	Primulaceae	Mangenotiella stellata M.Schmid	Adansonia 34: 340	V		
2012	Cunoniaceae	Pancheria xaragurensis H.C.Hopkins & Pillon	Kew Bull. 66: 416	V		
2012	Sapotaceae	Pichonia grandiflora Swenson & Munzinger	Austral. Syst. Bot. 25: 44	V		
2012	Goodeniaceae.	Scaevola barrierei A.S.Wulff & Munzinger	Adansonia 34: 124.	V		
2012	Cyperaceae	Schoenus rivularis J.Raynal ex K.L.Wilson	Telopea 14: 132	V		
2012	Primulaceae	Tapeinosperma amieuense M.Schmid	Adansonia 34: 322	V		
2012	Primulaceae	Tapeinosperma atteouense M.Schmid	Adansonia 34: 322	V		
2012	Primulaceae	Tapeinosperma ateoliense M.Schmid Tapeinosperma boulindaense M.Schmid	Adansonia 34: 332	V		
2012	Primulaceae	Tapeinosperma boutinadense W.Schmid Tapeinosperma brevipedicellatum M.Schmid	Adansonia 34: 314	V		
2012	Primulaceae	Tapeinosperma brevipeticeitatum M.Schmid Tapeinosperma deroinii M.Schmid	Adansonia 34: 394	V		
2012	Primulaceae	Tapeinosperma aeroinii W.Schmid Tapeinosperma golonense M.Schmid	Adansonia 34: 394 Adansonia 34: 304	V		
2012	Primulaceae	Tapeinosperma kaalaense M.Schmid	Adansonia 34: 334	V		
2012	Primulaceae	Tapeinosperma mackeei M.Schmid	Adansonia 34: 290	V		

Appendix 2. (continued)

