. Anonymous, Available online at: https:// sustainabledevelopment.un.org/post2015/transformingourworld 2. Fresco LO. Challenges for food system adaptation today and tomorrow, 2015.

, Environ Sci Policy, vol.12, pp.378-85, 2009.

D. Tilman and M. Clark, Global diets link environmental sustainability and human health, Nature, vol.515, pp.518-540, 2014.

A. Chaudhary, D. Gustafson, and A. Mathys, Multi-indicator sustainability assessment of global food systems, Nat Commun, vol.9, p.848, 2018.

E. H. Bennetzen, P. Smith, and J. R. Porter, Agricultural production and greenhouse gas emissions from world regions-The major trends over 40 years, Glob Environ Change, vol.37, pp.43-55, 2016.

H. Ölmez, Water consumption, reuse and reduction strategies in food processing, Sustainable Food Processing, pp.401-435, 2013.

C. J. Baldwin, Sustainability in the Food Industry, 2011.

J. I. Boye and Y. Arcand, Current trends in green technologies in food production and processing, Food Eng Rev, vol.5, pp.1-17, 2013.

L. Xue, G. Liu, J. Parfitt, X. Liu, E. Van-herpen et al., Missing food, missing data? A critical review of global food losses and food waste data, Environ Sci Technol, vol.51, pp.6618-6651, 2017.

F. Murphy, K. Mcdonnell, and C. C. Fagan, Sustainability and environmental issues in food processing, Food Processing, pp.207-239, 2014.

F. Chemat, N. Rombaut, A. Meullemiestre, M. Turk, S. Perino et al., Review of green food processing techniques. Preservation, transformation, and extraction. Innov Food Sci Emerg Technol, vol.41, pp.357-77, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01552142

H. C. Langelaan, F. Pereira-da-silva, T. Velzen, U. Broeze, J. Matser et al., Options for sustainable food processing, Technology Options for Feeding 10 Billion People, p.64, 2013.

R. N. Pereira and A. A. Vicente, Environmental impact of novel thermal and nonthermal technologies in food processing, Food Res Int, vol.43, pp.1936-1979, 2010.

A. Bevilacqua, L. Petruzzi, M. Perricone, B. Speranza, D. Campaniello et al., Nonthermal technologies for fruit and vegetable juices and beverages: overview and advances, Compr Rev Food Sci Food Saf, vol.17, pp.2-62, 2018.

S. Toepfl, A. Mathys, V. Heinz, and D. Knorr, Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing, Food Rev Int, vol.22, pp.405-428, 2006.

V. Heinz and R. Buckow, Food preservation by high pressure, J für Verbraucherschutz und Leb, vol.5, pp.73-81, 2010.

F. J. Barba, N. S. Terefe, R. Buckow, D. Knorr, and V. Orlien, New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A review, Food Res Int, vol.77, pp.725-767, 2015.

L. Pottier, G. Villamonte, and M. De-lamballerie, Applications of high pressure for healthier foods, Curr Opin Food Sci, vol.16, pp.21-28, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01820330

N. Rivalain, J. Roquain, and G. Demazeau, Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in Biotechnologies, Biotechnol Adv, vol.28, pp.659-72, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00530402

E. Dumay, D. Chevalier-lucia, L. Picart-palmade, A. Benzaria, A. Gràcia-julià et al., Technological aspects and potential applications of (ultra) high-pressure homogenisation, Trends Food Sci Technol, vol.31, pp.13-26, 2013.

A. Zamora and B. Guamis, Opportunities for Ultra-High-Pressure Homogenisation (UHPH) for the food industry, Food Eng Rev, vol.7, pp.130-172, 2015.

L. Valsasina, M. Pizzol, S. Smetana, E. Georget, A. Mathys et al., Life cycle assessment of emerging technologies: The case of milk ultra-high pressure homogenisation, J Clean Prod, vol.142, pp.2209-2226, 2017.

K. Khosravi-darani, Research activities on supercritical fluid science in food biotechnology, Crit Rev Food Sci Nutr, vol.49, pp.479-88, 2009.

M. Thakur, A. J. Blessing, and K. Singh, High pressure carbon dioxide-a nonthermal food processing technique for inactivation of micro-organisms

, Asian J Bio Sci, vol.8, pp.267-75, 2013.

M. O. Balaban and T. Duong, Dense phase carbon dioxide research: current focus and directions, Agric Agric Sci Procedia, vol.2, pp.2-9, 2014.

