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Abstract

Most of the planet's diversity is concentrated in the tropics, which includes many

regions undergoing rapid climate change. Yet, while climate‐induced biodiversity

changes are widely documented elsewhere, few studies have addressed this issue

for lowland tropical ecosystems. Here we investigate whether the floristic and func-

tional composition of intact lowland Amazonian forests have been changing by eval-

uating records from 106 long‐term inventory plots spanning 30 years. We analyse

three traits that have been hypothesized to respond to different environmental dri-

vers (increase in moisture stress and atmospheric CO2 concentrations): maximum

tree size, biogeographic water‐deficit affiliation and wood density. Tree communities

have become increasingly dominated by large‐statured taxa, but to date there has

been no detectable change in mean wood density or water deficit affiliation at the

community level, despite most forest plots having experienced an intensification of

the dry season. However, among newly recruited trees, dry‐affiliated genera have

become more abundant, while the mortality of wet‐affiliated genera has increased

in those plots where the dry season has intensified most. Thus, a slow shift to a

more dry‐affiliated Amazonia is underway, with changes in compositional dynamics
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(recruits and mortality) consistent with climate‐change drivers, but yet to signifi-

cantly impact whole‐community composition. The Amazon observational record sug-

gests that the increase in atmospheric CO2 is driving a shift within tree

communities to large‐statured species and that climate changes to date will impact

forest composition, but long generation times of tropical trees mean that biodiver-

sity change is lagging behind climate change.

K E YWORD S

bioclimatic niches, climate change, compositional shifts, functional traits, temporal trends,

tropical forests

1 | INTRODUCTION

Tropical forests represent the world's most biodiverse ecosystems,

as well as providing its largest stores of living carbon and contribut-

ing more to biomass productivity than any other biome on the pla-

net. Changes here can therefore have global consequences,

potentially nowhere more so than in Amazonia where between

6,000 and 16,000 tree species exist (Cardoso et al., 2017; Ter

Steege et al., 2013) and as much as 100 Pg of carbon is stored in

biomass (Feldpausch et al., 2012). While the physical, chemical, and

biological environment have all been changing over recent decades,

it is the changes in climate—both documented and projected—which

are widely expected to cause some of the most profound changes in

forest communities and ecosystem processes (Esquivel‐Muelbert,

Baker, et al., 2017; Thomas et al., 2004). For example, higher tem-

peratures and intensifying drought may threaten larger trees due to

hydraulic failure (McDowell & Allen, 2015; Rowland et al., 2015),

which could eventually compromise forest biomass and productivity.

In Amazonia, because forest diversity is concentrated in the wetter,

least seasonal forests (Francis & Currie, 2003; Gentry, 1988), a per-

sistent lengthening of the dry season might threaten a large portion

of tropical biodiversity. Here we aim to better understand how Ama-

zonian trees have responded to the last 30 years of environmental

change, by analysing floristic records from long‐term tree monitoring

in the Neotropics to assess the potential compositional changes to

date.

Changes in biodiversity attributed to climate change have already

been documented in a wide variety of ecosystems (e.g. Bowler et al.,

2017; Chen et al., 2009), including in some tropical locations, but so

far there is remarkably little evidence of widespread impacts of cli-

mate change on the composition of tropical ecosystems which har-

bour much of the planet's diversity (Duque, Stevenson, & Feeley,

2015; Fauset et al., 2012; Van Der Sande et al., 2016). In contrast,

there is evidence for widespread changes in the structure (i.e. above-

ground biomass) and dynamics (e.g. mortality and productivity) of

old‐growth tropical forests. In many forests, apparently undisturbed

by humans, both aboveground biomass and the rate of ecological

processes such as growth and recruitment have increased (e.g. Brie-

nen et al., 2015; Lewis, Lopez‐Gonzalez, et al., 2009; Phillips &

Gentry, 1994; Qie et al., 2017), while in Amazonia increases in mor-

tality have caused a recent weakening of the biomass carbon sink

(Brienen et al., 2015). However, it remains unclear whether these

structural and dynamic changes are also associated with concerted

changes in the species richness and composition of Amazonian for-

ests.

In Amazonia, as elsewhere, climate change is a potential leading

driver of changes to the ecosystem. During the last few decades, the

climate of Amazonia has become more extreme—the length of the

dry season and its intensity have increased, while precipitation has

become more intense during the wet season (Gloor et al., 2015;

Hilker et al., 2014). Extreme climate events in recent years include

the three strong droughts within a decade (Erfanian, Wang, &

Fomenko, 2017; Jiménez‐Muñoz et al., 2016; Lewis, Brando, Phillips,

Van Der Heijden, & Nepstad, 2011; Marengo, Tomasella, Alves,

Soares, & Rodriguez, 2011; Marengo et al., 2008) and several large‐
scale episodes of extreme rainfall (Espinoza et al., 2014; Marengo &

Espinoza, 2016). In addition to the repeated drought events, precipi-

tation has declined in the south and south east of the basin (25%

reduction in rainfall between 2000 and 2012) (Hilker et al., 2014)

and higher temperatures are likely to have intensified seasonal evap-

orative stress across the basin (Jiménez‐Muñoz, Sobrino, Mattar, &

Malhi, 2013). These changes are consistent with model‐based predic-

tions (Duffy, Brando, Asner, & Field, 2015), implying that the Ama-

zon may already have entered a new regime of a hotter, more

variable climate. The forest has clearly responded to these recent

fluctuations in climate—for example, tree mortality rates increased

markedly during and after drought events causing at least temporary

losses of standing biomass (Brienen et al., 2015; Feldpausch et al.,

2016; Phillips et al., 2009; Zuleta, Duque, Cardenas, Muller‐Landau,
& Davies, 2017). The 2010 drought also impacted on the basin‐wide

exchange of carbon dioxide between the vegetation and the atmo-

sphere, with the vegetation becoming a net source of CO2 during

2010 (Gatti et al., 2014).

In addition to the changes in climate, atmospheric CO2 concen-

trations have increased globally from 320 ppm to over 400 ppm

over the past 50 years (Conway & Tans, 2016). Carbon dioxide is a

fundamental resource for photosynthesis, and higher concentrations
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are expected to stimulate plant growth (Lloyd & Farquhar, 1996).