Year	Family	Taxon name	Reference	Species status
2012	Primulaceae	Tapeinosperma paniense M.Schmid	Adansonia 34: 328	V
2012	Primulaceae	Tapeinosperma poueboense M.Schmid	Adansonia 34: 333	V
2012	Primulaceae	Tapeinosperma storezii M.Schmid	Adansonia 34: 310	V
2012	Primulaceae	Tapeinosperma tchingouense M.Schmid	Adansonia 34: 336	V
2012	Primulaceae	Tapeinosperma veillonii M.Schmid	Adansonia 34: 293	V
2012	Primulaceae	Mangenotiella M.Schmid	Adansonia 34: 338	V
2013	Podocarpaceae	Podocarpus letocartii A.D.Silba & Silba	J. Int. Conifer Preserv. Soc. 20: 6	D
2013	Dicksoniaceae	Dicksonia munzingeri Noben & Lehnert	Phytotaxa 155: 29	V
2013	Dicksoniaceae	Dicksonia perriei Noben & Lehnert	Phytotaxa 155: 31	V
2013	Pandanaceae	Pandanus letocartiorum Callm. & Buerki	Candollea 68: 57	V
2013	Araliaceae	Plerandra veilloniorum Bernardi ex Lowry, G.M. Plunkett & Frodin	Brittonia 65: 57	V
2013	Asteraceae	Sphaeromorphaea subintegra A.R.Bean	Austrobaileya 9: 48	V
2014	Araucariaceae	Araucaria lavoixii Silba	J. Int. Conifer Preserv. Soc. 21: 5	D
2014	Podocarpaceae	Podocarpus lavoixii Silba	J. Int. Conifer Preserv. Soc. 21: 6	D
2014	Cunoniaceae	Codia xerophila Pillon, H.C.Hopkins & Gâteblé	Fl. N. Caléd. 26: 96	V
2014	Pandanaceae	Pandanus bernardii H.St.John ex Callm.	Adansonia 36: 47	V
2014	Sapindaceae	Podonephelium cristagalli Munzinger, Lowry, Callm. & Buerki	Syst. Bot. 38: 1110	V
2014	Sapindaceae	Podonephelium davidsonii Munzinger, Lowry, Callm. & Buerki	Syst. Bot. 38: 1112	V
2014	Sapindaceae	Podonephelium pachycaule Munzinger, Lowry, Callm. & Buerki	Syst. Bot. 38: 1118	V
2014	Sapindaceae	Podonephelium plicatum Munzinger, Lowry, Callm. & Buerki	Syst. Bot. 38: 1119	V
2014	Rubiaceae	Psychotria fambartiae Barrabé	Phytotaxa 173: 102	V
2014	Rubiaceae	Psychotria ireneae Barrabé	Phytotaxa 173: 106	V
2014	Rubiaceae	Psychotria nigotei Barrabé	Phytotaxa 173: 109	V
2014	Rubiaceae	Psychotria veillonii Barrabé	Phytotaxa 173: 113	V
2015	Araucariaceae	Araucaria mackeei Silba	J. Int. Conifer Preserv. Soc. 22: 25	D
2015	Araucariaceae	Araucaria neocookii Silba	J. Int. Conifer Preserv. Soc. 22: 25	D
2015	Malvaceae	Acropogon moratianus Callm., Munzinger & Lowry	Adansonia 37: 132	V
2015	Rubiaceae	Cyclophyllum guillauminianum BaumBod. ex Mouly & Jeanson	Acta Bot. Gallica Bot. Lett. 162: 176	V
2015	Rubiaceae	Cyclophyllum letocartiorum Mouly	Acta Bot. Gallica Bot. Lett. 162: 181	V
2015	Rubiaceae	Cyclophyllum macphersonii Mouly	Acta Bot. Gallica Bot. Lett. 162: 183	V
2015	Rubiaceae	Cyclophyllum memaoyaense Mouly	Acta Bot. Gallica Bot. Lett. 162: 287	V
2015	Rubiaceae	Cyclophyllum pindaiense Mouly	Acta Bot. Gallica Bot. Lett. 162: 180	V
2015	Rubiaceae	Cyclophyllum tieaense Mouly	Acta Bot. Gallica Bot. Lett. 162: 178	V
2015	Rubiaceae	Cyclophyllum tiebaghiense Mouly & Jeanson	Acta Bot. Gallica Bot. Lett. 162: 177	V
2015	Sapotaceae	Planchonella ulfii Munzinger	Phytotaxa 201: 72	V
2015	Sapotaceae	Pycnandra amplexicaulis Munzinger & Swenson	Austral. Syst. Bot. 28: 95	V
2015	Sapotaceae	Pycnandra sclerophylla Munzinger & Swenson	Austral. Syst. Bot. 28: 105	V
2015	Malpighiaceae	Stigmaphyllon patricianum-firmenichianum Butaud	PhytoKeys 55: 120	V
2015	Rhamnaceae	Jaffrea H.C.Hopkins & Pillon	Kew Bull. 70: 15	V
2016	Orchidaceae	Corybas × halleanus E.Faria	Adansonia 38: 184	Н
2016	Cardiopteridaceae	Citronella hirsuta Munzinger	Phytotaxa 245: 225	V
2016	Orchidaceae	Corybas echinulus E.Faria	Adansonia 38: 178	V
2016	Orchidaceae	Corybas pignalii E.Faria	Adansonia 38: 182	V

Appendix 2. (continued)