S. Spilimbergo, M. A. Matthews, and C. Cinquemani, Chapter 5: supercritical fluid pasteurization and food safety, Alternatives to Conventional Food Processing, pp.153-95, 2018.

S. Raouche, M. Dobenesque, A. Bot, J. Cuq, and S. Marchesseau, Stability of casein micelles subjected to CO 2 reversible acidification: impact of carbonation temperature and chilled storage time, Int Dairy J, vol.18, pp.221-228, 2008.

R. Thiering, G. Hofland, N. Foster, G. Witkamp, and L. Van-de-wielen, Fractionation of soybean proteins with pressurized carbon dioxide as a volatile electrolyte, Biotechnol Bioeng, vol.73, pp.1-11, 2001.

J. C. Silva, A. A. Barros, I. M. Aroso, D. Fassini, T. H. Silva et al., Extraction of collagen/gelatin from the marine demosponge Chondrosia reniformis (Nardo, 1847) using water acidified with carbon dioxide -process optimization, Ind Eng Chem Res, vol.55, pp.6922-6952, 2016.

M. L. Floren, S. Spilimbergo, A. Motta, and C. Migliaresi, Carbon dioxide induced silk protein gelation for biomedical applications, Biomacromolecules, vol.13, pp.2060-72, 2012.

S. Liu, Y. Liu, S. Luo, A. Dong, M. Liu et al., Molecular dynamics simulation of the interaction between dense-phase carbon dioxide and the myosin heavy chain. J CO 2 Util, vol.21, pp.270-279, 2017.

F. Kobayashi, S. Odake, T. Miura, and R. Akuzawa, Pasteurization and changes of casein and free amino acid contents of bovine milk by lowpressure CO 2 microbubbles, LWT Food Sci Technol, vol.71, pp.221-227, 2016.

S. Spilimbergo, D. Komes, A. Vojvodic, B. Levaj, and G. Ferrentino, High pressure carbon dioxide pasteurization of fresh-cut carrot, J Supercrit Fluids, vol.79, pp.92-100, 2013.

H. Liao, X. Kong, Z. Zhang, X. Liao, and X. Hu, Modeling the inactivation of Salmonella typhimurium by dense phase carbon dioxide in carrot juice, Food Microbiol, vol.27, pp.94-100, 2010.

G. Ferrentino, S. Balzan, A. Dorigato, A. Pegoretti, and S. Spilimbergo, Effect of supercritical carbon dioxide pasteurization on natural microbiota, texture, and microstructure of fresh-cut coconut, J Food Sci, vol.77, pp.137-180, 2012.

L. Hongmei, K. Zhong, X. Liao, and X. Hu, Inactivation of microorganisms naturally present in raw bovine milk by high-pressure carbon dioxide, Int J Food Sci Technol, vol.49, pp.696-702, 2014.

G. F. Dagan and M. O. Balaban, Pasteurization of beer by a continuous dense-phase CO 2 system, J Food Sci, vol.71, pp.164-173, 2006.

D. Kincal, W. S. Hill, M. Balaban, K. M. Portier, C. A. Sims et al., A continuous high-pressure carbon dioxide system for cloud and quality retention in orange juice, J Food Sci, vol.71, pp.338-382, 2006.

G. Ferrentino, M. L. Plaza, M. Ramirez-rodrigues, G. Ferrari, and M. O. Balaban, Effects of dense phase carbon dioxide pasteurization on the physical and quality attributes of a red grapefruit juice, J Food Sci, vol.74, pp.333-374, 2009.

L. Rao, F. Zhao, Y. Wang, F. Chen, X. Hu et al., Investigating the inactivation mechanism of bacillus subtillis spores by high pressure CO 2, Front Microbiol, vol.7, p.1411, 2016.

T. Watanabe, S. Furukawa, J. Hirata, T. Koyama, H. Ogihara et al., Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment, Appl Environ Microbiol, vol.69, pp.7124-7133, 2003.

F. A. Reyes, J. A. Mendiola, E. Ibañez, and J. M. Del-valle, Astaxanthin extraction from Haematococcus pluvialis using CO 2 -expanded ethanol, J Supercrit Fluids, vol.92, pp.75-83, 2014.