Indeed, the increase in atmospheric concentrations of CO2 is a

potential driver of the observed increase in aboveground biomass

and turnover rates in tropical forests (Brienen et al., 2015; Lewis,

Lloyd, Sitch, Mitchard, & Laurance, 2009; Pan et al., 2011; Zhu et al.,

2016). Additionally, under higher CO2 concentrations plants may

increase their water‐use efficiency with less water being required

per unit of carbon fixed. Thus, by allowing plants to use less water,

higher CO2 concentrations could alleviate the effect of increasing

aridity (Lloyd & Farquhar, 2008; Van Der Sleen et al., 2015).

Interpreting potential shifts in tropical floristic composition and

linking them with possible drivers is a considerable challenge due to

the very high diversity of tropical forests and their large spatial

extent. However, if sufficient high‐quality, long‐term floristic moni-

toring is available, then the approach of analysing shifts in a suite of

functional traits to describe how communities change over time can

be used to link floristic changes to their drivers (McGill, Enquist,

Weiher, & Westoby, 2006; Violle, Reich, Pacala, Enquist, & Kattge,

2014). For tropical tree species, two largely independent trait axes

may have value in addressing these questions. One axis, the life‐his-
tory trade‐off between growth and mortality, can be represented by

wood density as it is negatively correlated to growth and mortality

rates. This is a reflection of slow‐growing trees tending to invest

more in wood structure (Chave et al., 2009; Muller‐Landau, 2004;
Nascimento et al., 2005; Poorter et al., 2010). The other axis is

related to the potential size that taxa can attain, representing the

capacity of taxa to compete for light (Falster & Westoby, 2005;

Poorter, Bongers, Sterck, & Wöll, 2005).

Environmental changes could have different impacts along each

of these ecological axes (Chave et al., 2008; Lewis, Lloyd, et al.,

2009). Most notably, with more extended or intense periods of soil

water deficit, large trees and those with low wood density may be

at greatest risk of hydraulic failure due to cavitation (McDowell &

Allen, 2015; Rowland et al., 2015). Large trees have been shown to

be particularly affected by artificially‐imposed drought (McDowell &

Allen, 2015; Nepstad, Tohver, Ray, Moutinho, & Cardinot, 2007;

Rowland et al., 2015) and drought events (Bennett, Mcdowell, Allen,

& Anderson‐Teixeira, 2015; Phillips et al., 2010). On the other hand,

several observations from tropical forests show a decline of small

understory taxa associated with increases in soil water deficit (e.g.

Condit, Hubbell, & Foster, 1996; Enquist & Enquist, 2011; Fauset et

al., 2012; Feeley, Davies, Perez, Hubbell, & Foster, 2011). To explain

these observations, it has been hypothesized that small taxa have

shallower roots and are therefore more vulnerable compared to

large, deep rooted trees to long‐term drying trends (Condit et al.,

1996; Fauset et al., 2012). Although the link between rooting depth

and tree size is still unclear (Stahl et al., 2013), this hypothesis is

consistent with wetter areas tending to have more densely popu-

lated understoreys (Malhi et al., 2002; Pitman et al., 2002) and taller

forests being less sensitive to precipitation variability (Giardina et al.,

2018). The ongoing increase in atmospheric carbon dioxide is also

expected to cause changes in species composition as it is predicted

to favour those trees that have greater competitive capacity to

access light (Coomes, Lines, & Allen, 2011; Laurance, 2004), conse-

quently increasing the mean potential tree size within the commu-

nity (e.g. Laurance et al., 2004) and to favour fast‐growing trees,

potentially leading to communities with lower wood density.

Given the uncertainty about how tree size relates to responses

to a drying climate, the geographic distributions of species over pre-

cipitation gradients offer an alternative source of information with

which to predict and to infer the effects of drought on floristic com-

position. The spatial distribution of tree taxa over precipitation gradi-

ents has been shown to provide a valuable proxy for drought

tolerance in observational studies and experiments (Engelbrecht et

al., 2007; Esquivel‐Muelbert, Galbraith, et al., 2017). If drought is

increasingly affecting Amazonian forests, we might therefore expect

concerted shifts in tree communities towards more dry‐affiliated
components. A compositional shift towards more dry‐tolerant taxa

as a consequence of an increase in moisture stress has been

reported locally for sites in southern Ghana (Fauset et al., 2012),

Central America (Enquist & Enquist, 2011; Feeley, Davies, et al.,

2011), and parts of the Amazon (Butt et al., 2014).

Here, we aim to quantify the shifts in the floristic composition of

Amazonian tree communities, and test the hypothesis that recent cli-

matic drying is already impacting the composition of Amazonian for-

ests. The data set derives from 106 long‐term, tree inventory plots

distributed across intact closed‐canopy moist forests in lowland Boli-

via, Brazil, Colombia, Ecuador, French Guiana, Guyana, Peru and

Venezuela (Supporting Information Appendix S1). We analyse moni-

toring records from as early as 1985 onwards to as recently as

2015, deliberately excluding any possible influence of the 2015–
2016 El Niño drought from our analysis. We investigate trends

within the overall community composition, as well as among recruits,

trees that died, and in the growth rate that occurred within each

census interval (Figure 1). We analyse compositional shifts along

these three trait axes, which we demonstrate to be independent:

life‐history (using wood density as a proxy), potential size, and biocli-

matic distribution (Supporting Information S2). Based on predictions

from plant physiology supported by experimental studies, we expect

increases in dry season duration or intensity to shift floristic compo-

sition towards dry‐affiliated and smaller‐statured genera with high

wood density (McDowell & Allen, 2015; Rowland et al., 2015). Addi-

tionally, we examine trends in abundance for individual genera,

which allows us to understand which taxa dominate the changes in

functional composition.

2 | MATERIALS AND METHODS

2.1 | Field observations and forest dynamics

We investigate the trends in functional and floristic composition of

tree communities by analysing long‐term data from permanent tree

inventory plots in the Amazon and adjacent lowland forests (Sup-

porting Information Appendix S1). A total of 106 South American

forest plots from the RAINFOR network (Malhi et al., 2002),

accessed via the ForestPlots.net repository (Lopez‐Gonzalez, Lewis,
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Burkitt, & Phillips, 2011), met our criteria: (a) sampling lowland

(<1,000 m.a.s.l), terra firme, intact, moist forests (i.e. where mean

maximum cumulative water deficit (MCWD) over the last century is

less negative than −300 mm/year); (b) having been monitored

throughout the period of the two intense dry seasons in 2005 and

2010 (see Supplementary material for analyses including plots that

were not monitored during 2005 and 2010); (c) having had regular

monitoring, thus excluding any plots where census interval lengths

differed by more than 10 years; (d) having at least 80% of tree stems

identified at least to genus level. The selected plots have a mean

area of 1.25 ha (95% CI = 1.16, 1.35), and have been re‐censused on

average seven times, with a mean census interval of 2.8 years.

