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Abstract

The production of energy from renewable sources is much more intensive in minerals
than that from fossil resources. The scarcity of certain minerals limits the potential
for substituting renewable energy for scarce fossil resources. However, minerals can be
recycled, while fossils cannot. We develop an intertemporal model to study the dynamics
of the optimal energy mix in the presence of mineral intensive renewable energy and fossil
energy. We analyze energy production when both mineral and fossil resources are scarce,
but minerals are recyclable. We show that the greater the recycling rate of minerals, the
more the energy mix should rely on renewable energy, and the sooner should investment
in renewable capacity take place. We confirm these results even in the presence of other
better known factors that affect the optimal schedule of resource use: growth in the
productivity in the renewable sector, imperfect substitution between the two sources of
energy, convex extraction costs for mineral resources and pollution from the use of fossil
resources.
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1 Introduction

Renewable sources of energy are generally more scattered than non renewable ones. In
particular this is the case of wind or solar energy, as compared to coal or gas. More infrastruc-
ture to capture these renewable sources, and therefore a larger quantity of mineral inputs is
required to produce one unit of final energy from renewable than from non renewable sources
of energy.1 For instance, Hertwich et al. (2015) conclude that one unit of electricity requires
“11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power
plants”, than from conventional fossil generation, as one can see in Figure 1. Concern about
mineral intensity of renewable sources of energy has been expressed in official reports and
academic studies.2

Figure 1: Copper intensity of energy technologies, kg/MWh, from Hertwich et al. (2015)

The objective of this paper is to study how the schedule of energy production depends
on mineral resources, as scarce inputs in the production of renewable energy. We present
a theoretical model and bring along a novel argument in favor of early development of the
production capacity for energy from renewable sources, which relies on the asymmetry between
the types of natural resources used to produce energy services. When a unit of non renewable
resource is directly used as fuel to supply energy services through combustion, as in the case of
oil, gas and coal, that amount of resource is definitely lost. When a unit of mineral resources
is embedded in the equipment and infrastructure used to produce energy from renewable

1In the case of intermittent renewable energy, backup or storage capacity requirements exacerbate this
difference in mineral intensity.

2See for instance Vidal et al. (2013), Moss et al. (2013), Ali et al. (2017), Vidal et al. (2017), as well as
Arrobas et al. (2017), European Commission (2017), European Commission (2018), DOE (2013), and the U.S.
Presidential executive order on the Strategy to ensure secure and reliable supplies of critical minerals (Dec.
2017).

2



sources, it supplies a flow of energy services over an interval of time and, at the end of the
life cycle of the equipment, it adds to the stock of secondary mineral resources that can be
recycled. Hence some part of the original unit of resource can provide services in the next
period.

While the opportunity to recycle a non renewable natural resource improves the produc-
tion possibilities set of the economy, it also requires time as an input in order to do so. From
a technological perspective, recycling first requires to use the primary (currently extracted)
resource, in order to build, with some delay, the secondary (recycled) resource. This tech-
nological constraint interacts with social preferences in determining the optimal schedule of
resource extraction and use. To illustrate this, let us consider a society, with no preference
for the present, where neither extraction nor recycling are costly, that wishes to maintain the
level of resource use constant at a given level over a finite interval of time. If it is endowed with
an abundant stock of a non recyclable resource, it should spread it evenly over the planning
horizon. If instead the resource can be partially recycled, say at a recovery rate δ ∈ (0, 1), with
some time lag, say ten years, it should use exclusively primary resources during the first ten
years, then reduce the extraction by the rate 1−δ during the following decades. As compared
to the former case, the intertemporal profile of resource extraction is brought forward.

Together, the technological specificity of recycling mineral resources and the relative min-
eral intensity of renewable energy provide a rationale for developing more renewable energy
infrastructure in the initial period than in subsequent ones and to choose a larger share for
renewables in the energy mix, as compared to a case without recycling. Our analysis is based
on a simplified description of the economic problem.

In our model, agents value energy services which result from a combination of energy
provided by two distinct sources: the flow of renewable energy and combustion of a non re-
newable fossil resource. These sources are more or less good substitutes, either because of
heterogeneous uses (Chakravorty and Krulce, 1994) or because of the intermittent availability
of the renewable sources (Ambec and Crampes, 2015). The production of renewable energy
employs specific equipment, dubbed “green” capital, embedding mineral non renewable re-
sources. Part of the mineral resources embedded in the current period equipment can be also
used in the next periods. The reserves of the two non renewable resources (fossils and min-
erals) are scarce.3 The issue is the timing of their extraction that maximizes the net present
value of the utility from energy services.

The answers we obtain encompass some well known arguments, as for instance that the
development of renewables should be postponed in the expectations of productivity improve-
ment of green capital. But the framework we consider allows us to put forward two original
arguments: to the extent that mineral resources embedded in that equipment and infrastruc-
ture can be recycled, the development of renewable energy should be brought forward in time,
and the energy mix should rely largely on renewable sources.

Other factors can affect the optimal decision on the timing of investment in green cap-
ital. In particular, mineral extraction should be delayed when endowment in green capital

3As explained in greater detail in footnote 13, the assumption of a finite and scarce supply of minerals to
build up the stock of green capital allows us to pinpoint the novel argument put forward in this article, though,
in practice, the demand of mineral for investment in green capital is only a share of total mineral consumption.
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is excessive. In the two-period version of our model, we consider several applications and
confirm that our original results hold despite the presence of alternative mechanisms. Choices
related to the intertemporal allocation of scarce resources crucially depend on social prefer-
ences, specifically the willingness to smooth consumption over time. A first factor determining
the timing of resource use is the expected pace of improvement in the productivity of green
capital. Faster expected productivity growth tends to postpone investment in green capital,
if the willingness to smooth consumption is high enough. Yet the asymmetry across resources
in terms of recyclability still calls for early investment in green capital. A second factor is the
degree of substitutability between the two sources of energy, due to their physical properties
or to intermittency. We show that the marginal effect of improved efficiency of recycling on
initial green investment and the share of renewable in the energy mix, is larger the more
substitutable are the two sources of energy. Such a complementarity is of special interest
given that, under current technology, the electricity storage capacity is particularly intensive
in minerals. A third factor we consider is the convex nature of resource extraction costs.
This consideration points at the benefit of spreading resource use over time. Yet, even in
the presence of convex extraction costs, an improvement in recyclability calls for earlier use
of minerals, thus fostering green investment. Finally, a major rationale for early investment
in green capital is based on the objective to substitute for the use of fossil energy sources,
because it generates pollution. Also in this case improved recyclability fosters early green
investment. Moreover it boosts the share of renewables in the energy mix over both periods
and a reduction in total polluting emissions (i.e. total fossil resource use) for sufficiently low
willingness to smooth consumption.

Our work is related to several strands of the literature. The analytical approach focuses
on the efficient management à la Hotelling (1931) of two types of non renewable resources,
fossil and minerals. Much attention has been paid to the case of perfect substitutes, to study
the optimal order of extraction.4 Instead, we actually consider the case of simultaneous use of
the two sources of energy, conventional and renewable, in the spirit of growth theory applied
to the energy transition.5 Our contribution consists of an original argument concerning the
optimal timing of investment in green capital, used to produce energy from renewable sources.
This is related to an extensive literature covering the policies associated with the energy
transition. Among the wealth of arguments that have been put forward, some of which
discussed in the previous paragraph, we recall the following. Amigues et al. (2015) point
out that, in the presence of adjustment costs, investment to build the infrastructure for the
production of renewable energy should begin early on and be spread out over time. Vogt-
Schilb et al. (2018) argue that early investment in green capital is particularly valuable in
the energy sector because of the long-lived nature of such capital. Lemoine and Traeger
(2014) explain how uncertainty and irreversibility, due to lagged damages and investment,

4See in particular the “least cost first” principle in Herfindahl (1967) and its qualifications (Kemp and
Van Long, 1980; Lewis, 1982; Amigues et al., 1998). The case of imperfect substitution across non renewable
resources is considered in Wirl (1988) and Chakravorty and Krulce (1994). Also the case of renewable resources
has longtime been studied as a permanent shift to a perfect backstop substitute (Dasgupta et al., 1982;
Tahvonen and Salo, 2001; Tsur and Zemel, 2005).

5For instance Smulders and de Nooij (2003) or Grimaud and Rouge (2008), where the labor supply is
equivalent to a constant flow of renewable energy, Pittel and Bretschger (2010), Hart (2019).
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together affect the optimal timing of pollution abatement. Technological progress resulting
from learning-by-doing calls for early investment (Kverndokk and Rosendahl, 2007). As put
forward in Goulder and Schneider (1999), the optimal investment in carbon free capital is
affected by the fact that R&D expenditure can be targeted to such technologies. Boosting
early investment may be essential to trigger sufficient R&D to escape a lock-in the polluting
technology (Acemoglu et al., 2012). This rich literature adequately examines different aspects
of the timing of the energy transition, yet none of them embeds the dependency of renewable
production on recyclable but scarce minerals.

In our analysis, recycling is crucial for the results. The efficient paths of resource extraction
and recycling are considered as early as Weinstein and Zeckhauser (1973), Schulze (1974) or
Dasgupta and Heal (1979). In economies confronted to the limited availability of resources,
recycling reduces the reliance on primary resources and postpones the extraction of resources.
This result is extended in various dimensions, by taking into account the material balance
constraint (Pittel et al., 2010) or technological progress (Di Vita, 2001). A more recent
literature considers that recycling, by linking past and current production, may generate
economic cycles (De Beir et al., 2010; Fodha and Magris, 2015; Boucekkine and El Ouardighi,
2016). Finally, some articles focus on market failures associated with missing markets for
waste and the resulting pollution (Hoel, 1978; Musu and Lines, 1995). However, none of these
works considers the role of recycling in the interplay between exhaustible resources and energy
production. As we show hereafter, recycling of minerals is relevant to the transition to a low
carbon economy, given that ”the world cannot tackle climate change without adequate supply
of raw materials to manufacture clean technologies” (Ali et al., 2017).

We present our model in section 2. Section 3 presents the analysis and the results of the
benchmark case, with infinite horizon and specific functional forms for the utility and the
production functions. Then, we consider in section 4 further issues in a two-period version
of the model. First, we check that the main results hold in this version, then we consider
differences in the productivity growth across the two energy types. Second, we study the role
of the degree of substitutability between energy sources in the production of energy services.
Third, we introduce convex extraction costs for mineral resources. Finally, we take into
account environmental damages from the use of fossil resources. To conclude we give some
perspectives, in particular on the determinants of the recycling rate, from which we abstract
in this paper.

2 The model

We study an economy in discrete time, where periods are denoted by t ∈ N0.
6 Let us

consider a representative household, whose utility is a function of consumption of energy

6With a slight abuse of notation, for two dates t2 > t1 ≥ 0 we write t ∈ [t1, t2] to refer to t ∈ [t1, t2]∩N0 or
t ∈ {t1; t1 + 1; ...; t2}. Similarly, we simply write t ≥ 0 for t ∈ N0.
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services qt:
7

u (qt) (2.1)

with u′ > 0, u′′ ≤ 0.
Energy services combine two flows: energy from non renewable resources, xt, and energy

from renewable sources, yt. Formally we write:

qt = Q (xt, yt) (2.2)

with Q′i > 0, Q′′i ≤ 0 i ∈ {x, y}. The degree to which the two types of energy can be combined
to produce energy services may vary from perfect substitutability to perfect complementarity.8

The energy flow xt is produced transforming the quantity of extracted non renewable
resource ft ≥ 0, which we dub fossil resources, according to the linear production function:

xt = Atft (2.3)

where At is the exogenous productivity index. Resource extraction is cost-less.9 The quantity
of fossil resources is limited, it is initially available in a finite stock F and is directly reduced
by extraction:

F ≥
∑
t≥0

ft. (2.4)

The flow of energy yt is produced employing a specific stock of capital Kt, which we dub
“green” capital, according to the linear technology:

yt = BtKt (2.5)

where Bt is the exogenous productivity index. Green capital is built out of minerals. Specif-
ically, the capital stock at date t is the sum of minerals extracted at date t —the primary
resource mt— and the stock of secondary minerals recycled from previous period’s green capi-
tal δKt−1. The exogenous parameter δ ∈ [0, 1] measures the rate at which minerals embedded
in the capital stock can be recycled from one period to the next. We implicitly assume perfect
substitutability between primary and recycled mineral resources, and the possibility of infinite
recycling.10 Defining K−1 ≥ 0 as the stock of minerals embedded in the capital stock before

7For the moment we abstract from any influence on the household’s utility from the energy system. In
section 4 we assume that utility also depends on the types of energy sources that are used to produce energy
services, namely that the use of one source also generates disutility due to pollution.