Year	Family	Taxon name	Reference	Species status
2016	Lauraceae	Cryptocarya adpressa Munzinger & McPherson	Adansonia 38: 166	V
2016	Lauraceae	Cryptocarya barrabeae Munzinger & McPherson	Adansonia 38: 168	V
2016	Lauraceae	Cryptocarya chrysea Munzinger & McPherson	Adansonia 38: 171	V
2016	Orchidaceae	Diplodium repandum M.A.Clem. & D.L.Jones	Austral. Orchid Rev. 81: 47	V
2016	Myrtaceae	Eugenia amosensis N.Snow	Candollea 71: 68	V
2016	Myrtaceae	Eugenia homedeboana N.Snow	Candollea 71: 70	V
2016	Myrtaceae	Eugenia plurinervia N.Snow, Munzinger & Callm.	Candollea 71: 212	V
2016	Myrtaceae	Eugenia sicifolia J.W.Dawson & N.Snow	Candollea 71: 70	V
2016	Myrtaceae	Eugenia tchambaensis J.W.Dawson & N.Snow	Candollea 71: 74	V
2016	Myrtaceae	Eugenia tiwakaensis J.W.Dawson & N.Snow	Candollea 71: 76	V
2016	Sapotaceae	Pycnandra comptonioides Swenson & Munzinger	Austral. Syst. Bot. 29: 6	V
2016	Sapotaceae	Pycnandra kouakouensis Swenson & Munzinger	Austral. Syst. Bot. 29: 8	V
2016	Sapotaceae	Pycnandra montana Swenson & Munzinger	Austral. Syst. Bot. 29: 10	V
2016	Sapotaceae	Pycnandra poindimiensis Swenson & Munzinger	Austral. Syst. Bot. 29: 12	V
2016	Sapotaceae	Pycnandra versicolor Swenson & Munzinger	Austral. Syst. Bot. 29: 14	V
2016	Sapindaceae	Storthocalyx corymbosus Munzinger, Lowry, Buerki & Callm.	Syst. Bot. 41: 393	V
2016	Myrtaceae	Syzygium dawsonianum N.Snow, S.L.Young & Callm.	Syst. Bot. 41: 197	V
2016	Rubiaceae	Thiollierea laureana Mouly	Candollea 71: 100	V
2017	Malvaceae	Acropogon mesophilus Munzinger & Gâteblé	Phytotaxa 307: 185	V
2017	Araucariaceae	Araucaria goroensis R.R.Mill & Ruhsam	Edinburgh J. Bot. 74: 125	V
2017	Capparaceae	Capparis parvifolia Fici	Phytotaxa 314: 285	V
2017	Hymenophyllaceae	Hymenophyllum soriemersum Rouhan & C.Del Rio	Taxon 66: 1056	V
2017	Apocynaceae	Marsdenia kaalaensis Meve, Gâteblé & Liede	Adansonia 39: 56	V
2017	Apocynaceae	Marsdenia mackeeorum Meve, Gâteblé & Liede	Adansonia 39: 60	V
2017	Apocynaceae	Marsdenia neocaledonica Meve, Gâteblé & Liede	Adansonia 39: 62	V
2017	Apocynaceae	Marsdenia paulforsteri Meve, Gâteblé & Liede	Adansonia 39: 64	V
2017	Apocynaceae Orchidaceae	Marsdenia weberlingiana Liede Nervilia multinervis Cavestro	Adansonia 39: 68	V V
2017	Orchidaceae	Nervina munnervis Cavestro	Internet Orchid Sp. Photo Encycl. Nomencl. Notes 5: 1	V
2017	Phellinaceae	Phelline barrierei Barriera & Schlüssel	Candollea 72: 362	V
ined.	Orchidaceae	Dendrobium butinii M.Pignal & Munzinger	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Orchidaceae	Dendrobium letocartiorum M.Pignal & Munzinger	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia adenosticta J.W.Dawson	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia boulindensis J.W.Dawson	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia calcarea J.W.Dawson	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia dagostinii J.W.Dawson	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia excorticata J.W.Dawson	FLORICAL (Munzinger	ined.
ined.	Myrtaceae	Eugenia jaffrei J.W.Dawson	et al. 2016) FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia lepredourii J.W.Dawson	FLORICAL (Munzinger	ined.
ined.	Myrtaceae	Eugenia letocartii J.W.Dawson	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Myrtaceae	Eugenia mandjelia J.W.Dawson	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Myrtaceae	Eugenia mcphersonii J.W.Dawson	et al. 2016) FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia megacalyx J.W.Dawso	FLORICAL (Munzinger et al. 2016)	ined.