The long‐term plots were monitored following a standardized

protocol (Phillips et al., 2016). Full methodological details are given

elsewhere (Brienen et al., 2015). In brief, all trees and palms ≥10 cm

diameter (D) at 1.3 m (or above‐buttress) are tagged, identified to

the species level (when possible), have their D measured, and the

point of measurement marked and recorded. At every census, trees

previously recorded are re‐measured, and new recruits—that is trees

that have newly attained 10 cm when the plot is revisited—tagged,

measured and identified, and notes are taken about the individuals

that died between censuses. Lianas and nonwoody freestanding

plants (Phenakospermum) are excluded from our analyses.

2.2 | Climate data

To characterize the change in moisture stress, we calculated tempo-

ral trends in maximum cumulative water deficit (MCWD—Aragão et

al., 2007) for each plot. MCWD represents the most negative value

of water deficit (wd), that is, the difference between precipitation (P)

and evapotranspiration (E) within each year, where for each month

(n) wd is quantified as:

If wdn�1 � En þ Pn<0;

then wdn ¼ wdn�1 � En þ Pn
else wdn ¼ 0

: (1)

In other words, MCWD is an annual water deficit metric which

takes into account both the length and intensity of the dry season

based solely on climatic variables, that is, ignoring soil properties.

The calculation of MCWD does not necessarily follow the calendar

year, as for tropical forests in the northern hemisphere the annual

dry season typically spans two calendar years (between October and

March). Thus, the starting point, that is, when n = 1, was defined cli-

matologically as the wettest month in the first year in the time series

(i.e. 1985), rather than the first month of that calendar year.

In addition to estimating annual MCWD, following Feldpausch et

al. (2016), we also estimated the intensity of the most extreme dry

season between two consecutive censuses, hereafter termed

MCWDi. This metric represents a measure of maximum environmen-

tal disruption between two censuses, that is the most negative value

of annual MCWD between each successive pair of censuses. Only

complete years were considered for this calculation. For the first

census of each plot, the MCWDi was calculated as the most nega-

tive MCWD values within the 3‐year period preceding that census.

This time window is equivalent to the mean census interval within

the data (2.8 years).

Climate data were obtained from the Climatic Research Unit

(CRU), at 0.5° spatial resolution from 1985 to 2015 (Harris, Jones,

Osborn, & Lister, 2014) where evapotranspiration is calculated based

on the Penman–Monteith equation (Allen, Smith, Pereira, & Perrier,

1994) using information on temperature, cloud cover and vapour

pressure (Harris et al., 2014). MCWD trends calculated from this

ground‐based precipitation data source were consistent with satel-

lite‐based data from the Tropical Rainfall Measuring Mission (TRMM

– Huffman et al., 2007) at 0.25° spatial resolution between 1998 and

2010 (R2 = 0.87; p < 0.0001—see Supporting Information Appendix

S3 for more detail). Here we opt to use ground‐based data from

CRU as this covers the whole time window of the floristic analyses.

2.3 | Traits

We describe Amazonian tree genera in terms of the three basic

traits shown in previous work and in Supporting Information Appen-

dix S2 for our data to represent largely independent axes of funda-

mental plant characteristics and each potentially responsive to

environmental change: Potential Size (PS; cm): the 95th percentile of

the distribution of trees’ diameter derived from a set of 530

F IGURE 1 Schematic model representing the different
components of forest demography. The box on the left represents
an inventory plot of a forest community at the first census (Ct0),
while the box on the right shows the community at the second
census (Ct1). At Ct1 recruits (R), that is those trees that attained
10 cm of diameter within the census interval, will now be part of
the community analysed. Other trees will have died thus leaving the
community, here called losses (L). Those trees from Ct0 that survive
through the census interval are expected to grow (G). Thus, the
basal area of the whole community at t1 is
Ct1 = Ct0 + Gt1 + Rt1 − Lt1 and the net flux between t0 and
t1 = Gt1 + Rt1 − Lt1. Here we investigate the trends in the
characteristics and identity of genera within these components of
forest demography. This figure represents dynamics in basal area
terms; similar logic can be applied for stem‐based analyses. Note
that in this case we would not be interested in the growth of trees
surviving from t0 to t1, and so the net flux would be represented as
Rt1 − Lt1
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inventory plots across the Amazon Basin (Fauset et al., 2015); Water

deficit affiliation (WDA; mm): derived from relative abundances

across 513 inventory plots distributed along a large gradient of

MCWD across the Western Neotropics (Esquivel‐Muelbert, Baker, et

al., 2017). This metric quantifies the preferred dry season severity

for each taxon and is calculated as the dry season severity (mea-

sured as MCWD) where a taxon occurs weighted by the taxon's rel-

ative abundance in each location (Esquivel‐Muelbert, Baker, et al.,

2017). Taxa affiliated to dry conditions show the most negative val-

ues of WDA, while the most wet‐affiliated ones have values of

WDA equal to zero; Wood density (WD; g/cm3): values were

extracted from the Wood Density Database (Chave et al., 2009;

Zanne et al., 2009). There was no indication of any pairwise relation-

ship among any of the traits: WDA versus PS (R2 = 8 × 10−3) WDA

versus WD (R2 = 5 × 10−4) and WD versus PS (R2 = 2 × 10−3).