8Two approaches can be considered. Either firms sell energy services by using the two types of energy. This
is the case, for instance, of a power company generating electricity out of a differentiated portfolio of power
stations, some based on conventional fossil resources, others on wind and solar power. Alternatively, one can
consider that households directly consume the two resources. For instance, a household endowed of a solar
thermal panel and a gas fueled heater to heat water, can use the two sources of energy as imperfect substitutes
due to the intermittent nature of the former. We analyze the role of this assumption in section 4.2.

9We consider costly extraction in section 4.3.
10In this article, we do not take into account the cost of waste recovery and processing and the lower quality

of recycled resources. Di Vita (2007) takes into account imperfect substitutability between the non-renewable
resource and recycled waste in the production process. He analyzes the economic growth rate and the time
profile of resource extraction. Lafforgue and Rouge (2018) assume that the quality of recycled materials evolves

6



date 0, and assuming a constant recycling rate, the history of mineral extraction determines
the stock of green capital:11

Kt = K−1δ
t+1 +

t∑
τ=0

mτδ
t−τ . (2.6)

Notice that with exogenous efficiency of the recycling technology, the parameter δ can be
interpreted as the complement of the depreciation factor of capital in a standard accumulation
process. An increase in the recycling rate could be equivalent to a decrease in the depreciation
rate. Nevertheless, in our case, investment here consists of mineral resources, differently from
the standard notion of capital.12Therefore, green capital is limited by a threshold determined
by the total stock of resources. Minerals are non-renewable resources, initially available in a
finite stock M . Primary extraction is constrained over time by13

M ≥
∑
t≥0

mt. (2.7)

In our framework the distinction between fossil and renewable sources of energy hinges
on the recycling rate of minerals δ. If minerals were perfectly recyclable, i.e. δ = 1, it would
be possible to produce forever a flow BtM of renewable energy, once the specific equipment
had been installed at its maximum potential. If minerals were not recyclable, i.e. δ = 0, they
could not be used twice —just as fossil resources— and the two types of resources would be
analogous.

We analyze optimal trajectories, assuming that a benevolent planner chooses the path
of resource extraction that maximizes intertemporal discounted utility of the representative

and could make them ultimately unproductive. Like these authors and much of the literature, we also restrict
our analysis to the case of an exogenous recycling rate.

11In practice, both types of energy sources require specific capital embedding some mineral resources. Our
focus is the asymmetry in mineral intensity between the specific capital for each energy source. We therefore
adopt the extreme assumption that only one energy source relies on the specific capital, so as to simplify the
analysis, without loosing in the qualitative features of our model.

12In the standard approach, investment results of non consumed output. In our setting this could consist of
energy services not devoted to their consumption qt. Instead under our assumption, the stock of green capital
consists of a stock of productive mineral resources.

13Our assumption, according to which there is a limited amount of minerals available for investment in green
capital, allows us to pin down and analyze a specific and original mechanism influencing the optimal timing of
the investment in equipment for the production of renewable energy. The analysis would be affected if we were
to consider competition in the use of the global supply of minerals between investment in green capital and
other uses. For instance, in the extreme opposite case, one can assume that the demand for minerals from the
energy sector is so small that it does not affect their equilibrium price. Instead of (2.7) one should consider a
perfectly elastic supply of mt at some exogenous marginal cost representing the relative intensity in minerals
of renewables as compared to conventional energy. This is the case in most of the literature, where there is
no direct intertemporal linkage of renewable energy production through scarcity of embedded non-renewable
resources. Moreover, assuming a small role of the energy sector on the market for primary mineral resources,
implies that it cannot affect the market for secondary mineral resources, ruling out of the analysis any potential
impact of the efficiency of the recycling technology on the timing of energy production. The plausible case lies
in between this extreme and our framework. Thus the mechanism we point out shall be at work, though its
importance should be evaluated empirically.
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household, subject to technology constraints and resource dynamics. It applies a social pure
discount rate ρ > 0 and solves the following problem

(P) : max
ft,mt

∑
t≥0

1

(1 + ρ)t
u (qt)

subject to (2.2)− (2.7) and ft,mt ≥ 0

with M,F,K−1 given.

3 Optimal energy production in the benchmark case

In this section, we further specify the production and utility functions, in order to be able
to characterize the optimal policy by closed-form solutions. Specifically, we assume a unitary
elasticity of substitution between fossil and renewable energy

Q (xt, yt) = xαt y
1−α
t (3.1)

with α ∈ (0, 1). Moreover we restrict the analysis to the case of constant and equal produc-
tivity, and set ∀t At = Bt = 1. We also assume a utility function with a constant elasticity of
intertemporal substitution of consumption14

u (qt) =
1

1− ε
q1−εt (3.2)

with ε > 0.
These assumptions imply that the extraction of fossil resources is always positive, i.e.

∀t, ft > 0. In fact, if ft = 0 at some t, qt = 0, which is suboptimal since the marginal utility
of q is infinite at q = 0. The reasoning applies to green capital, so that ∀t, Kt > 0. The
same argument applies to the extraction of mineral resources in absence of recycling, that is
∀t, mt > 0 if δ = 0. In this special case the economy relies on the use of two non-renewable
resources as imperfect substitutes for consumption. Along the optimal path, the input ratio
is held constant and equal to the relative resource endowment, i.e. ft/mt = F/M . The
extraction of the two non renewable resources, as well as the production of renewable energy

and consumption, decline at the common pace dictated by the factor (1 + ρ)−
t
ε .15

When instead the equipment for the production of renewable energy is recyclable, i.e. if
δ > 0, the argument does not apply to the extraction of minerals. In fact, the production
of renewable energy could be positive, i.e. yt > 0, at some date t even in the absence of
contemporaneous extraction of primary mineral resource, i.e. even if mt = 0, to the extent

14The elasticity of intertemporal substitution of consumption equals 1/ε. For ε = 1, u (qt) = ln qt.
15This sub-case is embedded in Proposition 1.

8



that the specialized capital stock was positive in the previous period, Kt−1 > 0, and it would
be precisely equal to yt = δKt−1 > 0.

There are two distinct potential reasons for shutting down the mine at some finite date.
First of all, the opportunity to recycle minerals embedded in capital introduces an incentive
to put forward the extraction date. To see this, consider the extreme case of a 100% recycling
rate, i.e. δ = 1. In this case, given our assumption of costless extraction, there is no gain
from leaving any mineral resource underground for future use. It is clearly optimal to choose
m0 = M and mt = 0 for any t ≥ 1. In our analysis we take into account the possibility
that along the optimal path extraction comes to an end in finite time, and denote by t the
last period during which extraction is positive. Second, there may be situations where it is
preferable to initially keep mines closed and begin extracting only at some later date. This
is the case when the economy is endowed of a large initial green capital stock, but only
a relatively small stock of primary mineral resources. By choosing mt = 0 over an initial
interval [0, t), one can delay the use of the limited resource stock M to periods t ≥ t, while
keeping the renewable energy input for consumption at rate yt = K−1δ

t+1 for t < t.
We therefore search for the extraction paths of the two resources, such that ∀t ft > 0,

∀t ∈
[
t, t
]
mt > 0 and otherwise mt = 0, where periods t and t have to be chosen.16 The

planner’s problem is

max
ft,mt

t−1∑
t=0

(
1

1 + ρ

)t(fαt (δt+1K−1
)1−α

1− ε

)1−ε

+
t∑
t=t

(
1

1 + ρ

)tfαt
(
δt+1K−1 +

∑t
τ=t δ

t−τmτ

)1−α
1− ε


1−ε

(3.3)

+

∞∑
t=t+1

(
1

1 + ρ

)tfαt
(
δt+1K−1 + δt−t

∑t
τ=t δ

t−τmτ

)1−α
1− ε


1−ε

+ λ

(
F −

∞∑
t=0

ft

)
+ ν

M − t∑
τ=t

mτ


where λ, ν ≥ 0 are the values of the fossil and mineral resource stocks respectively.

The optimal policy is characterized by the following.

16In our deterministic framework, the optimal policy rules out any path with intermittent extraction of
minerals. This is demonstrated in Appendix B.1, but intuitively, the Bellman principle of optimality implies
that if along the optimal path extraction comes to an end at t, it is not efficient to open again the mine at
some later period t̃ > t. Suppose in fact that it is optimal to chose mt̃ > 0. It makes sense to keep mt̃−1 = 0 at

t̃− 1 only if the capital stock Kt̃ is considered too large given the remaining stocks of resources F −
∑t̃−1
τ=0 fτ

and M −
∑t̃−1
τ=tmτ . But these stocks are optimal, since they result of the extraction paths ft and mt up to

date t̃ − 1, assumed to be optimal. Hence, Kt̃ cannot be considered excessive. This contradiction shows that
our premise, according to which it is optimal to chose mt̃ > 0 when mt̃−1 = 0 is optimal, is wrong. Mutatis
mutandis the argument holds for the interval [0, t).
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Proposition 1. The unique trajectories solving problem (3.3), are of three types depending
on initial capital and resource stocks, and on preference and technological parameters.

1. If the technological efficiency of recycling is above the modified social discount factor

r, i.e. if δ ≥ r := (1 + ρ)−
1
ε , the mineral resource is exhausted in the first period, i.e.

t = t = 0, while the fossil resource is extracted at an exponentially declining rate

ft = F (1−R)Rt (3.4)

where R :=
(
δ(1−α)(1−ε)

1+ρ

) 1
1−α(1−ε)

, for all t ≥ 0.

2. If instead δ < r, both mineral and fossil resources are exhausted over the infinite horizon.
There are two distinct types of trajectories in this sub-case.

(a) If the stock of primary mineral resources is abundant relatively to the stock of
secondary resources available in the first period, i.e. if M

δK−1
≥ r−δ

1−r , both resources

are extracted at all periods, i.e. t = 0 and t = ∞, and from the second period
onward their extraction falls at a common exponential rate, dictated by the modified
discount factor, i.e. ft+1 = ftr and mt+1 = mtr ∀t ≥ 1. While fossil resource
extraction declines from the first to the second period according to factor r, i.e.
f1 = f0r, the extraction of the mineral resource between the first and second period
follows m1 = (r − δ) (m0 + δK−1) = (r − δ)K0. Initial optimal extraction is

f0 = (1− r)F (3.5)

m0 = (1− r) M

1− δ

(
1− r − δ

1− r
δK−1
M

)
(3.6)

(b) If instead M
δK−1

< r−δ
1−r , extraction of the mineral resource is delayed, i.e. t ≥ 1

and t = ∞. The optimal t is the lowest non-negative integer at or above the

value ln
(

M
δK−1

1−r
r−δ

)
/ ln δ. Over the first interval of time fossil resource extrac-

tion declines according to the factor R. From t + 1 onward, the extraction of
both resources falls at the common rate r. Between period t and t + 1 the extrac-
tion of fossil resources declines at rate r while that of minerals follows mt+1 =

10



(r − δ)
(
mt + δt+1K−1

)
. In this case

f0 =

(
1−Rt

1−R
+ Γ (t)

rt

1− r

)−1
F (3.7)

ft =

(
Γ (t)

1−Rt

1−R
+

rt

1− r

)−1
Frt (3.8)

mt = (1− r) M

1− δ

(
1− δt r − δ

1− r
δK−1
M

)
(3.9)

where Γ (t) :=
(

rδ(1−δ)K−1

(1−r)(M+δt+1K−1)

) (1−α)(1−ε)
1−α(1−ε)

.

Proof. The detailed proof is in Appendix A and B.

Let us explain the optimal trajectories of resource extraction and energy production spec-
ified in Proposition 1 and comment on them.