T. Punvichai, A. Amor, E. Tardan, S. Palu, and D. Pioch, SC-CO 2 Extraction of guayule biomass (Parthenium argentatum) -yield and selectivity towards valuable co-products, lipids and terpenics, Biointerface Res Appl Chem, vol.6, pp.1777-87, 2016.

K. Cornish, J. A. Martin, R. T. Marentis, and S. Plamthottam, Extraction and Fractionation of Biopolymers and Resins From Plant Materials. US patent, vol.11, pp.7259231-7259233, 2007.

L. Jaime, E. Vázquez, T. Fornari, L. Mdel, C. García-risco et al., Extraction of functional ingredients from spinach (Spinacia oleracea L.) using liquid solvent and supercritical CO 2 extraction, J Sci Food Agric, vol.95, pp.722-731, 2015.

I. Zaidul, N. Norulaini, N. A. , M. Omar, A. K. Smith et al., Supercritical carbon dioxide (SC-CO 2 ) extraction of palm kernel oil from palm kernel, J Food Eng, vol.79, pp.1007-1021, 2007.

C. De-cássia-rodrigues-batista, M. S. De-oliveira, M. E. Araújo, A. Rodrigues, J. Botelho et al., Supercritical CO 2 extraction of açaí (Euterpe oleracea) berry oil: global yield, fatty acids, allelopathic activities, and determination of phenolic and anthocyanins total compounds in the residual pulp, J Supercrit Fluids, vol.107, pp.364-373, 2016.

L. Picart and C. Cheftel, Chapter 18: pulsed electric fields, Food Preservation Techniques, pp.360-427, 2003.

K. H. Schoenbach, R. P. Joshi, R. H. Stark, F. C. Dobbs, and S. J. Beebe, Bacterial decontamination of liquids with pulsed electric fields, IEEE Trans Dielectr Electr Insul, vol.7, pp.637-682, 2000.

A. Sale and W. A. Hamilton, Effects of high electric fields on micro-organisms: III. Lysis of erythrocytes and protoplasts, Biochim Biophys Acta Biomembr, vol.163, pp.37-43, 1968.

U. Zimmermann, Electrical breakdown, electropermeabilization and electrofusion, Reviews of Physiology

F. J. Barba, O. Parniakov, S. A. Pereira, A. Wiktor, N. Grimi et al., Current applications and new opportunities for the use of pulsed electric fields in food science and industry, Food Res Int, vol.77, pp.773-98, 2015.

F. Macedonio and E. Drioli, Membrane engineering for green process engineering, vol.3, pp.290-298, 2017.

K. K. Sirkar, A. G. Fane, R. Wang, and S. R. Wickramasinghe, Process intensification with selected membrane processes, Chem Eng Process Process Intensif, vol.87, pp.16-25, 2015.

A. Hausmann, P. Sanciolo, T. Vasiljevic, U. Kulozik, and M. Duke, Performance assessment of membrane distillation for skim milk and whey processing, J Dairy Sci, vol.97, pp.56-71, 2014.

L. F. Sotoft, K. V. Christensen, R. Andrésen, and B. Norddahl, Full scale plant with membrane based concentration of blackcurrant juice on the basis of laboratory and pilot scale tests, Chem Eng Process Process Intensif, vol.54, pp.12-21, 2012.

M. Mulder, Basic Principles of Membrane Technology, 1996.

E. Dumay, L. Picart, S. Regnault, and M. Thiebaud, High pressure-low temperature processing of food proteins, Biochim Biophys Acta, vol.1764, pp.599-618, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02059804

D. Knorr, V. Heinz, and R. Buckow, High pressure application for food biopolymers, Biochim Biophys Acta, vol.1764, pp.619-650, 2006.

I. A. Van-loey, C. Smout, and M. Hendrickx, Chapter 19: high hydrostatic pressure technology in food preservation, Food Preservation Techniques, pp.428-476, 2003.

H. Mújica-paz, A. Valdez-fragoso, C. T. Samson, J. Welti-chanes, and J. A. Torres, High-pressure processing technologies for the pasteurization and sterilization of foods, Food Bioprocess Technol, vol.4, pp.969-85, 2011.

U. Roobab, R. M. Aadil, G. M. Madni, and A. Bekhit, The impact of nonthermal technologies on the microbiological quality of juices: a review, Compr Rev Food Sci Food Saf, vol.17, pp.437-57, 2018.

S. Tewari, R. Sehrawat, P. K. Nema, and B. P. Kaur, Preservation effect of high pressure processing on ascorbic acid of fruits and vegetables: a review, J Food Biochem, vol.41, p.12319, 2017.