The diversity of Amazonian flora hinders us from performing

consistent species‐level analyses as comprehensive trait data are still

missing for the large majority of Amazonian tree species. Therefore,

our analyses were performed at the genus level, and the mean trait

value of the genus was assigned to each individual. Our approach is

expected to be adequate to capture the actual functional shifts in

Amazonia as it captures most of the trait variation of Amazonian

trees, which is mostly accounted for at the family and genus level

(see Baker et al., 2004; Coelho de Souza et al., 2016; Fyllas et al.,

2009; Patiño et al., 2009). Although genus‐level analyses still miss

some information on trait variation, analyses at this taxonomic reso-

lution are also potentially more conservative with respect to the

hypothesis of environmental‐driven floristic change than analyses at

the species level, as they use mean genus‐level values instead of

(more extreme) species‐level values. Results of analyses using spe-

cies‐level traits, for those taxa where data are available, do not differ

from genus‐level results (see Supporting Information Appendix S8).

Genus‐level trait data were missing for 6%, 9% and 0.04% of all

stems for PS, WDA and WD, respectively. For these cases, the mean

trait values from the family were used, following established conven-

tions (Baker et al., 2004; Flores & Coomes, 2011) and considering

the phylogenetic conservatism of PS and WD for Amazonian trees

(Coelho de Souza et al., 2016). For the small proportion of individu-

als belonging to families for which no trait information was available,

we used average trait values of the community in the same census

was used. For those stems not identified to family level (3.9%), we

applied the mean trait for all dicot individuals of the plot census dur-

ing which the tree was recorded. Considering the low proportion of

missing data the imputation technique is unlikely to strongly affect

our results (Penone et al., 2014).

Then, to obtain a census‐level value for each of the three traits,

we scaled the genus‐level traits to the community level by calculat-

ing the community‐weighted mean (CWM sensu Diaz et al., 2007)

for each trait in each census. For each of the 743 censuses across

106 plots, the CWM of each of these components was calculated as

the mean trait value across the genera of the community, weighted

by (a) the number of stems; and (b) the total basal area occupied by

each genus. Community‐weighted means were calculated for the

whole community and for each component of forest dynamics, that

is the recruits (new trees that reach the 10 cm D cut‐off after each
census interval), losses (those trees that died within each census

interval) and the basal area gain of those trees that survived the cen-

sus interval (Figure 1).

2.4 | Analytical approach

We investigated changes in functional (mean potential size, water

deficit affiliation and wood density) and floristic composition (relative

abundance of individuals within different genera) by assessing trends

over time of these quantities for each plot and their Amazon‐level
mean.

2.4.1 | Trends in functional composition

We investigated functional trends for the different components of

forest demography (i.e. whole tree community, recruits and trees

that died—Figure 1). These functional trends were quantified using

(a) the bootstrapped mean and 95% CI of plot level linear regression

slopes of the community weighted mean (CWM) as a function of

time, averaged across all plots; and (b) linear mixed effect models

(LMM) of CWM as a function of time with plot identified as a ran-

dom effect, using function lmer from the R package lme4 (Bates,

Mächler, Bolker, & Walker, 2015). While the first approach provides

information of the overall mean trend across all plots, in which the

uncertainty estimate is derived using a nonparametric approach, the

second approach gives an estimate of the trend over the whole time

series (1985–2015), accounting for potential changes in which plots

are analysed over different time windows along the 30‐year period.
The bootstrapped mean and confidence intervals were calculated

from the linear slopes of CWM (i.e. mean plot level traits) for each

plot where the CWM in each census (j) is a function of the date

when the census took place (time):

CWMj ∼ β1 þ β2 � timej þ ɛj: (2)

Then, an Amazon‐wide weighted mean and the 95% CI were

estimated by randomly resampling values of the plot‐level slopes (β2

from Equation 3) across all plots, 10,000 times. We further estimate

the potential influence of spatial autocorrelation on our results by

testing the correlation between the Euclidean distance in the trends

in CWM and the spatial distance between the plots (Supporting

Information Appendix S7).

The variation in plot area and monitoring period may be

expected to influence plot‐level trends as smaller plots and those

monitored for shorter periods are more likely to be affected by

stochastic phenomena, such as tree falls (Fisher, Hurtt, Thomas, &

Chambers, 2008). An empirical investigation of the impact of sam-

pling effort (i.e. length of monitoring period and plot size) on our

estimate showed that the variance is expected to scale as a function

of the square root of plot area multiplied by the monitoring period

(Supporting Information Appendix S4). Thus, to account for the noise

attributed to sampling effort, we used the square root of plot area
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multiplied by the monitoring period as weights when calculating

Amazon‐level mean and confidence intervals of the CWM slopes.

The LMM follows the same logic of the previous analyses with

CWM as a linear function of time:

CWMij ∼ ðβ1 þ aiÞ þ ðβ2 þ biÞ � timeij þ ɛij: (3)

where CWM in plot i and census j is a function of the date when

the census occurred (time). Here time is used as a fixed effect, and

the random components of the model are the intercept (a) and slope

(b) for each plot and the overall residuals (ε). The slope and intercept

of each plot were included as random effects considering that both

the initial trait value (represented by the plot intercept, ai) and the

intensity of change (represented by the plot slope, bi) may differ

across plots. An exploration of the influence of sampling effort on

the variance of the residuals shows no weighting procedure to be

required for this analytical framework (Supporting Information

Appendix S4).

2.4.2 | The influence of climate on functional
composition

To explore the potential impact of climate changes on functional

change, we tested whether changes in the community are related to

changes in climate. First, we calculated the linear trend in MCWD

and MCWDi over the inventory period for each plot. We then used

Kendall's τ coefficient to test for the correlation between linear

slopes of change in CWMs (composition) and MCWD (climate) for

each plot. For the cases where the correlation was significant, we fit

an OLS linear regression with the trends in CWM as a function of

trends in MCWD.

2.4.3 | Trends in floristic composition

We investigated the influence of individual taxonomic groups on any

functional shifts by analysing the relationship between shifts in

abundance and trait values. Trends in relative abundance for each

taxon were calculated following the same procedure applied above

to analyse CWM changes, that is by calculating the bootstrapped

mean of linear trends and applying LMM, but here using the relative

abundance of each genus as a response variable instead of CWM.

The bootstrap means were calculated from a modified version of

Equation 3 applied to every plot:

RAj ∼ β1 þ β2 � timej þ ɛj: (4)

where RA is the relative abundance of a genus at plot i and census j.