First, notice that the Hotelling principle for the efficient management of non renewable
resources applies to our framework. When the optimal policy maintains a constant input
ratio, consumption falls at the same rate as the common rate driving the decline in resource
extraction. Say that q declines at a factor g ∈ (0, 1), i.e. qt+1 = gqt. Then the value of
a marginal unit of the resource mix increases at rate pt+1/pt = g−ε. Along the optimal
trajectory from period 1 onward in case (2.a), or from period t + 1 onward in trajectory
(2.b), the optimal path of resource extraction implies g = r, therefore pt+1/pt = r−ε = 1 + ρ:
the value of a marginal unit of resource increases at the pure discount rate, as in Hotelling
(1931).17

Second, the asymmetry between the two types of resources, concerning the possibility to
recycle them, implies a difference in their optimal extraction paths. To see this let us focus
on the case of moderate recycling (δ < r) and no endowment of green capital (K−1 = 0), a
sub-case of (2.a) in Proposition 1. In this case, the initial ratio of resource extraction f0/m0

equals the initial input ratio f0/K0. As previously argued, without recyclability, it is optimal
to choose f0/m0 = F/M , according to the relative resource endowment (set K−1 = δ = 0
in (3.6) and compare to (3.5)). When green capital can be recycled, but K−1 = 0 , we see
from (3.6) that the extraction and input ratios are initially biased toward more intensive use
of mineral f0/m0 = (1− δ)F/M . This first period choice is the same as the one made in an
economy endowed of a larger stock of non renewable and non recyclable mineral resources
of size M̃ := M/ (1− δ). The stock M̃ measures the maximum feasible amount of mineral
inputs that can be used in the production of renewable energy over time, i.e. M̃ =

∑∞
t=0 δ

tM
obtained by extracting all minerals in the first period (t = 0 and t = 0). This observation
points to the fact that the possibility of recycling the mineral resource embedded in green

17pt is the marginal value of energy services, to which the marginal values of mineral and fossil resources
extracted are proportional.
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capital is equivalent to an endowment of a larger stock of mineral resources. Since, due to
δ > 0, mineral resources are relatively more abundant, the constant input ratio ft/Kt is
optimally chosen lower. However, the ratio of resource extraction ft/mt can only be kept
constant from period 1 onward, as mineral extraction is adjusted at date 0 to account for the
absence of recycled resources at that date. In so doing, the input ratio ft/Kt remains constant.
As a consequence the ratio of resource extraction is increased after the initial period.18 The
following statement summarizes this analysis.

Corollary 1. When K−1 = 0 and δ < r := (1 + ρ)−
1
ε , the solution of problem (3.3) implies

that the larger is the recycling rate δ ∈ [0, r), the more intensive in renewable energy is the
constant input ratio, the greater is the extraction of minerals in the first period and green
capital at every period, the more are extracting activities concentrated on minerals initially
and on fossil resources from the second period onward.

∀t ≥ 0
xt
yt

=
ft
Kt

= (1− δ) F
M

; m0 =
1− r
1− δ

M ; ∀t ≥ 1
ft
mt

=
r

r − δ
(1− δ) F

M
.

(3.10)

Proof. The value of m0 is an application of (3.6) in Proposition 1. We have ∂m0

∂δ = m0

1−δ > 0,

dKt
dδ = dm0

dδ r
t > 0 and dmt

dδ = −
(

1−r
1−δ

)2

Mrt < 0. The result on the input ratio holds because, as

argued in the main text ft and Kt grow at the same rate r at any date. Applying results for the case

(2.a) in Proposition 1, we get the ratio of resource extraction for t ≥ 1. Thus ∂ft/mt
∂δ = r 1−r

(r−δ)2
F
M > 0

and f0

m0
< ft

mt
for t ≥ 1.

Figure 2 illustrates the optimal paths of extraction of mineral and fossil resources, of green
capital and consumption.19 It represents the cases of two economies differing by the recycling
rate δ under the assumption of case (2.a) where r > δ and no green capital endowment. We
can see that the dynamics of mineral resource extraction is qualitatively affected, while that
of consumption and green capital is not (though their levels shift upwards with the rate of
recycling).

The results in Corollary 1 have relevant policy implications. On the one hand, the em-
pirically grounded observation that the production of renewable energy relies on the use of
specific non renewable resources, namely minerals, suggests that the economy is poorer than
it would be if the renewable energy could be produced out of non exhaustible inputs. From
this point of view, the observation points to a limitation of renewable energy as a factor to

18K−1 = 0 implies f0/K0 = f0/m0. From case (2.a) in Proposition 1 ∀t ≥ 1, ft/mt = ft+1/mt+1, and
f1/m1 = rf0/ ((r − δ)K0). Hence the upward jump in the extraction ratio from period 0 to period 1: f1/m1 >
f0/m0.

19Our benchmark calibration is ρ = .04, δ = .5, α = .7, K−1 = 0, M = 2, F = 1, q
fαK1−α = 4. We choose

ε = .2 for an illustrative purpose, since most of the dynamics takes place over the very first periods in this
case.
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Figure 2: Resource extraction, green capital and consumption paths for two different recycling
rates: continuous lines for δ = 0.5, dashed lines for δ = 0.1 (see calibration footnote 19).

overcome the limits to growth. In terms of our framework, this argument is represented by the
lower value of welfare ceteris paribus when δ < 1 than when δ = 1. The observation provides
an argument stating that the potential production of renewable energy is more limited than
generally thought. We refer to this argument as the pessimistic stance.

On the other hand, our analysis illustrates that the possibility to recycle minerals embed-
ded in green capital makes it preferable to choose an energy mix composed of more renewable
energy and less conventional fossil resources. Hence, adding a plausible assumption on the
recycling technology to the same empirical observation, we provide a pro renewable energy
argument, partially countering the pessimistic stance.

Moreover, we present an original argument in favor of a pro active renewable energy
policy. We show that for a given amount of mineral resources to be devoted to the production
of renewable energy, we should skew extraction toward the present the greater the recyclability
of minerals. In other words, because minerals are recyclable and fossil resources are not, we
should develop as soon as possible the green capital embedding the minerals, that allows us
to produce renewable energy and to substitute for conventional fossil energy. This is found
in Corollary 1, as well as in the extreme in case (1.) of Proposition 1 where minerals are
entirely embedded in green capital from t = 0. Notice that this original pro active argument
is grounded on the same empirical observation underlying the pessimistic stance. It relies
on the flexibility in scheduling resource use typical of the management of non renewable
resources. In fact, putting forward the potential of future production of renewable energy is
off the production possibility set in commonly used models with renewable and non renewable
sources of energy (e.g. Moreaux and Ricci, 2005).

Our discussion above abstracts from several potential reasons for putting forward or for
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Figure 3: Resource extraction, green capital and consumption paths for two endowments in
green capital: continuous lines for K−1 = 0, dashed lines for K−1 = 6 (see calibration footnote
19).

postponing investment in green capital. In the next section we review a few of them. The
framework in Proposition 1 provides already a possible reason for delaying investment. It
could be that at the start of the planning horizon, the economy has inherited of a large stock
of green capital. If previous investment decisions were not optimal, and inefficiently biased
toward renewable resources, the resulting stock of green capital, and thus of secondary mineral
resource available in the first period, could exceed the desirable initial stock of capital for the
first period. This corresponds to case (2.b) in Proposition 1. Figure 3 shows how the optimal
paths of four endogenous variables –extraction of fossil and mineral resources, green capital,
and consumption– vary with the endowment of green capital. The level of this endowment is
chosen to represent the qualitative features of cases (2.a) and (2.b) in Proposition 1. In the
latter case it is optimal to delay the extraction of mineral resources (as t > 0). Nevertheless,
in this case, production of renewable energy is initially quite high, and actually higher than
socially desirable. In practice, this case may be of little relevance.

Two further remarks on case (2.b) are worthwhile. First, over the interval of time [0, t)
the stock of green capital declines at rate δ instead of the socially desired rate r > δ. Though
abundant, green capital is still valuable because productive, and it is therefore used at full
capacity. As a result though, over this interval of time, the rate at which fossil extraction
decreases is adjusted and differs from the one prevailing in presence of mineral extraction.20

A similar adjustment to the extraction of fossil resources applies in case (1.) of a sufficiently
efficient recycling technology. Second, the marginal effect of an increase in the recycling rate δ

20More precisely, we deduce from Appendix C that the optimal rate of decay for fossil extraction is the
closest one between r and R from the pure discount factor 1

1+ρ
.
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is more complex in the case (2.b) of Proposition 1 than in the case (2.a) treated in Proposition
1. On the one hand the same forces presented in Corollary 1 apply. Yet now, a countervailing
effect operates through the fact that more secondary mineral resources are made available by
the increase in δ over the initial interval [0, t). The beginning of extraction may be delayed,
and the initial extraction of mineral resources may decline with δ.21 That being said, in
general, the higher the recycling rate, the higher the optimal initial extraction of minerals,
and the lesser the subsequent ones, unless reserves M are very low as compared to endowment
in green capital. Indeed, the higher the recycling rate, the more abundant are resources in
the future. This weakens the trade-off between present and future consumption, allowing for
earlier extraction. However, absent sufficient reserves for the future, another effect dominates:
the higher the recycling rate, the more one benefits from past investment in green capital, and
the less one needs to extract minerals in the future. In practice, we argue that recoverable
resources M is one order of magnitude larger than green capital K−1 for base metals (Singer,
2017), so we can reasonably assume that the realistic case is the case (2.a),22 with K−1 ≈ 0
and t = 0.

4 Extensions in a two-period model

In this section we consider factors affecting the optimal timing of energy production, and in
particular initial investment in green capital m0, other than the one identified in our analysis
due to the asymmetry in recyclability of the non renewable natural resource inputs used in the
production of conventional rather than renewable energy. In order to develop these extensions
in a clear and tractable way, we consider the two-period version of the model presented in
section 2, with t ∈ {0; 1}. We check the validity of the following results in a number of
extensions. First, the existence of a threshold on recyclability of minerals such that primary
mineral resources are exhausted in the first period, for δ above the threshold, as established
in Proposition 1. Second, the fact that, for δ below this threshold, a marginal increase in
recyclability fosters first period mineral resources use and investment in green capital, and
makes the input ratio more intensive in renewable energy, as established in Corollary 1.

To begin with, we show how the results adjust to the finite horizon case, studying the
benchmark case with constant relative risk aversion (CRRA) utility function. We disentangle
two mechanisms by first studying the sub-case of a logarithmic utility, then discussing the role
of the preference for intertemporal consumption smoothing in the optimal timing of energy

21We have
dmt
dδ

> 0 ⇐⇒ ∀t > t, dmt
dδ

< 0 ⇐⇒ M > δtK−1

(
(r−δ)(1−δ)

1−r (t+ 1)− δ
)

and dt
dδ

= 1
(r−δ) ln(δ) −

ln

(
M
K−1

1−r
r−δ

)
/δ ln2(δ). One can check that, even in the range of parameters of case (2.b) (δ < r and M

δK−1
< r−δ

1−r )

both signs are possible for each of these derivatives.
22Indeed, δ ≥ r does not seem realistic. An upper credible value for the pure discount rate ρ is 0.05, while the

inverse of the elasticity of intertemporal substitution ε can reasonably be assumed higher than 0.5. Combining
these conservative figures gives a low estimate for r: 0.9. Taking more common values for ρ and ε would yield
an even higher threshold r, so that for any realistic value of the recycling rate δ, it is extremely likely to have
δ < r and to be in the case where the optimal path is an endless extraction.
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production. Within this simplified framework, we study how expected resource-augmenting
technological progress affects the optimal investment in green capital. We move on to consider
alternative assumptions on the production technology, concerning the degree of substitutabil-
ity between energy services provided by the two types of resources within each period.23 Next,
we consider the role played by convex extraction costs in determining the optimal time of in-
vestment in green capital. Finally, we allow for environmental damages from the use of fossil
resources, which also affect on the optimal path of resource use.

4.1 The benchmark model with technological change

Let us consider first the case with CRRA utility function, Cobb-Douglas production func-
tion and non constant productivities of resource inputs. In a two-period setting the planner’s
problem is as follows:

max
q1−ε0

1− ε
+

1

1 + ρ

q1−ε1

1− ε
qt = (Atft)

α (BtKt)
1−α , t ∈ {0; 1}

K0 = m0 , K1 = m1 + δm0 (4.1)

f0 + f1 ≤ F
m0 +m1 ≤M

with m0, m1, f0, and f1 ≥ 0, where α ∈ (0, 1) and ε > 0 (log utility for ε = 1).

Proposition 2. The unique trajectories solving problem (4.1) are of two types. If δ < δ̃ ≡ r̃
1+r̃

where

r̃ :=
1

1 + ρ

(
q1
q0

)1−ε
, (4.2)

it is optimal to extract the mineral resource in both periods, as follows

m0 =
1

1−δ
1 + r̃

M ; m1 =
r̃ − δ

1−δ
1 + r̃

M ; f0 =
1

1 + r̃
F ; f1 =

r̃

1 + r̃
F, (4.3)

implying

q1
q0

=

[(
A1

A0

)α(B1

B0

)1−α
] 1
ε

(1 + ρ)−
1
ε (1− δ)

1−α
ε (4.4)

Moreover f0
K0

= (1− δ) F
M and f1

K1
= F

M . Therefore ∂m0
∂δ > 0, and ∂f0/K0

∂δ < 0 but ∂f1/K1

∂δ = 0.