F. Sampedro, A. Mcaloon, W. Yee, X. Fan, and D. J. Geveke, Cost analysis and environmental impact of pulsed electric fields and high pressure processing in comparison with thermal pasteurization, Food Bioprocess Technol, vol.7, pp.1928-1965, 2014.

K. Aganovic, S. Smetana, T. Grauwet, S. Toepfl, A. Mathys et al., Pilot scale thermal and alternative pasteurization of tomato and watermelon juice: An energy comparison and life cycle assessment, J Clean Prod, vol.141, pp.514-539, 2017.

A. Middelberg, Process-scale disruption of microorganisms, Biotechnol Adv, vol.13, pp.491-551, 1995.

A. Diels and C. W. Michiels, High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms, Crit Rev Microbiol, vol.32, pp.201-217, 2006.

F. Patrignani and R. Lanciotti, Applications of high and ultra high pressure homogenization for food safety, Front Microbiol, vol.7, p.1132, 2016.

R. P. Lopes, M. J. Mota, A. M. Gomes, I. Delgadillo, and J. A. Saraiva, Application of high pressure with homogenization, temperature, carbon dioxide, and cold plasma for the inactivation of bacterial spores: a review, Compr Rev Food Sci Food Saf, vol.17, pp.532-55, 2018.

R. Sevenich and A. Mathys, Continuous versus discontinuous ultra-highpressure systems for food sterilization with focus on ultra-high-pressure homogenization and high-pressure thermal sterilization: a review, Compr Rev Food Sci Food Saf, vol.17, pp.646-62, 2018.

E. Georget, B. Miller, M. Callanan, V. Heinz, and A. Mathys, Ultra) High pressure homogenization for continuous high pressure sterilization of pumpable foods: a review, Front Nutr, vol.1, p.15, 2014.

E. Georget, B. Miller, K. Aganovic, M. Callanan, V. Heinz et al., Bacterial spore inactivation by ultra-high pressure homogenization, Innov Food Sci Emerg Technol, vol.26, pp.116-139, 2014.

R. M. Velázquez-estrada, M. M. Hernández-herrero, C. E. Rüfer, B. Guamis-lópez, and A. X. Roig-sagués, Influence of ultra high pressure homogenization processing on bioactive compounds and antioxidant activity of orange juice, Innov Food Sci Emerg Technol, vol.18, pp.89-94, 2013.

S. Damar and M. O. Balaban, Review of dense phase CO 2 technology: microbial and enzyme inactivation, and effects on food quality, J Food Sci, vol.71, pp.1-11, 2006.

F. Zhao, L. Zhou, Y. Wang, and X. Liao, Role of peach proteins in juice precipitation induced by high pressure CO 2, Food Chem, vol.209, pp.81-90, 2016.

P. Setlow, Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals, J Appl Microbiol, vol.101, pp.514-539, 2006.

P. Mañas and R. Pagán, Microbial inactivation by new technologies of food preservation, J Appl Microbiol, vol.98, pp.1387-99, 2005.

N. S. Terefe, R. Buckow, and C. Versteeg, Quality-related enzymes in plantbased products: effects of novel food processing technologies part 2: pulsed electric field processing, Crit Rev Food Sci Nutr, vol.55, pp.1-15, 2015.

P. Elez-martínez, I. Odriozola-serrano, G. Oms-oliu, R. Soliva-fortuny, and O. Martín-belloso, Effects of pulsed electric fields processing strategies on health-related compounds of plant-based foods, Food Eng Rev, vol.9, pp.213-225, 2017.

D. Gabri?, F. Barba, S. Roohinejad, S. Gharibzahedi, M. Radoj?in et al., Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: a review, J Food Process Eng, vol.41, p.12638, 2018.

I. Odriozola-serrano, I. Aguiló-aguayo, R. Soliva-fortuny, and O. Martín-belloso, Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods, Trends Food Sci Technol, vol.29, pp.98-107, 2013.

M. A. Kempkes, Pulsed electric field (PEF) systems for commercial food and juice processing, Case Studies in Novel Food Processing Technologies, pp.73-102, 2010.

H. Hoogland and W. De-haan, Economic aspects of pulsed electric field treatment of food, Food Preservation by Pulsed Electric Fields, pp.257-65, 2007.