Appendix 2. (continued)

Year	Family	Taxon name	Reference	Species status
ined.	Myrtaceae	Eugenia metzdorfii J.W.Dawson	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia munzingeri J.W.Dawson	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia nekoroensis J.W.Dawson	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia ouaiemensis J.W.Dawson	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia pinensis J.W.Dawson	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia poindimiensis J.W.Dawson	FLORICAL (Munzinger	ined.
ined.	Myrtaceae	Eugenia poroensis J.W.Dawson	et al. 2016) FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia pouemboutii J.W.Dawson	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia povilaensis J.W.Dawson	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Myrtaceae	Eugenia taomensis J.W.Dawson	FLORICAL (Munzinger	ined.
ined.	Rubiaceae	Gea boulindaensis Achille	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Rubiaceae	Gea connatistipula Achille	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Rubiaceae	Gea crassifolia Achille	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Myrtaceae	Gossia angustifolia N.Snow	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Myrtaceae	Gossia bourailensis N.Snow	et al. 2016) FLORICAL (Munzinger et al. 2016)	ined.
ned.	Myrtaceae	Gossia conduplicata N.Snow	FLORICAL (Munzinger	ined.
ned.	Myrtaceae	Gossia grandiflora N.Snow	et al. 2016) FLORICAL (Munzinger	ined.
ned.	Myrtaceae	Gossia kaalaensis N.Snow	et al. 2016) FLORICAL (Munzinger	ined.
ned.	Myrtaceae	Gossia katepahiensis N.Snow	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Myrtaceae	Gossia mandjeliaensis N.Snow	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Myrtaceae	Gossia ngaensis N.Snow	et al. 2016) FLORICAL (Munzinger	ined.
ned.	Myrtaceae	Gossia ouazangouensis N.Snow	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Myrtaceae	Gossia ramiflora N.Snow	et al. 2016) FLORICAL (Munzinger	ined.
ned.	Araliaceae	Meryta colnettensis F.Tronchet & Lowry	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Araliaceae	Meryta dagostinii F.Tronchet & Lowry	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Araliaceae	Meryta expensa F.Tronchet & Lowry	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Araliaceae	Meryta heleneae Lowry	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Araliaceae	Meryta koniamboensis Lowry & F.Tronchet	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Araliaceae	Meryta ouaiemensis F.Tronchet & Lowry	et al. 2016) FLORICAL (Munzinger	ined.
ined.	Araliaceae	Meryta pedunculata Lowry & F.Tronchet	et al. 2016) FLORICAL (Munzinger et al. 2016)	ined.

Appendix 2. (continued)

Year	Family	Taxon name	Reference	Species status
ined.	Myodocarpaceae	Myodocarpus nervatus Lowry	FLORICAL (Munzinger	ined.
ined.	Myodocarpaceae	Myodocarpus touretteorum Lowry	et al. 2016) FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Plerandra calcicola Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Plerandra gordonii Lowry, G.M.Plunkett & Frodin	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Plerandra letocartiorum Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Plerandra longistyla Lowry, G.M.Plunkett & Frodin	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Plerandra mackeei Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Plerandra memaoyaensis Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Plerandra moratiana Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Plerandra neocaledonica Lowry, G.M.Plunkett & Frodin	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Plerandra pouemboutensis Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Plerandra taomensis Lowry, G.M.Plunkett & Frodin	FLORICAL (Munzinger	ined.
ined.	Araliaceae	Plerandra tronchetii Lowry & G.M.Plunkett	et al. 2016) FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias calophylla Guillaumin ex Lowry & G.M. Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias dzumacensis Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias gracilipes Lowry & Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias jaffrei Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias munzingeri Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias nitida Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias nothisii Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias ouaiemensis Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias puberula Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias regalis Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias suprinorum Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias taomensis Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Araliaceae	Polyscias veillonii Lowry & G.M.Plunkett	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Cyperaceae	Scleria rheophila J.Raynal	FLORICAL (Munzinger et al. 2016)	ined.
ined.	Rutaceae	Zanthoxylum unifoliatum T.G.Hartley	FLORICAL (Munzinger	ined.
ined.	Rubiaceae	Gea Achille	et al. 2016) FLORICAL (Munzinger et al. 2016)	ined.