If δ ≥ δ̃, the mineral resource is optimally exhausted at date 0. The optimal resource use is

23Alternatively, this can be interpreted as a feature related to preferences.
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m0 = M , m1 = 0, f0 = 1
1+ζF , and f1 = ζ

1+ζF , where ζ :=

((
A1
A0

)α (
B1
B0

)1−α
1

1+ρδ
(1−α)(1−ε)

) 1
1−α(1−ε)

so

that q1
q0

=

((
A1
A0

)α (
B1
B0

)1−α
1

1+ρ

) −α
1−α(1−ε)

δ
−(1−α)

1−α(1−ε) . Therefore d(q1/q0)
dδ < 0, while df0

dδ <

0 , df1dδ > 0 if ε < 1 but df0
dδ > 0 , df1dδ < 0 if ε > 1 .

Proof. See Appendix D.

From (4.2), r̃ is defined as the ratio of the present value current utility from energy
consumption. Hereafter, we refer to this ratio as the gross social discount factor. Let us begin
by considering the sub-case without technological progress (A1/A0 = B1/B0 = 1). Moreover,
first consider the case of logarithmic utility (ε = 1). We see that the threshold value of
the recycling rate, δ̃, is independent of the recycling rate and relative resource abundance,
depending only on the pure discount factor 1

1+ρ . When δ > δ̃, all mineral resources are
extracted and used in the first period, i.e. m0 = M , and the decline in energy consumption

is given by q1
q0

=
(

1
1+ρ

)α
δ1−α and increases with δ. Otherwise, for δ below the threshold,

minerals are extracted in both periods and consumption of energy services declines at q1
q0

=
1

1+ρ (1− δ)1−α, a decreasing function of δ. In this case, the higher the rate of recycling,
the earlier the use of primary mineral resources, the larger the initial investment in green
capital, and the more intensive in renewable energy is the input ratio in the first period.
All these results confirm those in Propositions 1 and Corollary 1. What differs is the fact
that the input ratio in the second period does not change with the rate of recycling. This
difference is not surprising, since there is no advantage from recycling mineral resources used
in the second period in a setting where there is no future period to use recycled resources
(i.e. no third period). Notice that in this case with logarithmic utility and Cobb-Douglas
production functions, the opportunity to recycle mineral resources does not affect the use of
fossil resources.

As a second step, consider the case ε 6= 1 to study the role of preferences with respect to
intertemporal consumption smoothing, in determining the timing of resource use and invest-
ment in green capital. We find that, when δ < δ̃, the decline in energy consumption (4.4)
is a decreasing function of δ, more so the smaller is ε, i.e. the greater the elasticity of in-
tertemporal substitution, 1/ε. An improvement in the recyclability of minerals brings forward
mineral resource use more so the least adverse to variability in the consumption over time is
the representative household, and as a consequence the larger is the downward adjustment

in optimal consumption. Since r̃ = (1 + ρ)−
1
ε (1− δ)

1−ε
ε

(1−α) (from (4.2) in (4.4)), the gross
discount rate is affected by ε through two channels. First, the pure preference for the present,
ρ, which directly affects the gross discount factor and therefore the timing of consumption and
thus of resource use. Second, the gross discount factor is affected by the prospective decline
in consumption, given by (4.4), itself influenced by the recycling technology for green capital.
The expected decline in consumption tends to decrease (increase) the gross discount factor if
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ε is smaller (larger) than unity, i.e. for high (low) elasticity of intertemporal substitution of
consumption 1/ε, and vice versa. As a result, the resource use tends to be brought forward
(to be delayed), thus f1/f0 and m1/m0 to decrease (increase). It is worthwhile noticing the
asymmetry between the two resources. Inspecting (4.3) we see that a marginal increase in
δ exerts two effects on m0, a direct one and an indirect one through r̃. As established in
Proposition 2, the former force dominates, so that an increase in δ reduces the ratio m1/m0,
bringing forward mineral resource use and boosting investment in green capital during the
first period, whatever ε. Nevertheless, the impact is smaller the larger is the willingness to
smooth consumption over time if ε > 1, and vice versa, because of the above mentioned in-
crease in the gross discount factor. In the case of fossil resources instead, only this indirect
effect running through the gross discount factor is at work, so that the optimal fossil resource
use is delayed (f1/f0 increases) if ε > 1 but it is brought forward (declines) if ε < 1.

Our analysis shows that preferences with respect to intertemporal substitution in con-
sumption possibilities play an important role in determining the optimal timing of resource
use and investment in green capital. However, the original mechanism underscored in this
paper, based on the asymmetry between the two types of resources, is still crucially at work in
determining the optimal timing of investment in green capital, making it preferable to bring
forward investment as the efficiency of the recycling technology increases.

Finally, consider the effect of expected technological change. The asymmetry on the op-
timal timing of resource use implied by the possibility to recycle minerals embedded in green
capital is unaffected, since the results concerning the role of parameter δ hold independently
of B1/B0. Nevertheless, in the case of an interior solution (δ < δ̃) prospects of technological
progress do affect the optimal timing in resource use and investment in green capital, through
their influence on the optimal rate of growth of energy consumption (4.4). Expected improve-
ments in the productivity of green capital, i.e. B1 > B0, lead to higher consumption growth
∂ (q1/q0) /∂B1 > 0. This, in turn, exerts wider effects, according to the attitude toward con-
sumption smoothing. If ε < 1, slower decline in energy consumption increases the gross social
discount factor ∂r̃/∂B1 > 0, and therefore delays the extraction of mineral ∂m0/∂B1 < 0 and
fossil ∂f0/∂B1 < 0 resources, while raising the threshold value on recyclability of minerals
∂δ̃/∂B1 > 0. The opposite consequences apply if ε > 1.

In the analysis hereafter we abstract again from technological change and assume again
∀t At = Bt = 1.

4.2 Substitutability between energy services from different sources

Until now, we have assumed the specific Cobb-Douglas form (3.1) for the production
function of energy services (2.2) combining services from fossil and renewable energy. This
assumption simplifies the analysis, but there is no reason to believe that these two types of
energy services are substitutes among each other with a constant and unitary elasticity of
substitution. Thinking of electricity as an homogeneous good, one might consider that the
elasticity of substitution is much larger than unity. Alternatively, one might view renewable
and conventional sources of energy as quite imperfect substitutes in providing energy services,
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due to the intermittent availability of some renewable sources of electricity, or to physical prop-
erties (weight, density, caloric power) of some fossil sources of energy, making them drastically
more efficient in some uses other than electricity production (e.g. air transportation).

The degree of substitutability between the two types of energy services may affect the
optimal timing of investment in green capital. To see why, consider the heuristic extreme case
without recycling, nor discounting, and completely inelastic preferences over the intertemporal
consumption path of energy services (ε =∞). The objective is maximized by keeping constant
at qt = Q

(
1
2F,

1
2M
)
, whatever the elasticity of substitution between the arguments in function

Q (.). If this elasticity is nil, it is optimal to use half of each resource per period. If the
elasticity of substitution is very large, then there is a continuum of combinations of fossil and
minerals (green capital) that maximize welfare, and therefore some minerals can be used in
the first period to build up more green capital, m0 >

1
2M (though leaving welfare unaffected).

Introducing recycling of green capital into the picture, the latter feature changes: welfare
is increased by bringing forward investment in green capital. In doing so, the secondary
resource stock of minerals increases and renewable energy services increase also in the second
period. This potentially beneficial role of recycling is less valuable in the case of moderate
possibilities for substituting between the two types of energy services. In the limit, if they
are perfect complement, bringing forward mineral extraction does not create additional value
and the optimal resource use is unaffected by δ. This discussion suggests that the elasticity of
substitution between the two types of energy services interacts with the preference parameters,
namely the elasticity of intertemporal substitution of energy consumption, in determining the
optimal timing of investment in green capital.

Modifying the planner’s problem (4.1), by substituting qt =

(
αf

σ−1
σ

t + (1− α)K
σ−1
σ

t

) σ
σ−1

for qt = (Atft)
α (BtKt)

1−α, we find that the interior solution (i.e. m1 > 0) holds if the
recycling rate is below threshold, i.e. if δ < r̃

(1−δ)1−σ+r̃ , where we extend the definition of r̃

as follows

r̃ :=

(
1

1 + ρ

)σ (q1
q0

)1−εσ
(4.5)

In this case, efficient resource extraction is defined by (4.3) but for the following24

m0 =
1

1−δ

1 + r̃ (1− δ)−(1−σ)
M ,m1 =

r̃ (1− δ)−(1−σ) − δ
1−δ

1 + r̃ (1− δ)−(1−σ)
M (4.6)

and the intertemporal energy consumption ratio q1
q0

is implicitly defined as the solution of

G

(
q1
q0
, δ

)
−
(
q1
q0

)εσ
(1 + ρ)σ = 0 (4.7)

24See Appendix E for the derivation of the results presented in this sub-section.
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(a) Initial use of mineral resources (b) First period energy mix

Figure 4: How the solution varies with the efficiency of the recycling technology in the case
of a CES production function for energy services (see calibration footnote 19).

where

G

(
q1
q0
, δ

)
≡


αF

σ−1
σ + (1− δ)σ−1 (1− α)M

σ−1
σ

(
1+
(
q1
q0

)1−εσ
(1+ρ)−σ

1−δ+
(
q1
q0

)1−εσ
(1+ρ)−σ(1−δ)σ

)σ−1
σ

αF
σ−1
σ + (1− α)M

σ−1
σ

(
1+
(
q1
q0

)1−εσ
(1+ρ)−σ

1−δ+
(
q1
q0

)1−εσ
(1+ρ)−σ(1−δ)σ

)σ−1
σ



σ
σ−1

As shown in Figure 4, the numerical solutions confirm that ∂m0
∂δ > 0 and δ < δ̃ =⇒

∂f0/K0

∂δ < 0, hence that our argument applies also in this case.25 The solution changes with
σ: the marginal impact of δ on the initial investment in green capital and energy mix is
stronger as the elasticity of substitution between energy services increases. Moreover, this
dependency is positively related to the elasticity of intertemporal substitution, 1/ε. These
findings confirm the heuristic argument developed in the previous paragraph: the flexibility
in combining the two types of energy services affects the optimal timing of green investment
and the optimal energy mix when green capital can be recycled. Specifically the more flexible
are the preferences and the technology, the more society takes advantage of the opportunity
opened by recycling. Yet, our original argument favorable to early investment and to the
intensity in renewables of the energy mix apply in this more involved setting. To the extent
that much of the relative mineral intensity of renewables is linked to the electricity-storage
technology and the aim of the latter is precisely to improve the substitutability between
conventional and renewable sources of electricity, our argument is somewhat reinforced by the
analysis, though of course it assumes both parameters as exogenous.

25The sensitivity analysis confirms that these results are robust. In particular, they hold for all combinations
of σ ∈ [0.1, 10.1] and ε ∈ [0.1, 6.1].
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4.3 Convex extraction costs

So far, in our analysis we ruled out extraction costs. If the marginal costs of producing
fossil and mineral resources increase with the extraction rate, the optimal timing of resource
use, thus of investment in green capital, should be affected. In order to show this in a clear-cut
way, we present a variant of our two-period model where fossil resources play no role.26 We
focus on the optimal solution with full exhaustion of the minerals stock and m1 > 0,27 and
consider the following planner’s problem:

max
1

1− ε
m1−ε

0 +
1

1 + ρ

1

1− ε
(M − (1− δ)m0)

1−ε − c

1 + γ
m1+γ

0 − 1

1 + ρ

c

1 + γ
(M −m0)

1+γ

where c, γ > 0 are the extraction cost parameters, and minerals are exhausted m1 = M −m0.
The first order condition is

P (m0) := m−ε0 −
1− δ
1 + ρ

(M − (1− δ)m0)
−ε = c

(
mγ

0 −
1

1 + ρ
(M −m0)

γ

)
=: C (m0) (4.8)

P (m0) measures the present value of the marginal utility generated by first period mineral
extraction. It is a monotonically decreasing function of m0, taking values +∞ for m0 = 0, and

M−ε
(

1− (1−δ)
1+ρ δ

−ε
)

for m0 = M . It becomes nil at mu
0 :=

(
1− δ +

(
1−δ
1+ρ

) 1
ε

)−1
M . C (m0)

measures the present value of the marginal cost of extraction at date 0. It is an increasing
function of m0, from −c 1

1+ρM
γ for m0 = 0 up to cMγ for m0 = M . It becomes nil at mc

0 :=(
1

1+ρ

) 1
γ

(
1 +

(
1

1+ρ

) 1
γ

)−1
M . Therefore, if the two schedules cross in the space (m0, value)

for m0 ∈ [0,M ], they do so only once. We conclude that, if
(

1− 1−δ
1+ρδ

−ε
)
< cMγ+ε, there

exists a unique value of m0 satisfying (4.8).
How does the presence of convex extraction costs directly affect the timing of mineral

resource use? Does it affect the role played by the efficiency of the recycling technology of
minerals embedded in green capital on the timing of investment in green capital?