K. Huang and J. Wang, Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process: a review, J Food Eng, vol.95, pp.227-266, 2009.

F. Sampedro, A. Mcaloon, W. Yee, X. Fan, H. Q. Zhang et al., Cost analysis of commercial pasteurization of orange juice by pulsed electric fields, Innov Food Sci Emerg Technol, vol.17, pp.72-80, 2013.

G. Daufin, J. Escudier, H. Carrère, S. Bérot, L. Fillaudeau et al., Recent and emerging applications of membrane processes in the food and dairy industry, vol.79, pp.89-102, 2001.

J. L. Maubois, G. Mocquot, and L. Vassal, A Method for Processing Milk and Dairy Products. French patent, vol.2, p.p, 1969.

V. V. Mistry and J. Maubois, Application of membrane separation technology to cheese production, pp.677-97, 2017.

S. N. Moejes and A. Van-boxtel, Energy saving potential of emerging technologies in milk powder production, Trends Food Sci Technol, vol.60, pp.31-42, 2017.

A. Alkhudhiri, N. Darwish, and N. Hilal, Membrane distillation: a comprehensive review, Desalination, vol.287, pp.2-18, 2012.

M. Dornier, M. Belleville, and F. Vaillant, Membrane technologies for fruit juice processing, Fruit Preservation : Novel and Conventional Technologies, pp.211-259, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02025743

M. Ergin, E. Altuner, C. I?lek, T. Çeter, and H. Alpas, High hydrostatic pressure extraction of phenolic compounds from Maclura pomifera fruits, Af J Biotechnol, vol.11, pp.930-937, 2012.

F. Li, G. Chen, B. Zhang, and X. Fu, Current applications and new opportunities for the thermal and non-thermal processing technologies to generate berry product or extracts with high nutraceutical contents, Food Res Int, vol.100, pp.19-30, 2017.

I. F. Strati, E. Gogou, and V. Oreopoulou, Enzyme and high pressure assisted extraction of carotenoids from tomato waste, vol.94, pp.668-74, 2015.

D. Liu, L. Ding, J. Sun, N. Boussetta, and E. Vorobiev, Yeast cell disruption strategies for recovery of intracellular bio-active compounds -a review, Innov Food Sci Emerg Technol, vol.36, pp.181-92, 2016.

M. Poojary, F. Barba, B. Aliakbarian, F. Donsì, G. Pataro et al., Innovative alternative technologies to extract carotenoids from microalgae and seaweeds, Mar Drugs, vol.14, p.214, 2016.

C. Safi, A. V. Ursu, C. Laroche, B. Zebib, O. Merah et al., Aqueous extraction of proteins from microalgae: effect of different cell disruption methods, Algal Res, vol.3, pp.61-66, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01658680

S. Griffin, M. Sarfraz, V. Farida, M. J. Nasim, A. P. Ebokaiwe et al., No time to waste organic waste: nanosizing converts remains of food processing into refined materials, J Environ Manag, vol.210, pp.114-135, 2018.

S. Griffin, N. Tittikpina, A. Al-marby, R. Alkhayer, P. Denezhkin et al., Turning waste into value: nanosized natural plant materials of Solanum incanum L. and Pterocarpus erinaceus poir with promising antimicrobial activities, Pharmaceutics, vol.8, p.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01519924

J. E. Coons, D. M. Kalb, T. Dale, and B. L. Marrone, Getting to low-cost algal biofuels: a monograph on conventional and cutting-edge harvesting and extraction technologies, Algal Res, vol.6, pp.250-70, 2014.

B. Yap, G. J. Dumsday, P. J. Scales, and G. Martin, Energy evaluation of algal cell disruption by high pressure homogenisation, Bioresour Technol, vol.184, pp.280-285, 2015.

C. Safi, C. Rodriguez, L. Mulder, W. J. Engelen-smit, N. Spekking et al., Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana, Bioresour Technol, vol.239, pp.204-214, 2017.

K. Benaissi, Le CO 2 supercritique appliqué à l'extraction végétale, CHV4015, vol.1, pp.1-17, 2013.

D. A. Esquivel-hernández, I. P. Ibarra-garza, J. Rodríguez-rodríguez, S. P. Cuéllar-bermúdez, R. Mde et al., Green extraction technologies for high-value metabolites from algae: a review, Biofuels Bioprod Biorefin, vol.11, pp.215-246, 2017.