We then use the LMM approach by modifying Equation 4 to:

RAij ∼ ðβ1 þ aiÞ þ ðβ2 þ biÞ � timeij þ ɛij: (5)

An Amazon‐wide slope using each of the methods was calculated

for each taxon. The LMM analysis was restricted to genera that

occurred in three or more plots. As for the functional analyses, each

plot in the bootstrap mean following Equation 5 was weighted by

the square root of plot area multiplied by the monitoring period and

no weighting procedure was applied for the LMM approach (Equa-

tion 6). Trends in abundance were also calculated for families and

species (Supporting Information Appendix S12).

Next, we investigated which genera contribute most to the sig-

nificant functional changes that were detected. When trends in func-

tional composition were significantly different from zero (see

Section 7 for details), we estimated Kendall's τ coefficient of correla-

tion between Amazon‐wide slopes (calculated for the whole commu-

nity, for recruits, and for losses) for each genus and their trait values

(WDA, WD or PS). To ensure that abundance trends were estimated

with reasonable levels of uncertainty, we restricted the investigation

of the trends in abundance versus traits relationship to only include

genera within the upper 20% quantile of abundance across the

whole data set.

Finally, we calculated the trends in abundance for four Amazo-

nian functional types defined by Fyllas, Quesada, and Lloyd (2012)

using trait information from a subset of the Amazonian species

included in this study. The four Amazonian functional groups (small

pioneers, small‐statured nonpioneers, tall pioneers and tall non-

pioneers) are based on variety of foliar and structural traits (Support-

ing Information Appendix S10) independent from the traits

considered in our main analyses. This therefore provides comple-

mentary information to our main analyses.

3 | RESULTS

3.1 | Climate trends

The forests analysed here have on average experienced a strength-

ening of the dry season, as measured by maximum cumulative water

deficit (MCWD). The plot‐level annual MCWD became more nega-

tive by on average 1.1 mm/year (95% CI = 1.4, 0.9) since 1985 (Fig-

ure 2). This represents a marked intensification in MCWD across our

plots by on average 36% between 1985 and 2014. There are excep-

tions to the overall drying trend, with some plots near the Andes

becoming wetter during this period (Figure 2).

3.2 | Trends in functional composition

Overall, there has been a significant increase in the potential size

(PS) of tree communities: the community weighted mean (CWM) of

PS when weighted by basal area increased by 0.03 cm/year (95%

CI = 0.02, 0.05 cm/year) or 0.06% per year with basal gains increas-

ing in PS by 0.06 cm/year (95% CI = 0.01, 0.12 cm/year) meaning

that plots have been progressively occupied by larger statured gen-

era (Table 2). The increase in basal area‐weighted community‐level
PS holds regardless of the analytical technique, that is bootstrapped

means or LMM (Table 2, Supporting Information Appendix S6).

For the recruits, dry‐affiliated genera have become more abun-

dant, with water‐deficit affiliation (WDA) becoming significantly

more negative for this segment of the community by 0.45 mm/year

(CI 95% −0.9, −0.03 mm/year) or 0.3% per year (Table 1). This trend

was marginally significant across the basin when calculated using
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F IGURE 2 Trends in maximum cumulative water deficit (MCWD) across the Amazon Basin. (a) Frequency of annual linear trends in MCWD
per plot between 1985 and 2014. Note that for most plots, the climate has significantly shifted towards more negative MCWD values. Mean
change and 95% confidence intervals (black solid and dashed lines) across our plots weighting plots by plot area were calculated using a
bootstrap procedure by resampling the trends in MCWD from all plots 10,000 times with replacement. (b) Distribution of annual linear trends
in MCWD per plot. Arrows pointing down (in red) represent locations where MCWD has become more negative over time, that is the dry
season has become more intense. Arrows pointing up (blue) represent less negative values of MCWD meaning that moisture stress decreased.
The intensity of the colours in (a,b) represent the strength of the climate trend. Note the difference in scale between drying and wetting
trends colour bars. (c) Mean annual MCWD across plots, and 95% CI from resampling among all plots, note lower MCWD values at 2004–
2005 and 2009–2010 (grey‐shaded rectangles)

TABLE 1 Mean linear slopes in stem‐based functional composition in Amazonia

Community Potential size (cm/year) Water deficit affiliation (mm/year) Wood density (g cm−3 year−1)

All community 0.01 (−0.002|0.01) 0.01 (−0.03|0.04) −1 × 10−5 (−9 × 10−5 |6 × 10−5)

Gains (recruits) 0.07 (−0.03|0.2) −0.45 (−0.9|−0.03) −3 × 10−4 (−2 × 10−3|1 × 10−3)

Losses 0.1 (−0.01|0.2) −0.1 (−0.6|0.3) 2 × 10−4 (−7 × 10−4|1 × 10−3)

Net fluxes −0.03 (−0.2|0.1) −0.45 (−1|0.1) −7 × 10−4 (−2 × 10−3|8 × 10−4)

Notes. For each trait, we show the bootstrap mean annual changes in community weighted mean (CWM) and 95% confidence intervals (CI, in brackets)

weighted by the product of the squared root of plot size and monitoring period. CWM is calculated using: water deficit affiliation (WDA), potential size

(PS) and wood density (WD). The analyses were repeated for recruits, losses and the difference between recruits and dead trees (net fluxes). Significant

trends are in bold, that is, where 95% CIs do not overlap zero.

TABLE 2 Mean linear slopes in basal area‐based functional composition in Amazonia

Community Potential size (cm/year) Water deficit affiliation (mm/year) Wood density (g cm−3 year−1)

All community 0.03 (0.02|0.05) 0.01 (−0.04|0.07) 3 × 10−5 (−6 × 10−5|1 × 10−4)

Gains (basal area) 0.06 (0.01|0.12) −0.09 (−0.53|0.2) −5 × 10−4 (−1 × 10−3|1 × 10−4)

Gains (recruits) 0.06 (−0.09|0.19) −0.08 (−0.7|0.6) −2 × 10−4 (−2 × 10−3|2 × 10−3)

Losses 0.13 (−0.08|0.33) −0.33 (−1.2|0.5) −1 × 10−3 (−2 × 10−3|3 × 10−4)

Net fluxes −0.05 (−0.27|0.2) 0.24 (−0.7|1.19) 9 × 10−4 (−4 × 10−4|2 × 10−3)

Note. As in Table 1 but showing the results for basal area, see Figure 1 for details.
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LMM (Figure 3, Supporting Information Appendix S6.1); however, it

was observed for 62 of 102 plots (p = 0.03, two‐tailed binomial test)

and persisted when our analyses were repeated across a larger data

set (Supporting Information Appendix S6.2) and when grouping

together nearby plots to account for spatial autocorrelation in the

distribution of plots (Supporting Information Appendix S7.2).