To answer the former question, consider the present value of the marginal extraction cost
of m0. Notice first that when γ > 0 and in the absence of discounting ρ = 0, this cost is
minimized by smoothing completely resource extraction m0 = m1 = 1

2M . Under discounting,
instead, this intertemporal smoothing is partial and C (m0) is minimized by partially shifting
resource use to the future, i.e. m0 = mc

0 < m1 = M −mc
0 since ρ > 0. These two features

provide the rationale for smoothing over time and partially delaying resource extraction when
the marginal extraction cost is an increasing function of the extraction rate. Notice that these

26In practice, we assume a constant supply of conventional energy services and normalize it, then apply
the specification (3.1) of the production function of energy services. Numerical solutions suggest that the
qualitative results extend to the case of an optimized use of finite fossil resources: this has been verified for
the benchmark calibration (see footnote 19), with c = 1, γ = 2, and ε varying from 0.1 to 3.1.

27In the case of extraction costs for minerals, it is not necessarily the case that the stock M is optimally
exhausted. This is the case only for costs sufficiently low. Extraction costs are in turn partially endogenous.
Here we focus the analysis on the first order condition.
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considerations intervene in our problem on the right-hand-side of (4.8), and are not directly
affected by the possibility to recycle minerals, on which hinges the original mechanism put
forward in this article. This remark provides the answer to the second question above: a
marginal improvement in δ increases the present value of the marginal utility generated by
first period mineral extraction and leads to an increase in optimal m0, and investment in
green capital, for any given schedule C (m0).

28

We have shown that, although convex extraction costs introduce an economic incentive to
smooth and actually postpone extraction of minerals, and therefore the build-up of the green
capital stock, our original mechanism due to the possibility of recycling minerals embedded in
green capital, is still at work, since it introduces a specific incentive to bring forward ceteris
paribus minerals extraction and investment in green capital.

4.4 Environmental damages from using fossil resources

One of the main reasons underpinning the development of renewable energy production
capacity around the world is the general recognition of the social costs resulting of the energy
production from fossil resources. Since Smith (1972), the literature analyzing the interplay
between recycling and pollution has focused on the potential limitation of local pollution
from solid waste. Our original framework allows us to introduce an indirect link between the
development of recycling and the reduction of greenhouse gas emissions, to mitigate climate
change, a global pollution problem.29 Recycling influences the time profile of the energy mix.
In the case of climate change related damages, the cumulative process of pollution raises
the social payoff of early action. To take into account this additional factor affecting the
optimal timing of investment in green capital, we extend our two-period model by assuming
that using fossil resources also reduces utility. Specifically, we modify the utility function by
adding a separable disutility term, convex in the current flow of pollution from the use of
fossil resources: dt

1
θf

θ
t , with θ > 1 and t ∈ {0; 1}. In order to capture two features of the

climate change problem, we consider the case where it is not socially desirable to exhaust
fossil resources, i.e. f0 + f1 < F , then consider that damages from first period emissions are
relatively large, i.e. d0/d1 > 1 and study the impact of an increase in d0.

30

28Formally, one can compute from (4.8) that dm0
dδ

= −
(
∂P (m0)
∂δ

− ∂C(m0)
∂δ

)
/
(
∂P (m0)
∂m0

− ∂C(m0)
∂m0

)
> 0,

since, according to the previous analysis, the denominator is negative while ∂C(m0)
∂δ

= 0 and ∂P (m0)
∂δ

=
1

1+ρ
(M − (1− δ)m0)−ε

(
1 + ε (1−δ)m0

M−(1−δ)m0

)
> 0.

29Though the use of fossil resources is a major cause of local pollution problems too, the crucial constraint
on the supply of minerals for green capital (2.7) is potentially relevant on a global scale.

30Alternative setups to study the problem could be considered. One may impose a constraining ceiling
F < F , such that f0 + f1 ≤ F , in the spirit of the literature on “carbon budgets” (Chakravorty et al., 2006).
Moreover, the cumulative nature of the pollution problem can be explicitly considered, by assuming that the
second period disutility from pollution depends on past and present use of fossil resources. Numerical solutions
of the case with cumulative pollution suggest that the qualitative results hold: this has been verified for the
benchmark calibration (see footnote 19), with d = 1, θ = 2, and ε varying from 0.1 to 3.1.
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The planner’s program is modified, and writes

max
1

1− ε
(
fα0 m

1−α
0

)1−ε − d0 1

θ
fθ0 +

1

1 + ρ

(
1

1− ε

(
fα1 (m1 + δm0)

1−α
)1−α

− d1
1

θ
fθ1

)
+ ν (M −m0 −m1)

We show in Appendix F that the interior solution (i.e. m1 > 0) holds if δ < δ̃ ≡ r̃
1+r̃ and

is defined by (4.2), (4.3) but for the following

f0 =

 α
d0

(
1

1−δ
1 + r̃

M

)(1−α)(1−ε)
 1
θ−α(1−ε)

, f1 =

[
α

d1

(
r̃

1 + r̃
M

)(1−α)(1−ε)
] 1
θ−α(1−ε)

(4.9)

and the decline in energy consumption that is now given by

q1
q0

=

[(
d0
d1

)α(1− δ
1 + ρ

)θ(1−α)] 1
θ−(1−ε)[α+θ(1−α)]

. (4.10)

Since α ∈ (0, 1), ε > 0, θ > 1 imply θ−(1− ε) [α+ θ (1− α)] > 0, the energy consumption
declines at a faster pace with the efficiency of recycling (∂ q1q0 /∂δ < 0), and a slower rate with

the importance of damages from initial polluting emissions (∂ q1q0 /∂d0 > 0). As a consequence
the gross discount rate r̃ falls with δ and increases with d0 if ε < 1, and vice versa. We
find that our original mechanism is also operative in this framework. Similarly to the result
in Proposition 2, the initial extraction rate of minerals and green investment increase with
the recyclability, as well as the share of renewables in the energy mix in the first period
(see Appendix F). In this case the energy mix is affected by δ also in the second period.
In fact, improved recyclability of minerals embedded in green capital exerts the same effects
discussed in detail in Section 4.1 in terms of the intertemporal allocation of fossil and mineral
resources. However, in the present case the countervailing force due to the limited supply of
fossil resources and their exhaustion is not active, since the total quantity of fossil resources
used can vary. From (4.3) and (4.9) one can see that the use of fossil resources in the initial
period moves with the recyclability in the same direction as renewables if the elasticity of the
intertemporal substitution in consumption is larger than unity (i.e. ε < 1), and vice versa,
while fossil resource use in the second period always falls with δ. Hence, improved recyclability
of minerals allows society to reduce the total amount of fossil resources used when ε > 1, and
thus increase the share of renewables in the energy mix in both periods.31

How is investment in green capital affected by an increase in the damage of fossil resources
use in the first period, i.e. d0? This may represent a worsening of the climate change problem,
as a short-cut for the cumulative nature of damages in such a pollution control problem. We
find that an increase in d0 does not necessarily put forward investment in green capital. In fact,
for larger damage from fossils in the first period, the intuitive effect is that less fossil is used
in the first period. As a consequence, the marginal utility of consumption in the first period

31This result would not hold if one were to adopt a “carbon budget” approach.
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is increased, making m0 more valuable. This first effect calls for increasing m0. However, a
second effect, related to complementarity in production, comes from the fact that the marginal
productivity of one resource increases with the use of the other resource. This calls for shifting
the use of minerals to the second period, in order to postpone the use of the fossil resource. The
balance between these two effects is solved according to the willingness of the representative
agent to shift utility across time: if the elasticity of intertemporal substitution is sufficiently
low, i.e. ε > 1, the first effect dominates and m0 increases with d0, and vice versa.

5 Conclusion

Some observers argue that renewable energy is not manna from heaven, since it requires
specific equipment that relies on intensive use of exhaustible and finite mineral resources. We
have shown that this empirical fact favors abundant and early investment in green capital for
the production of renewable energy, given that minerals embedded in specialized green capital
can be recycled, as opposed to fossil resources burned for energy production.

Our analysis has focused on the role of recycling in determining the optimal path of
extraction of fossil and mineral resources, and the investment in green capital. However, we
have considered a constant, costless and exogenous recycling process. It would be relevant
to check how robust our argument is to relaxing these assumptions. On its own the issue of
the optimal choice of the recycling rate is interesting, and more so in our context as it could
affect the timing of investment in green capital.

We have adopted the normative approach of the benevolent social planner. However, it
can be argued that market failures would lead to inefficient equilibria. Some market failures
concern imperfect competition, both in the primary resource market and in the secondary one,
when there is recycling (see Ba and Mahenc, 2018, and the literature review therein). Other
potential failures concern the thinness of markets for specific minerals and the joint production
of several mineral resources (Fizaine, 2015). Moreover, the decentralized investment in R&D
directed at improvements in resource use efficiency or in recycling technology, may underpin
potential dynamic inefficiencies (e.g. Zhou et al., 2018). Such market failures call for public
intervention, raising the issue of their efficient design. We plan to study these extensions in
future work.

It could also be interesting to investigate the role of the non-recycled share of used green
capital. This cumulative waste involves a social cost to the extent that it may occupy scarce
space or generate pollution in the absence of specific costly treatment. The social benefit
of the development of recycling would therefore be confirmed : in addition to extending the
life-cycle of the natural resource, therefore its use and the ability to generate energy from
renewable sources, recycling reduces the amount of waste and its associated social cost.
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A Solutions of the infinite horizon

In the general case where we do not assume that there is an interval from t to t̄ which corresponds
to positive mineral extraction, the maximization program writes:

max
fx, mx

∑
x≥0

(1 + ρ)
−x

1− ε

fαx
(
K−1δ

x+1 +

x∑
u=0

muδ
x−u

)1−α
1−ε

+λ

F −∑
x≥0

fx

+ ν

M −∑
x≥0

mx

+
∑
x≥0

λxfx +
∑
x≥0

νxmx

In the following, we simplify the notations by introducing: φ := α (1− ε) and µ := (1− α) (1− ε).
To solve the program, we first assume in subsection A.1 that the positivity constraints always hold
after a certain date t, i.e. ∀t ≥ t, λt = νt = 0, which corresponds to an endless extraction of resources.
Then in subsection A.2, we derive the optimal solution in the case where minerals are depleted at the
initial period: ∀t > 0, mt = 0. We show in Appendix B that these solutions are indeed optimal under
the conditions given in Proposition 1.

A.1 Endless extraction

We assume a positive extraction of both resources starting at a date t, before which only fossils
are extracted. Using (2.6), the social planner’s program rewrites:

max

t−1∑
x=0

(1 + ρ)
−x

1− ε
fφx
(
δx+1K−1

)µ
+
∑
x≥t

(1 + ρ)
−x

1− ε
fφxK

µ
x + λ

F −∑
x≥0

fx

+ ν

M −∑
x≥t

mx


In the computations, we assume δ > 0, but the solution extends to the limit cases δ = 0. The log

case ε = 1 is covered by the computations (only the program writes differently in this case).
The f.o.c.s are: 

(∂ft)t<t αfφ−1
t (δK−1)

µ
= λ

(
1+ρ
δµ

)t
(∂ft)t≥t αfφ−1

t Kµ
t = λ (1 + ρ)

t

(∂mt)t≥t
∑
x≥t

fφxK
µ−1
x

(
δ

1+ρ

)x
= ν

1−αδ
t

where the last f.o.c. uses the definition of Kx in (2.6).
Subtracting the f.o.c. on mt+1 from the f.o.c. on mt, we have

fφt K
µ−1
t =

ν

1− α
(1− δ) (1 + ρ)

t
(A.1)

so that,

∀t ≥ t, Kt =

(
ν

1− α
(1− δ) (1 + ρ)

t

) 1
µ−1

f
φ

1−µ
t (A.2)
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Injecting this into the f.o.c. on ft, and given that φ+ µ− 1 = −ε < 0:
λ = αfφ−1

0 (δK−1)
µ

∀t < t, ft =
(
λ
α

(
1+ρ
δµ

)t
(δK−1)

−µ
) 1
φ−1

= f0

(
1+ρ
δµ

) t
φ−1

∀t ≥ t, ft =

(
λ
α (1 + ρ)

t
1−µ

(
ν

1−α (1− δ)
) µ

1−µ
) 1−µ
φ+µ−1

Defining r := (1 + ρ)
1

φ+µ−1 = (1 + ρ)
−1/ε

< 1 and R :=
(

1+ρ
δµ

) 1
φ−1 , this system gives:

∀t < t, ft = f0R
t and ∀t ≥ t, ft = fSr

t (A.3)

Combining the f.o.c.s of ft and ft−1, we have fS = f0

(
rδK−1

Kt

) µ
φ−1

, so that

∑
t≥0

ft = f0
1−Rt

1−R
+ fS

rt

1− r
= f0

(
1−Rt

1−R
+

(
rδ
K−1

Kt

) µ
φ−1 rt

1− r

)
= fS

((
rδ
K−1

Kt

) µ
1−φ 1−Rt

1−R
+

rt

1− r

)

The constraint (2.4) on recoverable resource of fossils gives f0 = F

(
1−Rt
1−R +

(
rδK−1

Kt

) µ
φ−1 rt

1−r

)−1

and fS =

F

((
rδK−1

Kt

) µ
1−φ 1−Rt

1−R + rt

1−r

)−1

. Turning to the minerals, we have from (A.2) and (A.3), using (2.6):

mt = Kt − δt+1K−1 =

(
ν

1− α
(1− δ)

) 1
µ−1

f
φ

1−µ
S rt − δt+1K−1

∀t > t, mt = Kt − δKt−1 =

(
ν

1− α
(1− δ)

) 1
µ−1

f
φ

1−µ
S rt−1 (r − δ) =: Ktr

t−t−1 (r − δ)

Lastly, Kt is determined by the transversality condition (2.7) on (mt)t≥0:

M =
∑
t≥t

mt = Kt − δt+1K−1 +
∑
t>t

Ktr
t−t−1 (r − δ) = Kt

1− δ
1− r

− δt+1K−1

i.e. Kt = 1−r
1−δ

(
M + δt+1K−1

)
. Finally, we obtain, with r = (1 + ρ)

− 1
ε and R =

(
1+ρ
δµ

) 1
φ−1 :

∀t < t, ft =

(
1−Rt

1−R
+

(
rδ (1− δ)K−1

(1− r) (M + δt+1K−1)

) µ
φ−1 rt

1− r

)−1

F ·Rt

∀t ≥ t, ft =

((
rδ (1− δ)K−1

(1− r) (M + δt+1K−1)

) µ
1−φ 1−Rt

1−R
+

rt

1− r

)−1

F · rt

∀t < t, mt = 0

mt =
1− r
1− δ

M − r − δ
1− δ

δt+1K−1

∀t > t, mt =
1− r
1− δ

(
M + δt+1K−1

)(
1− δ

r

)
rt−t
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The positivity constraints hold for δ < r and for t such that M > δt+1K−1
r−δ
1−r .

A.2 Immediate exhaustion

In this case, ∀t > 0, mt = 0. We also assume that ∀t, ft > 0 (see subsection B.1 for the
justification). The objective is increasing in m0, so it should be set to its maximum: m0 = M .

Then, the f.o.c. on ft writes: αfφ−1
t Mµδµt = λ (1 + ρ)

t
, i.e. ft =

(
λ

αMµ

(
1+ρ
δµ

)t) 1
φ−1

. Defining

f0 :=
(

λ
αMµ

) 1
φ−1 , we have: ∀t ≥ 0, ft = f0R

t. To conclude, notice that according to Lemma 1 in

Appendix C δ ≥ r ⇒ R < 1. 32 The transversality condition (2.4) must be saturated, as the program
is increasing in ft for all t. This gives F =

∑
t≥0

ft = f0

1−R , thus f0 = F (1−R). Finally, we obtain:

∀t ≥ 0, ft = F (1−R)Rt

B Optimality of the solutions

In this section, we demonstrate the results of Proposition 1. We show in B.1 that it is never
optimal to interrupt the extraction when δ < r. Then we derive in B.2 the solution when minerals are
depleted in a finite time and show that it is sub-optimal. Finally, we use all this to prove Proposition
1 in the case δ < r in B.3, and we treat the case δ ≥ r in B.4.

B.1 Interruption of extraction

It is never optimal to let K or f be nil at any period because the marginal welfare goes to +∞
when consumption is nil. Let us now show that for δ < r, it is never optimal to interrupt mineral
extraction, i.e. δ < r =⇒ ∃t,∃t̄ ≥ t, mt > 0 ⇐⇒ t ∈ [t, t̄]. Let (mt, ft)t≥0 be an optimal solution
and let T be such that mT > 0 and such that {t > T |mt > 0} 6= Ø. We define τ := min

t>T
{t|mt > 0}

in order to prove that τ = T + 1, i.e. that interruption of mineral extraction is suboptimal. Let us
assume ad absurdo that τ 6= T + 1, so that mT+1 = 0 and mτ−1 = 0. Then, as φ < 1 and ε > 0, we
deduce from δ < r using the definition of r:

1 >

(
δ

r

)(τ−1−T ) ε
1−φ

= (1 + ρ)
τ−1−T

1−φ

(
KT

KT
· δτ−1−T

) ε
1−φ

= (1 + ρ)
τ−1−T

1−φ

(
Kτ−1

KT

) µφ
φ−1 +1−µ

= (1 + ρ)
(τ−1−T )

(
KT

Kτ−1

)µ−1(
fT
fτ−1

)φ
32

Except in the degenerate case δ = 1+ρ = R = 1 for which there is no solution because the supremum
of the objective is infinite and cannot be attained. However ρ > 0 by assumption.
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where we used the f.o.c.s on fT and fT+1 to find the last equality. We thus have

(1− α) (1 + ρ)
−T

fφTK
µ−1
T < (1− α) (1 + ρ)

−(τ−1)
fφτ−1K

µ−1
τ−1 .

Besides, taking into account the non-negativity constraints ντ−1 ≥ 0 and νT+1 ≥ 0 in equation A.1,
we have:

(1− α) (1 + ρ)
−T

fφTK
µ−1
T = (1− δ) ν + δνT+1 ≥ (1− δ) ν − ντ−1 = (1− α) (1 + ρ)

−(τ−1)
fφτ−1K

µ−1
τ−1

The last two inequalities contradict, so we deduce that τ = T + 1.

B.2 Exhaustion in a finite time

Let t̄ > 0 be the last period at which minerals are extracted. We assume in this subsection that
extraction takes place from the initial period on. The program can be decomposed in two eras, during
and after the extraction of minerals:

max

t̄∑
x=0

(1 + ρ)
−x

1− ε
fφxK

µ
x +

∑
x>t̄

(1 + ρ)
−x

1− ε
fφxK

µ
t̄ δ

µ(x−t̄) + λ

F −∑
x≥0

fx

+ ν

M −∑
x≥0

mx


Using the f.o.c.s, one can derive the unique solution and write the inter-temporal welfare as follows,

after defining with a := 1−rt̄
1−r (1− δ) and c =

(
(1− δ) Rt̄

1−R

) φ−1
µ+φ−1

δ
µt̄

µ+φ−1 :33

Wt̄ =
fφ0 m

µ
0

1− ε
+

t̄−1∑
x=1

(1 + ρ)
−x f

φ
xK

µ
x

1− ε
+ (1 + ρ)

−t̄ f
φ
t̄ K

µ
t̄

1− ε
+
∑
x>t̄

(1 + ρ)
−x f

φ
xK

µ
t̄

1− ε
δµ(x−t̄)

=
1

1− ε

(
FφM̄µ (1− δ)φ−1

(a+ c)
1−φ−µ

)
To show that extraction in a finite time is not optimal, we derive welfare with respect to the last period
of extraction:

dW

dt̄
= W

1− φ− µ
a+ c

d (a+ c)

dt̄

a+ c

1− φ− µ
1

W

d lnW

dt̄
=
da

dt̄
+
dc

dt̄
= − ln (r) rt̄

(
1− δ
1− r

−
(

1− δ
1−R

) φ−1
µ+φ−1

)
33The detailed derivation is available in Appendix G.
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It is optimal to delay the exhaustion of minerals if and only if d lnW
dt̄ > 0. Notice that

1

W

d lnW

dt̄
> 0 ⇐⇒ 1− δ

1− r
>

(
1− δ
1−R

) φ−1
µ+φ−1

⇐⇒ 1−R > (1− δ)
−µ
φ−1 (1− r)

µ+φ−1
φ−1

⇐⇒ 1− r
µ+φ−1
φ−1

δ
µ
φ−1

>

(
1− δ
1− r

) µ
1−φ

(1− r)

Defining v := µ
1−φ and gr (δ) := 1−

(
δ
r

)v
r−
(

1−δ
1−r

)v
(1− r), we have 1

W
d lnW
dt̄ > 0 ⇐⇒ gr (δ) > 0.

Yet, g
′

r (δ) = v

((
1−δ
1−r

)v−1

−
(
δ
r

)v−1
)

. For v ∈ (0;1): g
′

r (δ) > 0 ⇐⇒ 1−δ
1−r <

δ
r ⇐⇒ r < δ while for

v < 0, the inverse is true: g
′

r (δ) > 0 ⇐⇒ δ < r. In addition, 0 < ε < 1 =⇒ (1− ε) − α (1− ε) <
1−α (1− ε) =⇒ v = (1−α)(1−ε)

1−α(1−ε) ∈ (0;1) while ε > 1 =⇒ v < 0 (in the limit case ε = 1, gr = 0). For

ε < 1, as gr (r) = 0 and gr is strictly decreasing below r and strictly increasing above r, we deduce
that ∀r, gr ≥ 0 and that ∀r, ∀δ 6= r, gr (δ) > 0. For ε > 1, the same reasoning shows that ∀r, gr ≤ 0
and that ∀r, ∀δ 6= r, gr (δ) < 0. Given that W > 0 ⇐⇒ ε < 1, ε 6= 1 =⇒ ∀δ 6= r, d lnW

dt̄ > 0.
The solutions extend to the log case ε = 1, but the formula of intertemporal welfare does not. Let us
compare in this case Wt̄+1 and Wt̄.

Wt̄+1 −Wt̄ =

t̄∑
t=0

(1 + ρ)
−t

ln

((
M̄

1− r
1− δ

)1−α

Fαrt

)
+
∑
t>t̄

(1 + ρ)
−t

ln

((
M̄δt−t̄−1rt̄+1

)1−α
Fαrαt

)

−
t̄−1∑
t=0

(1 + ρ)
−t

ln

((
M̄

1− r
1− δ

)1−α

Fαrt

)
−
∑
t≥t̄

(1 + ρ)
−t

ln

((
M̄δt−t̄rt̄

)1−α
Fαrαt

)
Wt̄+1 −Wt̄

1− α
=rt̄ ln

(
1− δ
1− r

)
+
∑
t>t̄

rt ln

(
δ

r

)
= rt̄

(
ln

(
1− r
1− δ

)
+

r

1− r
ln
(r
δ

))

Hence, for ε = 1, Wt̄+1 > Wt̄ ⇐⇒ hr (δ) := (1− r) ln
(

1−r
1−δ

)
+ r ln

(
r
δ

)
> 0. Yet, h′r (δ) =

1−r
1−δ −

r
δ > 0 ⇐⇒ δ > r and hr (r) = 0, so that ∀δ 6= r, hr (δ) > 0. As a consequence, whatever

the value of ε, it is always optimal to delay the end of mineral extraction and it is never optimal to
exhaust minerals at a date t̄ > 0. Indeed, in the only case for which it is optimal to do so, δ = r, all
candidate solutions conflate to immediate exhaustion.

B.3 Case δ < r

In this subsection, we call t the first period for which an optimal program’s mineral extraction
has a positive value: t := min

t≥0
{mt > 0}. Let us prove by induction on t that for all optimal solutions

(mt, ft)t≥0 such that t is the first period with positive mineral extraction, t < t ⇐⇒ mt = 0.
t < t =⇒ mt = 0 being true by definition, we only need to prove the reciprocal. In the base case
t = 0, mt = 0 =⇒ t ∈ ∅ =⇒ t < t = 0 comes from the results of the three previous subsections that
it is never optimal to stop or interrupt extraction. Then we turn to the inductive step, and we assume
that the proposition has been proven for all t ≤ n, to show it in the case t = n + 1. Let (mt, ft)t≥0

be a solution of the original program such that t = n+ 1. Necessarily, (mt, ft)t≥1 is optimal solution
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of the program starting at 1 with stock of resources (M −m0, F − f0). Applying the induction on
(mt, ft)t≥1, we know that ∀t ≥ 1, (mt = 0 =⇒ t < n+ 1). In addition, by definition of t, m0 = 0, so
that ∀t ≥ 0, t < t ⇐⇒ mt = 0, which achieves the proof. Given that it is never optimal to interrupt
or stop mineral extraction, the optimal extraction path is the one derived in Appendix A.