G. Brunner, Supercritical fluids: technology and application to food processing, J Food Eng, vol.67, pp.21-33, 2005.

M. Pérrut, Supercritical fluid applications: Industrial developments and economic issues, Ind Eng Chem Res, vol.39, pp.4531-4536, 2000.

S. Al-hamimi, A. Mayoral, A. Cunico, L. P. Turner, and C. , Carbon dioxide expanded ethanol extraction: solubility and extraction kinetics of ?-Pinene and cis-verbenol, Anal Chem, vol.88, pp.4336-4381, 2016.

R. Soliva-fortuny, A. Balasa, D. Knorr, and O. Martín-belloso, Effects of pulsed electric fields on bioactive compounds in foods: a review, Trends Food Sci Technol, vol.20, pp.544-556, 2009.

L. Yan, L. He, and J. Xi, High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds-A review, Crit Rev Food Sci Nutr, vol.57, pp.2877-88, 2017.

E. Vorobiev and N. Lebovka, Enhanced extraction from solid foods and biosuspensions by pulsed electrical energy, Food Eng Rev, vol.2, pp.95-108, 2010.

F. Chemat, A. S. Fabiano-tixier, M. A. Vian, T. Allaf, and E. Vorobiev, Solvent-free extraction of food and natural products, TrAC Trends Anal Chem, vol.71, pp.157-68, 2015.

E. Puértolas, E. Luengo, I. Álvarez, and J. Raso, Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications, Annu Rev Food Sci Technol, vol.3, pp.263-282, 2012.

C. Rocha, Z. Genisheva, P. Ferreira-santos, R. Rodrigues, A. A. Vicente et al., Electric field-based technologies for valorization of bioresources, Bioresour Technol, vol.254, pp.325-364, 2018.

E. Roselló-soto, O. Parniakov, Q. Deng, A. Patras, M. Koubaa et al., Application of non-conventional extraction methods: toward a sustainable and green production of valuable compounds from mushrooms, Food Eng Rev, vol.8, pp.214-234, 2016.

A. Golberg, M. Sack, J. Teissie, G. Pataro, U. Pliquett et al., Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development, Biotechnol Biofuels, vol.9, p.94, 2016.

E. Puértolas and F. J. Barba, Electrotechnologies applied to valorization of by-products from food industry: main findings, energy and economic cost of their industrialization, Food Bioprod Process, vol.100, pp.172-84, 2016.

P. Putnik, B. Kova?evi?, D. , R. Jambrak, A. Barba et al., Innovative "Green" and novel strategies for the extraction of bioactive added value compounds from citrus wastes-a review, Molecules, vol.22, p.680, 2017.

S. Toepfl, V. Heinz, H. Zhang, G. Barbosa-cánovas, V. Balasubramaniam et al., Chapter13: pulsed electric field assisted extraction-a case study, Nonthermal Processing Technologies for Food, pp.190-200, 2011.

Y. Pouliot, Membrane processes in dairy technology-From a simple idea to worldwide panacea, Int Dairy J, vol.18, pp.735-775, 2008.

A. Román, J. Wang, J. Csanádi, C. Hodúr, and G. Vatai, Partial demineralization and concentration of acid whey by nanofiltration combined with diafiltration, Desalination, vol.241, pp.288-95, 2009.

F. Lipnizki, Membrane process opportunities and challenges in the bioethanol industry, Desalination, vol.250, pp.1067-1076, 2010.

B. Cuartas-uribe, A. , M. I. Soriano-costa, E. Mendoza-roca, J. A. Iborra-clar et al., A study of the separation of lactose from whey ultrafiltration permeate using nanofiltration, Desalination, vol.241, pp.244-55, 2009.

A. N. Da-silva, R. Perez, V. Minim, D. Martins, and L. A. Minim, Integrated production of whey protein concentrate and lactose derivatives: what is the best combination?, Food Res Int, vol.73, pp.62-74, 2015.

P. Bourseau, L. Vandanjon, P. Jaouen, M. Chaplain-derouiniot, A. Massé et al., Fractionation of fish protein hydrolysates by ultrafiltration and nanofiltration: impact on peptidic populations, Desalination, vol.244, pp.303-320, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00342916

S. Saidi, A. Deratani, B. Amar, R. Belleville, and M. , Fractionation of a tuna dark muscle hydrolysate by a two-step membrane process, Sep Purif Technol, vol.108, pp.28-36, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01689946

M. Langevin, C. Roblet, C. Moresoli, C. Ramassamy, and L. Bazinet, Comparative application of pressure-and electrically-driven membrane processes for isolation of bioactive peptides from soy protein hydrolysate, J Memb Sci, pp.403-407, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00818374

C. Brazinha, M. Cadima, and J. G. Crespo, Valorisation of spent coffee through membrane processing, J Food Eng, vol.149, pp.123-153, 2015.