Among the trees that died within the study period (losses), basal

area‐weighted wood density (WD) decreased by 1 × 10−3 g cm−3

year−1 or 0.16% per year in the LMM analyses (Supporting Informa-

tion Appendix S6). This trend, however, was only observed for 53 of

102 communities, meaning that positive and negative slopes are

equally likely to be observed (p = 0.8, two tail binomial test) and, it

was not significant when using bootstrapped means (Table 1). No

equivalent significant abundance‐based trend for losses in WD terms

was observed (Table 1, Supporting Information Appendix S6).

3.3 | The influence of climate on functional
composition

The trends in the intensity of extreme dry events (MCWDi) within

each plot were significantly correlated with trends in the losses of

community basal‐area WDA (Figure 4) and the fluxes of basal area

WDA (Supporting Information Appendix S9). This indicates that the

mortality of large wet‐affiliated trees has increased in plots where

the dry seasons have become more extreme. Trends in climate were

also negatively correlated to losses of stem‐based WD (Supporting

Information Appendix S9). There was no significant correlation

between trends in climate and trends in community weighted mean

of any other trait or segments of the tree community (Supporting

Information Appendix S9).

3.4 | Floristic trends

The floristic changes represented by the linear trends in abundance

for individual genera are generally consistent with the functional

changes observed. There have been notable increases in the relative

abundance of the dry‐affiliated genera Bertholletia, Brosimum and

Pseudolmedia, together with sharp decreases for the wet‐affiliated
Aparisthmium, Fusaea, Inga and Mezilaurus. Some large‐statured gen-

era have increased significantly, such as Mora, Couratari and

Eschweilera. A decrease in smaller‐statured taxa, such as Ouratea,

Aniba, Marlierea and Astrocaryum is also observed (Supporting

F IGURE 3 Trends in functional composition between 1985 and 2015 across Amazonia. The y‐axes show stem‐based community weighted
mean (CWM) trends in (a–c) water deficit affiliation (WDA), (d–f) potential size (PS) and (g–i) wood density (WD) at genus level. Values are
standardized with respect to the whole plot population to allow comparison among traits meaning that the value for the whole community in
the first census is equal to 1. CWM trends are shown for the whole community (a,d,g), recruits (b,e,h), and losses (c,f,i). Grey line and grey‐
shaded area show standardized mean and 95% CI census‐level CWM, which can be influenced by some switching of plots assessed through
time. Trend lines show linear mixed models (LMM) considering the slope and intercept of plots as random effects. Slope values for LMM are
shown in each graph—these are not standardized by plot population and are shown at a different scale for each trait
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Information Appendix S12). Palms (Arecaceae) have significantly

declined in abundance (Supporting Information Appendix S12) over-

all, with marked declines of Oenocarpus and Astrocaryum, even

though the hyperdominant palm genus Euterpe has significantly

increased in abundance across the basin.

By analysing abundance trends of different taxa, it is possible to

identify which genera contribute the most to the observed overall

changes in functional composition (i.e. PS basal area for the whole

community and WDA stem density for recruits). The correlation

between taxa PS and their trends in basal area was significant (Kendall

τ = 0.2; p‐value < 0.01) and driven by an increase in some emergent

and canopy genera such as Eschweilera, Licania and Pouteria, and a

decrease in some sub‐canopy and understorey genera such as Iriartea,

Rinorea and Oenocarpus (Figure 5 Supporting Information Appendix

S12). The decrease in WDA within the recruits was also explained by

changes in floristic composition across the Amazon (Kendall τ = −0.16;

p < 0.05), with declines in the recruitment of new stems of wet affili-

ated Amazon genera such as Mabea, Sterculia, Swartzia, Iryanthera and

Theobroma and recruitment increases for dry affiliates such as Trema,

Simarouba and Hieronyma (Supporting Information Appendix S12).

Our analyses of the trends in abundance for the functional types

defined for Amazonian trees by Fyllas et al. (2012) show small‐sta-
tured nonpioneer taxa to be significantly decreasing in abundance by

0.29% per year (Supporting Information Appendix S10). No signifi-

cant trend was found for the other functional types (small‐statured
pioneers, tall pioneers and tall nonpioneers). Note that this analysis

was limited to the species classified by Fyllas et al. (2012) within

these four functional types, which represent ca. 28% of the total

number of individuals within our plots.

4 | DISCUSSION

Here we report the first Amazon‐wide analyses of temporal trends

in functional and floristic composition of lowland tree communities

across 106 Amazonian inventory plots analysed over three decades.

We find evidence of climate‐induced shifts in community composi-

tional fluxes. Recruits have become more dry‐affiliated (Table 1) and

the mortality of wet‐affiliated trees has increased in the areas where

the drying trend was stronger (Figure 4), suggesting a direct effect

of climate change on functional composition. This compositional shift

is consistent with the detected intensification of the seasonal

drought across the majority of permanent monitoring plots in Ama-

zonia. The trends in potential size (PS) and wood density (WD) fur-

ther indicate that changes within the Amazon forest are likely to be

a consequence of a combination of drivers. However, our data also

highlight the relative inertia of tropical forest communities in their

ability to respond to environmental changes. For instance, the

detected change in tree community fluxes, with recruits becoming

more dry‐affiliated by 0.45 mm/year, is substantially smaller in mag-

nitude than the actual climate trend of 1.1 mm/year.