B.4 Case δ ≥ r

For δ > r, and using the f.o.c.s on ft and ft+1
34, we have:

∀t, 1 <

(
δ

r

) ε
1−φ

≤ (1 + ρ)
1

1−φ

(
mt+1

Kt
+ δ

) ε
1−φ

= (1 + ρ)
−1
φ−1

(
Kt+1

Kt

) µφ
φ−1 +1−µ

= (1 + ρ)

(
Kt

Kt+1

)µ−1(
ft
ft+1

)φ
∀t, (1 + ρ)

−t
fφt K

µ−1
t > (1 + ρ)

−(t+1)
fφt+1K

µ−1
t+1

Suppose ad absurdo that the optimal path (mt, ft)t≥0 is such that there exists T > 0 such that

mT > 0. Let
(
m̃t, f̃t

)
t≥0

be an alternative path defined by ∀t, f̃t = ft, ∀t /∈ {T ; 0} , m̃t = mt,

m̃0 = m0 + η, m̃T = mT − η, for an arbitrary η ∈ (0,mT ). Let us compare the welfares Wη and W

given by
(
m̃, f̃

)
and (m, f), respectively.

W̃η =
1

1− ε

∑
t<T

(1 + ρ)
−t
fφt
(
Kt + ηδt

)µ
+
∑
t≥T

(1 + ρ)
−t
fφt
(
Kt + η

(
δt − δt−T

))µ
=

η→0+

1

1− ε

∑
t<T

(1 + ρ)
−t
fφt K

µ
t

(
1 + µη

δt

Kt

)
+
∑
t≥T

(1 + ρ)
−t
fφt K

µ
t

(
1 + µη

δt − δt−T

Kt

)+ o (η)

W̃η −Wη =
η→0+

ηα

∑
t≥0

(
(1 + ρ)

−t
fφt K

µ−1
t − (1 + ρ)

−t−T
fφt+TK

µ−1
t+T

)
δt

+ o (η)

From above, we know that ∀t, (1 + ρ)
−t
fφt K

µ−1
t > (1 + ρ)

−t−T
fφt+TK

µ−1
t+T , which implies that

W̃η > Wη.35 This contradicts the optimality of (m, f). We deduce that δ > r =⇒ ∀T > 0, mT = 0.
Observing that for δ = r the unconstrained solution gives ∀t > 0, mt = 0 concludes the proof.

34To equate the f.o.c.s on ft we used the fact the ∀t, ft > 0 shown in subsection B.1.
35The argument does not rely on ε 6= 1, the limit case ε = 1 has not been presented for simplicity.
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C Relations between the different rates

Lemma 1. For ε < 1, there are only three possible exclusive cases:

δ < R < r <
1

1 + ρ
or r < R < min

{
1

1 + ρ
, δ

}
or δ = R = r <

1

1 + ρ

whereas for ε > 1, the three possible cases are:

max

{
δ,

1

1 + ρ

}
< r < R or

1

1 + ρ
< R < r < δ or δ = R = r >

1

1 + ρ

Finally, ε = 1 entails r = R = 1
1+ρ < 1, with no relation on δ.

As δ < 1, it follows that δ ≥ r =⇒ R < 1.

Proof. We always have δ < R ⇐⇒ δφ−1 > rµ+φ−1

δµ ⇐⇒ δ < r. For ε < 1, µ = (1− α) (1− ε) > 0,

so that r < R ⇐⇒ rφ−1 > rµ+φ−1

δµ ⇐⇒ δ > r . Ad absurdo, we also have that δ < R =⇒ R < r
for ε < 1. In effect, suppose that δ < R and r ≤ R. From the inequalities above (which are also valid
as non-strict inequalities), we deduce two contradictory properties: δ < r and δ ≥ r. Reciprocally,
r ≤ R =⇒ R ≤ δ for ε < 1. In addition, as (δ = r ⇐⇒ r = R) =⇒ (δ = r ⇐⇒ R = δ), there are
only three possible exclusive cases in the case ε < 1: δ < R < r ∨ r < R < δ ∨ δ = R = r.
Using a similar reasoning for ε > 1, and given that in this case r < R ⇐⇒ δ < r, we have
ε > 1 =⇒ δ < r < R ∨ R < r < δ ∨ δ = R = r. As δ < 1, it follows that δ ≥ r =⇒ R < 1.

Finally, observing that R < 1
1+ρ ⇐⇒

1+ρ
δµ > (1 + ρ)

1−φ ⇐⇒ (1 + ρ)
φ
> δµ ⇐⇒ (1 + ρ)

α(1−ε)
>

δ(1−α)(1−ε) ⇐⇒ ε < 1 and r < 1
1+ρ ⇐⇒ (1 + ρ)

1− 1
ε < 1 ⇐⇒ ε < 1 concludes the proof.

D Proof of Proposition 2

The problem is:.

max
1

1− ε

[
(A0f0)

α
(B0m0)

1−α
]1−ε

+
1

1− ε
1

1 + ρ

[
(A1f1)

α
(B1 (m1 + δm0))

1−α
]1−ε

+ λ (F − f0 − f1) + ν (M −m0 −m1)

The f.o.c.s are 
(∂f0) α

q1−ε
0

f0
= λ

(∂f1) α
1+ρ

q1−ε
1

f1
= λ

(∂m0) (1− α)
q1−ε
0

m0
+ δ 1−α

1+ρ
q1−ε
1

m1+δm0
= ν

(∂m1) 1−α
1+ρ

q1−ε
1

m1+δm0
= ν
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Combining the last two

q1−ε
0 m1 =

(
1− δ
1 + ρ

q1−ε
1 − δq1−ε

0

)
m0

and using the exhaustion condition m0 + m1 ≤ M one gets m0and m1 in (4.3) with the definition

(4.2). Hence m1 > 0, only for δ below the threshold δ̃ ≡ r̃
1+r̃ . Combining the first two f.o.c.s to get

f1 = 1
1+ρ

q1−ε
1

q1−ε
0

f0, then using the fossil resource exhaustion constraint f0 + f1 ≤ F , one gets f0and f1

in (4.3). These pace of resource use implies a specific pace of growth of energy consumption, given by
(4.4). The gross discount factor is therefore:

r̃ =

[(
A1

A0

)α(
B1

B0

)1−α
] 1−ε

ε

(1 + ρ)
− 1
ε (1− δ)(1−α) 1−ε

ε

Notice that it is not affected by technological progress in the case of logarithmic utility, i.e. if ε = 1.
The prospect of higher resource productivity (A1 > A0 or B1 > B0 ) increases the gross discount factor
if the elasticity of intertemporal substitution is high enough (1/ε > 1), and vice versa. The input ratios

are given by f0

K0
= (1− δ) F

M and f1

K1
= F

M , implying
∂f0/K0

∂δ < 0 but
∂f1/K1

∂δ = 0. Rewrite m0 =

1
(1−δ)(1+r̃)M , to compute ∂m0

∂δ = −
∂(1−δ)
∂δ

+
∂(1−δ)r̃
∂δ

(1−δ)(1+r̃) m0 > 0, since
∂(1−δ)r̃
∂δ = −1−α(1−ε)

1−δ r̃ < 0. We can

see that expectations of technological progress in both energy transformation technologies, postpone
resource extraction, thus investment in green capital if the elasticity of intertemporal substitution is

larger than unity: ∂m0

∂B1
= −

∂(1−δ)r̃
∂δ

(1−δ)(1+r̃)m0 < 0⇔ ε < 1.

E Analysis of the CES case in Section 4.2

The problem is:

max
1

1− ε

(
αf

σ−1
σ

0 + (1− α)m
σ−1
σ

0

) σ
σ−1 (1−ε)

+
1

1− ε
1

1 + ρ

(
αf

σ−1
σ

1 + (1− α) (δm0 +m1)
σ−1
σ

) σ
σ−1 (1−ε)

+ λ (F − f0 − f1) + ν (M −m0 −m1)

with m0, m1, f0, and f1 ≥ 0, and where σ > 0 (Cobb-Douglas production function for σ = 1) and
ε > 0 (log utility for ε = 1).

A candidate interior solution satisfies the f.o.c.s
(∂f0) f

σ−1
σ −1

0 q
1−ε−σ−1

σ
0 = λ

α

(∂f1) 1
1+ρf

σ−1
σ −1

1 q
1−ε−σ−1

σ
1 = λ

α

(∂m0) m
σ−1
σ −1

0 q
1−ε−σ−1

σ
0 + δ

1+ρ (δm0 +m1)
σ−1
σ −1

q
1−ε−σ−1

σ
1 = ν

1−α

(∂m1) 1
1+ρ (δm0 +m1)

σ−1
σ −1

q
1−ε−σ−1

σ
1 = ν

1−α

Combine the two f.o.c.s on f and the resource constraint f0 + f1 ≤ F to get f0 and f1 in (4.3),
given the definition (4.5). Combine the two f.o.c.s on m and the resource constraint m0 + m1 ≤ M ,

m0 and m1 in (4.6). An interior solution requires m1 > 0⇔
(
q1
q0

)1−εσ
(1 + ρ)

−σ
(1− δ)σ > δ , which
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defines the threshold on δ specified in the main text.
In the case of an interior solution, the consumption growth ratio is computed from

q1

q0
=

(
αf

σ−1
σ

1 + (1− α) (m1 + δm0)
σ−1
σ

αf
σ−1
σ

0 + (1− α)m
σ−1
σ

0

) σ
σ−1

substituting f0 and f1 from (4.3) and m0 , m1 from (4.6) to define the intertemporal consumption
ratio as the solution of the implicit function (4.7).

When δ is at or above the threshold, then m0 = M and m1 = 0, hence, using f0 and f1

from (4.3) , we have q1
q0

=
(
f1

f0

)α (
δM
M

)1−α
= r̃αδ1−α. Taking into account (4.5), in this case

q1
q0

=
[
(1 + ρ)

−ασ
δ1−α

] 1
1−α(1−εσ)

. Notice that 1 − α (1− εσ) > 0 implies that ∂ (q1/q0) /∂δ > 0

and ∂ (q1/q0) /∂ρ < 0. An explicit solution for fossil use is obtained substituting for q1
q0

in (4.5), then

the result into (4.3).

F Damages from fossil resources

Assuming that the resource constraint on fossils is not binding, the program writes:

max

(
fα0 m

1−α
0

)1−ε
1− ε

− d0

θ
fθ0 +

1

1 + ρ


(
fα1 (m1 + δm0)

1−α
)1−ε

1− ε
− d1

θ
fθ1

+ ν (M −m0 −m1)

Using the definition qt ≡ fαt K1−α
t , the f.o.c.s are

(∂f0) αq1−ε
0 = d0f

θ
0

(∂f1) αq1−ε
1 = d1f

θ
1

(∂m0) (1− α)
q1−ε
0

m0
+ (1− α) δ

1+ρ
q1−ε
1

m1+δm0
= ν

(∂m1) (1− α) 1
1+ρ

q1−ε
1

m1+δm0
= ν

The two f.o.c.s on m together with the exhaustion of minerals m1 +m0 = M , give the solutions in
(4.3) for m0 and m1, with r̃ defined in (4.2). It follows that K1 = r̃

1+r̃M and that an interior solution

holds only if r̃ > δ
1−δ , i.e. δ < δ̃ ≡ r̃

1+r̃ . The two f.o.c.s on f with the values of m0 and m1 in (4.3)

give f0 and f1 in (4.9). Using these expressions one gets

q1

q0
=

[(
d0

d1

)α
((1− δ) r̃)θ(1−α)

] 1
θ−α(1−ε)

Substituting (4.2) for r̃ leads to (4.10).
Concerning the impact of a marginal increase of δ in the case of an interior solution, proceed as fol-

lows. Form0, first combine (4.2) and (4.10) to compute (1− δ) r̃ =

[(
d0
d1

)(1−ε)α (
1−δ
1+ρ

)θ−(1−ε)α] 1
θ−(1−ε)[α+θ(1−α)]

.
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Since θ − (1− ε) [α+ θ (1− α)] > 0 and θ − (1− ε)α > 0,
∂(1−δ)r̃
∂δ < 0. Next from (4.3) write m0 =

1
(1−δ)(1+r̃)M . We get ∂m0

∂δ = −
∂(1−δ)
∂δ

+
∂(1−δ)r̃
∂δ

(1−δ)(1+r̃) m0 > 0. Given the exhaustion of minerals, the effect

on m1 runs in opposite direction. From (4.9), we have that ∂f0
∂δ = (1−α)(1−ε)

θ−α(1−ε)
f0
m0

∂m0
∂δ > 0 ⇔ ε < 1,

hence ∂ f0
K0
/∂δ = − 1

m2
0

(
f0

∂m0
∂δ −m0

∂f0
∂δ

)
= − f0

m2
0

(
θ+ε−1

θ−α(1−ε)

)
∂m0
∂δ < 0. Furthermore ∂f1

∂δ =

(1−α)(1−ε)
θ−α(1−ε)

f1
r̃(1+r̃)

∂r̃
∂δ < 0 since ∂r̃

∂δ < 0⇔ ε < 1, and f1
f0

=

((
d0
d1

) θ−(1−ε)θ(1−α)
θ−(1−ε)[α+θ(1−α)]

(
1−δ
1+ρ

) θ−(1−ε)α
θ−(1−ε)[α+θ(1−α)]

) (1−α)(1−ε)
θ−α(1−ε)

,

thus ∂ f1f0 /∂δ > 0⇔ ε > 1. Finally ∂ f1
K1
/∂δ = − θ+ε−1

θ−α(1−ε)
M
r̃
f1
K1

∂r̃
∂δ > 0⇔ ε < 1.