R. Castro-muñoz, J. Yáñez-fernández, and V. Fíla, Phenolic compounds recovered from agro-food by-products using membrane technologies: an overview, Food Chem, vol.213, pp.753-62, 2016.

C. Conidi, E. Drioli, and A. Cassano, Membrane-based agro-food production processes for polyphenol separation, purification and concentration, Curr Opin Food Sci, vol.23, pp.149-64, 2017.

A. Cassano, G. De-luca, C. Conidi, and E. Drioli, Effect of polyphenols-membrane interactions on the performance of membrane-based processes. A review

, Coord Chem Rev, vol.351, pp.45-75, 2017.

Y. E. Meneses, J. Stratton, and R. A. Flores, Water reconditioning and reuse in the food processing industry: current situation and challenges, Trends Food Sci Technol, vol.61, pp.72-81, 2017.

L. Beneduce, G. Gatta, A. Bevilacqua, A. Libutti, E. Tarantino et al., Impact of the reusing of food manufacturing wastewater for irrigation in a closed system on the microbiological quality of the food crops, Int J Food Microbiol, vol.260, pp.51-59, 2017.

M. Salgot and M. Folch, Wastewater treatment and water reuse, Curr Opin Environ Sci Heal, vol.2, pp.64-74, 2018.

J. Pulido, A review on the use of membrane technology and fouling control for olive mill wastewater treatment, Sci Total Environ, 2016.

A. C. Bortoluzzi, J. A. Faitão, D. Luccio, M. Dallago, R. M. Steffens et al., Dairy wastewater treatment using integrated membrane systems, J Environ Chem Eng, vol.5, pp.4819-4846, 2017.

A. M. Becker, K. Yu, L. B. Stadler, and A. L. Smith, Co-management of domestic wastewater and food waste: a life cycle comparison of alternative food waste diversion strategies, Bioresour Technol, vol.223, pp.131-171, 2017.

K. Cho, Y. Jeong, K. W. Seo, S. Lee, A. L. Smith et al., Effects of changes in temperature on treatment performance and energy recovery at mainstream anaerobic ceramic membrane bioreactor for food waste recycling wastewater treatment, Bioresour Technol, vol.256, pp.137-181, 2018.

G. Gésan-guiziou, N. Alvarez, D. Jacob, and G. Daufin, Cleaning-in-place coupled with membrane regeneration for re-using caustic soda solutions, Sep Purif Technol, vol.54, pp.329-368, 2007.

P. Fernández, F. A. Riera, R. Álvarez, and S. Álvarez, Nanofiltration regeneration of contaminated single-phase detergents used in the dairy industry, J Food Eng, vol.97, pp.319-347, 2010.

F. Salehi, S. Razavi, and M. Elahi, Purifying anion exchange resin regeneration effluent using polyamide nanofiltration membrane, Desalination, vol.278, pp.31-36, 2011.

A. Abou-ghazala and K. Schoenbach, Biofouling prevention with pulsed electric fields, IEEE Trans Plasma Sci, vol.28, pp.115-136, 2000.

J. Teissié, N. Eynard, M. Vernhes, A. Bénichou, V. Ganeva et al., Recent biotechnological developments of electropulsation. A prospective review, Bioelectrochemistry, vol.55, pp.107-119, 2002.

O. Kopplow, M. Barjenbruch, and V. Heinz, Sludge pre-treatment with pulsed electric fields, Water Sci Technol, vol.49, pp.123-132, 2004.

P. Neumann, S. Pesante, M. Venegas, and G. Vidal, Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge, Rev Environ Sci BioTechnol, vol.15, pp.173-211, 2016.

Q. Wang, W. Wei, Y. Gong, Q. Yu, Q. Li et al., Technologies for reducing sludge production in wastewater treatment plants: state of the art, Sci Total Environ, pp.510-531, 2017.

V. Heinz, Comparative Evaluation of Sludge Reduction Routes, pp.39-41, 2007.