F IGURE 4 Relationship between trends in climate and functional
composition of basal area mortality. The y‐axis represents plot
trends in water deficit affiliation (WDA) per year calculated as the
linear slopes of basal area‐based community weighted mean within
the losses and x‐axis shows the trends in most extreme dry season
within a census interval (MCWDi). The black line represents OLS
linear regression, and in the 1:1 line is shown in grey. Note that
changes in the tree community are correlated to changes in climate
(Kendall τ = −0.2; p < 0.01), so that stronger drying trends favour
the mortality of wet‐affiliated taxa. Correlations hold when outliers
are removed (Kendall τ = −0.4; p < 0.05 when excluding outliers
where climate trend >5 mm/year and trends in losses >10 mm/year)
[Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Floristic changes behind the detected functional
shifts. The y‐axes represent mean linear slopes of plot level genera
relative abundance across the Amazon in terms of number of
individuals or basal area as a function of time, with each plots’
contribution weighted by the square root of plot area and
monitoring period. Grey horizontal lines indicate zero change. The x‐
axes represent genus‐level traits. (a) Trends in relative basal area
within the whole community versus potential size (cm), plotted in
the log scale to facilitate visualization; (b) trends in stem relative
abundance within the recruits versus water deficit affiliation (mm).
Genera that show significant trends in abundance across the basin
are shown in blue. Black contour marks the 10 most abundant
genera in terms of number of stems
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The functional shifts observed here are mirrored by underlying

floristic changes when our data are analysed in terms of discrete tax-

onomic units (Figure 5). The genus‐level floristic shifts behind the

significant changes detected (Tables 1 and 2) illustrates how func-

tional responses result from actual floristic change across Amazonian

communities. However, the relationships between traits and floristic

shifts also show significant scatter, suggesting idiosyncratic

responses of each taxon and the complexity of this highly diverse

system.

4.1 | Climate‐induced changes in floristic
composition

We detected an increase in the abundance of drought‐tolerant gen-
era across Amazonia when analysing the recruitment and mortality

within tree communities (Table 1, Figure 3), consistent with the

hypothesis that tree communities are responding to the changes in

climate. Our large‐scale results are consistent with tree community

shifts towards more drought‐tolerant taxa reported in some neotrop-

ical (Butt et al., 2014; Enquist & Enquist, 2011; Feeley, Silman, et al.,

2011) and west African forest localities (Fauset et al., 2012), and

some temperate localities (McIntyre et al., 2015). Across Amazonia

we find that greater mortality of wet‐affiliated taxa over time is

related to the degree to which water stress has increased within

each community, providing direct evidence of the influence of cli-

mate on community dynamics (Figure 4). This only emerged when

analysing trends in basal area, indicating that it is driven by the

increase in mortality of large wet‐affiliated trees. Indeed, large trees

are expected to suffer the most under drought conditions by being

more vulnerable to embolism, and thus more likely to die from

hydraulic failure under drought stress (McDowell & Allen, 2015;

Rowland et al., 2015). In addition, further supporting the conclusion

that this reflects concerted, widespread changes in Amazon forest

mortality, we also found an increase in the potential size of the dead

trees when analyses were repeated considering each cluster of

neighbouring plots as a single sample unit (Supporting Information

Appendix S7). Somewhat surprisingly we find losses in stem‐based
WD to be negatively correlated to changes in climate (Supporting

Information Appendix S9), which suggests that WD may not be a

good proxy of drought vulnerability.

Our results also suggest that other drivers are causing composi-

tional shifts in Amazon forests. For example, although we did

observe an increase in mortality of large, wet affiliated trees, con-

sistent with the effect of the 2005 drought (Phillips et al., 2009),

our analyses also show a slight increase in the basal area of poten-

tially large tree genera across the basin. These results contradict

the expectations that droughts would preferably impact larger trees

but are in line with the suggestion that smaller‐statured trees are

more vulnerable to droughts as they have shallower roots than lar-

ger‐statured trees (Condit et al., 1996; Fauset et al., 2012; Wright,

1992). Most likely, it appears that the increase in mortality of large

trees in some areas of the basin (Figure 4, Supporting Information

Appendix S9) is a consequence of drought events such as the

2005 drought (cf. Bennett et al., 2015; Phillips et al., 2010), but

that it this mortality has been insufficient to counter a longer‐term
tendency towards increased basal area of large‐statured taxa across

Amazonia.

4.2 | Additional drivers of compositional change

Larger trees have greater competitive capacity and are anticipated to

gain disproportionately with additional resources (Coomes et al.,

2011; Enquist, West, & Brown, 2009; Enquist, West, Charnov, &

Brown, 1999). The increase in atmospheric CO2 potentially provides

a parsimonious explanation for the observed relative increase in

large‐tree genera (Table 2). If the increase in atmospheric CO2 of ca.

5% per decade since the 1980s (Conway & Tans, 2016) is stimulat-

ing plant growth or increasing water‐use efficiency, then taxa that

tend to compete better for light, notably larger trees (Poorter et al.,

2005), are likely to gain a greater competitive advantage (Falster &

Westoby, 2003). Although further investigation is needed to confirm

this hypothesis, our results show an increase in basal area of large‐
statured taxa (Figure 5; Table 2) and a decrease in abundance of

small‐statured taxa (Supporting Information Appendix S10), both

consistent with the expectations from increased competition. Addi-

tionally, the relative increase of larger genera is also observed in the

broader dataset including the fringes of Amazonia (Extended Amazo-

nia see Supplementary material), which supports the inference of a

ubiquitous driver of compositional change. Our observations are also

in line with a series of stand‐level studies that show increases in

above‐ground biomass, growth, mortality and recruitment across

Amazonia—all trends expected as an outcome from increased atmo-

spheric CO2 (Brienen et al., 2015; Phillips & Gentry, 1994; Phillips et

al., 1998).

While considerable interest has focussed on the atmospheric and

climatic changes, particularly drought, other environmental changes

may be important. Conceivably one or more of these could have

pervasive impacts on mature forests across the basin to rival or

exceed any climate impacts. Amazonian forests have been hypothe-

sized to be recovering from previous disturbances that are either

natural (Chambers et al., 2013; Van Der Sande et al., 2016) or

human‐driven, particularly in pre‐Colombian times (McMichael, Mat-

thews‐Bird, Farfan‐Rios, & Feeley, 2017). If this is the case, we

would expect the forest to be following a successional trajectory

characterized by a shift from pioneers (low wood density) to mature

forest species (high wood density; e.g. Chave et al., 2008; Connell &

Slatyer, 1977; Lewis, Lloyd, et al., 2009). While the observed relative

increase in basal area of larger taxa is consistent with widespread

recovery from disturbance (Chave et al., 2008; Wright, 2005), the

106 Amazonian inventory plots show no significant shift in wood

density (WD) across the whole community, or perhaps more impor-

tantly, among the recruits (Tables 1 and 2). We note that our WD

data (Chave et al., 2009; Zanne et al., 2009) provide a less than per-

fect insight into actual change given that there is likely to be addi-

tional spatial and intra‐generic variation (Baraloto et al., 2010; Patiño

et al., 2009) that we cannot account for. However, WD is
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considerably conserved across the phylogeny, and genus‐level wood

density has been found to be adequate to distinguish between late

successional and pioneer genera (Coelho de Souza et al., 2016).