Concerning the impact of a marginal increase in first period damages, in the case of an interior

solution, we have the following. From (4.9) , ∂f0
∂d0

= f0
θ−α(1−ε)

(
(1− α) (1− ε) ∂m0/∂d0

m0
− 1

d0

)
< 0.

However from the expressions above, it follows that ∂m0
∂d0

= −∂(1−δ)r̃/∂d0
(1−δ)(1+r̃) m0 < 0 ⇔ ε < 1. Finally

the signs of the derivatives are summarized in Table 1.

Table 1: Signs of derivatives of the solutions with respect to the parameters

m0 m1 f0 f1
f0

K0

f1

K1

δ + − − ⇐⇒ ε > 1 − − − ⇐⇒ ε > 1

d0 + ⇐⇒ ε > 1 − ⇐⇒ ε > 1 ε < 1 =⇒ − + ε > 1 =⇒ − + ⇐⇒ ε > 1

d1 − ⇐⇒ ε > 1 + ⇐⇒ ε > 1 + ε < 1 =⇒ − + ⇐⇒ ε > 1 ε > 1 =⇒ −

G Derivation of Wt̄ in Appendix B.2

The problem is

max

t̄∑
x=0

(1 + ρ)
−x

1− ε
fφxK

µ
x +

∑
x>t̄

(1 + ρ)
−x

1− ε
fφxK

µ
t̄ δ

µ(x−t̄) + λ

F −∑
x≥0

fx

+ ν

M −∑
x≥0

mx


and the f.o.c.s are:

(∂ft)t≤t̄ αfφ−1
t Kµ

t (1 + ρ)
−t

= λ

(∂ft)t>t̄ αfφ−1
t Kµ

t̄ δ
µ(t−t̄) (1 + ρ)

−t
= λ

(∂mt)t≤t̄ (1− α)
t̄∑

x=t
(1 + ρ)

−x
fφxK

µ−1
x δx−t + (1− α)

∑
x>t̄

(1 + ρ)
−x
fφxK

µ−1
t̄ δµ(x−t̄)+t̄−t = ν
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The f.o.c. on mt+1 can be expressed as follows for t < t̄:

1− α
δ

t̄∑
x=t

(1 + ρ)
−x
fφxK

µ−1
x δx−t − (1− α) (1 + ρ)

−t f
φ
t K

µ−1
t

δ

+
1− α
δ

∑
x>t̄

(1 + ρ)
−x
fφxK

µ−1
t̄ δµ(x−t̄)+t̄−t = ν

Then, ∀t < t̄, (∂mt)
δ − (∂mt+1) yields (1− α) (1 + ρ)

−t
fφt K

µ−1
t = ν (1− δ), so that

∀t < t̄, Kt =

(
ν

1− α
(1− δ) (1 + ρ)

t

) 1
µ−1

f
φ

1−µ
t (G.1)

Furthermore, (∂mt̄) gives (1− α)
∑
x≥t̄

(1 + ρ)
−x
fφxK

µ−1
t̄ δµ(x−t̄) = ν, i.e.

Kt̄ =

1− α
ν

∑
x≥t̄

(1 + ρ)
−x
fφx δ

µ(x−t̄)

 1
1−µ

(G.2)

Injecting (G.1) into the f.o.c. on ft yields ∀t < t̄,

λ = αf
φ−1+ φµ

1−µ
t

(
ν

1− α
(1− δ)

) µ
µ−1

(1 + ρ)
1

µ−1 t

= αf
φ−1+ φµ

1−µ
0

(
ν

1− α
(1− δ)

) µ
µ−1

i.e.

ft =

(
λ

α
(1 + ρ)

1
1−µ t

(
ν

1− α
(1− δ)

) µ
1−µ
) 1−µ
φ+µ−1

Defining r := (1 + ρ)
1

φ+µ−1 < 1 and f< :=
(
λ
α

) 1−µ
φ+µ−1

(
ν

1−α (1− δ)
) µ
φ+µ−1

, we have:

∀t < t̄, ft = f<r
t (G.3)

For t > t̄, the f.o.c. on ft yields:36

ft =

(
λδµt̄

αKµ
t̄

(
1 + ρ

δµ

)t) 1
φ−1

Defining R :=
(

1+ρ
δµ

) 1
φ−1 and f> :=

(
λδµt̄

αKµ
t̄

) 1
φ−1

, we have:

∀t > t̄, ft = f>R
t (G.4)

In the following, we assume that R < 1. Combining the f.o.c. on ft̄ with the f.o.c. on ft̄+1:

36For δ = 0, marginal welfare goes to infinity for each t > t̄, as Kt = 0. Hence, it is obviously
suboptimal not to extract at every period in this case. In the following, we assume δ > 0.
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fφ−1
t̄ (1 + ρ) = fφ−1

t̄+1 δ
µ = fφ−1

> R(φ−1)(t̄+1)δµ. This gives ft̄:

ft̄ = f>R
t̄ (G.5)

The transversality condition on fossils gives:

F = f<

t̄−1∑
t=0

rt + f>
∑
t≥t̄

Rt = f<
1− rt̄

1− r
+ f>

Rt̄

1−R
(G.6)

Injecting (G.3) into (G.1) for t < t̄, we obtain Kt =
(

ν
1−α (1− δ) (1 + ρ)

t
) 1
µ−1

f
φ

1−µ
< r

φ
1−µ t so that

K0 =
(

ν
1−α (1− δ)

) 1
µ−1

f
φ

1−µ
< . Hence:

∀t < t̄, Kt = K0 (1 + ρ)
t

µ−1 r
φ

1−µ t = K0 (1 + ρ)
1

φ+µ−1 t = K0r
t (G.7)

which gives

∀t ∈ [1, t̄− 1] , mt = Kt − δKt−1 = K0

(
1− δ

r

)
rt

The transversality condition on minerals gives:

M =

t̄∑
t=0

mt = K0 − δK−1 +

t̄−1∑
t=1

K0r
t

(
1− δ

r

)
+mt̄

mt̄ = M + δK−1 −K0

(
1 + (r − δ) 1− rt̄−1

1− r

)
Hence,

Kt̄ = mt̄ + δKt̄−1 = M + δK−1 −K0

(
1 + (r − δ) 1− rt̄−1

1− r

)
+ δK0r

t̄−1

= M + δK−1 −K0
1− rt̄

1− r
(1− δ) = M̄ − aK0 (G.8)

with a := 1−rt̄
1−r (1− δ) and M̄ := M + δK−1.

Using (G.3) in the f.o.c. on f0 together with the f.o.c. on ft̄+1:

fφ−1
< Kµ

0 = δ−µt̄fφ−1
> Kµ

t̄

Injecting (G.6) and (G.8) into this:37

f
φ−1
µ

< f
−φ−1

µ

> K0 = δ−t̄
(
M̄ − aK0

)
f
φ−1
µ

<

((
F − f<

1− rt̄

1− r

)
1−R
Rt̄

)−φ−1
µ

= δ−t̄
(
M̄

K0
− a
)

(G.9)

37In the log case, ε = 1, R = r < 1, f< = f> and the solution derived below extends to this case.
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The f.o.c. on mt̄ gives:

(1− α) (1 + ρ)
−t̄
fφt̄ K

µ−1
t̄ + (1− α)

∑
x>t̄

(1 + ρ)
−x
fφxK

µ−1
t̄ δµ(x−t̄) = (1− α)

∑
x≥t̄

Rxfφ>K
µ−1
t̄ δ−µt̄

= (1− α) fφ>K
µ−1
t̄ δ−µt̄

Rt̄

1−R
= ν

Using
Kµ−1

0 fφ<
1−δ = ν

1−α from the expression of K0, we have from last equation:

fφ>K
µ−1
t̄ δ−µt̄

Rt̄

1−R
=
Kµ−1

0 fφ<
1− δ

(G.10)

Injecting (G.6) and (G.8) into this:

((
F − f<

1− rt̄

1− r

)
1−R
Rt̄

) φ
µ−1

(
M̄

K0
− a
)

=

(
fφ<

1− δ
1−R
Rt̄

δµt̄

) 1
µ−1

(G.11)

Combining this with (G.9) we have an equation in f<:

f
φ−1
µ −

φ
µ−1

<

((
F − f<

1− rt̄

1− r

)
1−R
Rt̄

) φ
µ−1−

φ−1
µ

= δ−t̄
(
δµt̄

1− δ
1−R
Rt̄

) 1
µ−1

(
F

f<
− 1− rt̄

1− r

)
1−R
Rt̄

= bµ (G.12)

where b :=
(

δt̄

1−δ
1−R
Rt̄

) 1
µ+φ−1

.

f< =

(
bµ

Rt̄

1−R
+

1− rt̄

1− r

)−1

F =
1− δ
a+ c

F (G.13)

where:

c := bµ
Rt̄

1−R
(1− δ) =

(
1− δ
δt̄

Rt̄

1−R

) −µ
µ+φ−1 Rt̄

1−R
(1− δ) =

(
(1− δ) Rt̄

1−R

) φ−1
µ+φ−1

δ
µt̄

µ+φ−1

Injecting (G.12) into (G.9) (at the second line), we deduce K0:

K0 = M̄

f φ−1
µ

<

((
F − f<

1− rt̄

1− r

)
1−R
Rt̄

)−φ−1
µ

δt̄ + a

−1

=
M̄

b1−φδt̄ + a
=

M̄

a+ c
(G.14)

Injecting (G.14) into (G.8), we deduce Kt̄:

Kt̄ =
cM̄

a+ c
= cK0 = b1−φδt̄K0 (G.15)
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We get f> from (G.6) and (G.13):

f> =
1−R
Rt̄

(
F − f<

1− rt̄

1− r

)
= bµf< (G.16)

Finally, the inter-temporal welfare writes:

Wt̄ =
fφ0 m

µ
0

1− ε
+

t̄−1∑
x=1

(1 + ρ)
−x f

φ
xK

µ
x

1− ε
+ (1 + ρ)

−t̄ f
φ
t̄ K

µ
t̄

1− ε
+
∑
x>t̄

(1 + ρ)
−x f

φ
xK

µ
t̄

1− ε
δµ(x−t̄)

=
1

1− ε

(
fφ<K

µ
0 +

t̄−1∑
x=1

(1 + ρ)
−x
fφ<r

φxKµ
0 r

µx + (1 + ρ)
−t̄
fφ>R

φt̄Kµ
t̄ +

∑
x>t̄

(1 + ρ)
−x
fφ>R

φxKµ
t̄ δ

µ(x−t̄)

)

=
1

1− ε

fφ<Kµ
0

1−
(
rφ+µ

1+ρ

)t̄
1− rφ+µ

1+ρ

+ (1 + ρ)
−t̄
bµφfφ<R

φt̄bµ(1−φ)δµt̄Kµ
0 + fφ>K

µ
t̄ δ
−µt̄ R

t̄+1

1−R


=

1

1− ε

fφ<Kµ
0

1−
(
rφ+µ

1+ρ

)t̄
1− rφ+µ

1+ρ

+ bµδµt̄
(
Rφt̄ (1 + ρ)

−t̄
+ δ−µt̄

Rt̄+1

1−R

)


=
1

1− ε

(
FφM̄µ

(
1− δ
a+ c

)φ
(a+ c)

−µ
(

1− rt̄

1− r
+ bµ

Rt̄

1−R

))

=
1

1− ε

(
FφM̄µ (1− δ)φ−1

(a+ c)
1−φ−µ

)
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