Moreover, the only functional group that has clearly lost ground over

our monitoring window are the short‐statured nonpioneers—the

best suited trees to late‐successional environments (Supporting

Information Appendix S10). Compositional analyses further suggest

that some pioneers are increasing, most notably an increase of 3.4%

ha−1 year−1 in the relative abundance of Cecropia, a key early suc-

cessional taxon (Supporting Information Appendix S12), which typi-

cally dominates in early stages of succession but declines at later

stages of the successional trajectory (Zalamea et al., 2012). The

increase in the abundance of light‐demanding taxa may be a conse-

quence of an acceleration in the canopy gap dynamics caused by the

increase in baseline mortality rates (Baker et al., 2016; Brienen et al.,

2015). Finally, if these forest plots are recovering from the impact of

Amazonian peoples who favoured especially useful species, then we

might expect domesticated taxa sensu Levis et al. (2017) to now be

decreasing in abundance following the relaxation of this anthro-

pogenic influence. No such trend is observed in our data (Supporting

Information Appendix S11).

There has been considerable concern regarding the ecosystem

impacts of widespread removal of large‐bodied frugivores. In particu-

lar, it has been repeatedly suggested that hunting will or may have

already altered tree composition in tropical forests (e.g. Doughty et

al., 2016; Osuri et al., 2016; Peres, Emilio, Schietti, Desmoulière, &

Levi, 2016; Peres & Palacios, 2007; Terborgh et al., 2008) via disper-

sal failure of zoochoric trees (Chapman & Chapman, 1995). These

tend to have high wood density and large stature, so a recruitment

failure is predicted to lead to a reduction in the prevalence of both

of these traits and thus in Amazonian biomass (Bello et al., 2015;

Peres et al., 2016). This study was designed to understand floristic

dynamics in intact Amazonian forests and not to evaluate the effects

of hunting pressure, which is likely to more strongly affect areas

adjacent to rural communities, roads and rivers (Peres & Lake, 2003).

However, the increase in potential size and the lack of change in

wood density within the recruits (Figure 3) contradict expectations

of the hunting hypothesis as a driver of recent community composi-

tion change in intact forests, which, again, does not rule out the pos-

sibility of hunting pressure causing shifts in composition in particular

locations where this activity is stronger.

4.3 | The pace of change

Changes in tree communities are expected to substantially lag

behind environmental changes as trees are sessile and long‐lived
(Blonder et al., 2017; Davis, 1989; Hubbell, 2001; Lenoir, Gegout,

Marquet, De Ruffray, & Brisse, 2008; Svenning & Sandel, 2013). Our

results are consistent with this prediction. In other systems where

climate gradients are almost unidirectional, it is possible to assess

the speed at which communities are expected to be moving across

spaces to follow climate (Devictor et al., 2012), but this is not the

case for precipitation in Amazonia where precipitation regime is

heterogeneous at multiple spatial scales. However, by ensuring that

climate and water‐deficit affiliation are calculated in the same scale

we can compare the degree to which climate and communities are

changing. Across Amazonia, plots have undergone an average drying

trend of −1.1 mm/year MCWD (Figure 2). Notably, change in tree

communities did not keep pace with the change in climate—the

mean trend in water‐deficit affiliation for the whole community is

two orders of magnitude smaller (0.01 mm/year, Table 1), with confi-

dence intervals overlapping zero. However, a much shorter lag is

observed when analysing the net fluxes, that is recruits−deaths

(−0.45 mm/year, Table 1), indicating that although responses are

slow, this system has some dynamic capacity to respond to changes

in climate.

The observed pace of change is a reflection of the nature of

these communities. Recruitment and mortality of trees ≥10 cm D

averaged nine trees per hectare per year between 1985 and 2010

across the basin (Brienen et al., 2015). Considering that in our data

mean stem density is 520 trees ha−1 and mean plot‐monitoring

length is 14 years, we can expect by the final census an accumu-

lated turnover of ≈24% of stems. Thus, we should expect a priori

that whole community‐level composition would not only be

affected by changes over the measurement period but would also

reflect legacy effects of recruitment and mortality processes occur-

ring decades prior to the onset of the monitoring period (Davis,

1989). Our results provide empirical evidence of the inertia within

this system and clearly raise concerns about whether forests here

will be able to track further climate change anticipated over coming

decades.

This study provides the first Amazon‐wide picture of functional

and floristic dynamics over the last 30 years. Models have pre-

dicted a strengthening of the dry season over the Amazon (Boisier,

Ciais, Ducharne, & Guimberteau, 2015; Joetzjer, Douville, Delire, &

Ciais, 2013), and an increase in water‐stress as a consequence of

rising temperature (Pokhrel, Fan, & Miguez‐Macho, 2014). But there

have been few attempts to account for changes in composition,

which may modulate the whole forest ecological impact of eco-

physiological drivers such as increasing vapour pressure deficit

(Levine et al., 2016; Sakschewski et al., 2016). The velocity and the

magnitude of compositional changes presented here should be con-

sidered in attempts to model the dynamics of these forests under

future climate. Our results show that a slow shift towards a more

dry‐affiliated Amazonia is underway. If such a floristic shift is sub-

stantial enough to increase the resilience of Amazon tree communi-

ties to future droughts, it will still come with a price in terms of

tree biodiversity, as wet‐affiliated restricted taxa represent the

majority of Amazonian tree flora (Esquivel‐Muelbert, Baker, et al.,

2017). Furthermore, although our results demonstrate that changes

in composition are possible, the inertia intrinsic to these communi-

ties means that they will substantially lag behind climate change.

Droughts are continuing to impact the basin (Erfanian et al., 2017;

Jiménez‐Muñoz et al., 2016). If this lag persists, intact Amazonian

forests may be increasingly dominated by sub‐optimally adapted

trees in terms of their preferred climate space, potentially
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threatening the ability of these ecosystems to provide key services

such as protecting biodiversity and sequestering and storing

carbon.
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