, Global vector control response 2017-2030. Geneva: World Health Organization, 2017.

C. L. Moyes, J. Vontas, A. J. Martins, L. C. Ng, S. Y. Koou et al., Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans, PLoS Negl Trop Dis, vol.11, p.5625, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02013555

, Global plan for insecticide resistance management in malaria vectors. Geneva: World Health Organization, 2012.

E. S. Paixão, M. G. Teixeira, and L. C. Rodrigues, Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases, BMJ Glob Heal, vol.3, p.530, 2017.

T. Shragai, B. Tesla, C. Murdock, and L. C. Harrington, Zika and chikungunya: mosquito-borne viruses in a changing world, Ann N Y Acad Sci, vol.1399, pp.61-77, 2017.

B. Roche, L. Léger, L. 'ambert, G. Lacour, G. Foussadier et al., The spread of Aedes albopictus in Metropolitan France: contribution of environmental drivers and human activities and predictions for a near future, PLoS One, vol.10, p.125600, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01225092

F. Schaffner, J. M. Medlock, V. Bortel, and W. , Public health significance of invasive mosquitoes in Europe, Clin Microbiol Infect, vol.19, pp.685-92, 2013.

N. 'guessan, R. Rowland, M. Moumouni, T. Bli, N. Carnevale et al., Evaluation of synthetic repellents on mosquito nets in experimental huts against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes, Trans R Soc Trop Med Hyg, vol.100, pp.1091-1098, 2006.

M. K. Faulde, G. Albiez, and O. Nehring, Insecticidal, acaricidal and repellent effects of DEET-and IR3535-impregnated bed nets using a novel long-lasting polymer-coating technique, Parasitology, vol.106, pp.957-65, 2010.

C. Pennetier, J. Chabi, T. Martin, F. Chandre, C. Rogier et al., New protective battle-dress impregnated against mosquito vector bites, Parasit Vectors, vol.3, p.81, 2010.

C. Pennetier, V. Corbel, P. Boko, A. Odjo, N. 'guessan et al., Synergy between repellents and non-pyrethroid insecticides strongly extends the efficacy of treated nets against Anopheles gambiae, Malar J, vol.6, p.38, 2007.

J. Bonnet, C. Pennetier, S. Duchon, B. Lapied, and V. Corbel, Multi-function oxidases are responsible for the synergistic interactions occurring between repellents and insecticides in mosquitoes, Parasit Vectors, vol.2, p.17, 2009.

C. Pennetier, C. Costantini, V. Corbel, S. Licciardi, R. K. Dabiré et al., Mixture for controlling insecticide-resistant malaria vectors, Emerg Infect Dis, vol.14, pp.1707-1721, 2008.

C. Pennetier, C. Costantini, V. Corbel, S. Licciardi, R. K. Dabiré et al., Synergy between repellents and organophosphates on bed nets: efficacy and behavioural response of natural free-flying An. gambiae mosquitoes, PLoS One, vol.4, p.7896, 2009.

M. K. Faulde and O. Nehring, Synergistic insecticidal and repellent effects of combined pyrethroid and repellent-impregnated bed nets using a novel long-lasting polymer-coating multi-layer technique, Parasitol Res, vol.111, pp.755-65, 2012.

N. L. Achee, M. J. Bangs, R. Farlow, G. F. Killeen, S. Lindsay et al., Spatial repellents: from discovery and development to evidence-based validation, Malar J, vol.11, p.164, 2012.

W. S. Leal, The enigmatic reception of DEET-the gold standard of insect repellents, Curr Opin Insect Sci, vol.6, pp.93-101, 2014.

C. Vinauger, C. Lahondère, A. Cohuet, C. R. Lazzari, and J. A. Riffell, Learning and memory in disease vector insects, Trends Parasitol, vol.32, pp.761-71, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02004211

N. M. Stanczyk, J. Brookfield, L. M. Field, and J. G. Logan, Aedes aegypti mosquitoes exhibit decreased repellency by DEET following previous exposure, PLoS One, vol.8, p.54438, 2013.

C. Vinauger, E. K. Lutz, and J. A. Riffell, Olfactory learning and memory in the disease vector mosquito, Aedes aegypti, J Exp Biol, vol.217, pp.2321-2351, 2014.

M. T. Gillies, The duration of the gonotrophic cycle in Anopheles gambiae and Anopheles funestus, with a note on the efficiency of hand catching, East Afr Med J, vol.30, pp.129-164, 1953.

E. Deletre, T. Martin, P. Campagne, D. Bourguet, A. Cadin et al., Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito, PLoS One, vol.8, p.82103, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01189831

G. Menda, J. H. Uhr, R. A. Wyttenbach, F. M. Vermeylen, D. M. Smith et al., Associative learning in the dengue vector mosquito, Aedes aegypti: avoidance of a previously attractive odor or surface color that is paired with an aversive stimulus, J Exp Biol, vol.216, pp.218-241, 2013.

, Geneva: World Health Organization, WHO. World malaria report, 2016.

S. Sathantriphop, K. Thanispong, U. Sanguanpong, N. L. Achee, M. J. Bangs et al., Comparative behavioral responses of pyrethroidsusceptible and-resistant Aedes aegypti (Diptera: Culicidae) populations to citronella and eucalyptus oils, J Med Entomol, vol.51, pp.1182-91, 2018.

, Guidelines for efficacy testing of mosquito repellents for human skin. Geneva: World Health Organization, 2009.

E. , Product performance test guidelines. OPPTS 810.3700: Insect repellents to be applied to human skin. Washington: Office of Chemical Safety and Pollution Prevention, 2010.

A. Avis-de-l'anses, Avis n° PB-12-00194. INSECT ECRAN ZONES INFESTEES, vol.1, 2013.

H. Briegel, Determination of uric acid and hematin in a single sample of excreta from blood-fed insects, Experientia, vol.36, p.1428, 1980.

A. Mollahosseini, M. Rossignol, C. Pennetier, A. Cohuet, A. Dos-anjos et al., A user-friendly software to easily count Anopheles egg batches, Parasit Vectors, vol.5, p.122, 2012.

R. Development-core and . Team, R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2008.

D. Bates, M. Maechler, B. Bolker, and S. Walker, Fitting linear-mixed effects models using lme4, J Stat Softw, vol.67, pp.1-48, 2015.

T. Hothorn, F. Bretz, and P. Westfall, Simultaneous inference in general parametric models, Biometrical J, vol.50, pp.346-63, 2008.

J. Fox and S. Weisberg, An R Companion to Applied Regression, 2011.

D. Fournier, H. Skaug, J. Ancheta, J. Ianelli, A. Magnusson et al., AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models, Optim Method Softw, vol.27, pp.233-282, 2012.

T. Therneau and P. Grambsch, Modeling Survival Data: Extending the Cox Model, 2000.

T. Therneau, Coxme: mixed effects Cox Models. R Package version 2.2-5, 2015.

M. Hervé, RVAideMemoire: diverse basic statistical and graphical functions. R package version 0.9-65, 2017.

J. L. Sanford, V. Shields, and J. C. Dickens, Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti, Naturwissenschaften, vol.100, pp.269-73, 2013.

J. K. Tomberlin, G. C. Rains, S. A. Allan, M. R. Sanford, and W. J. Lewis, Associative learning of odor with food-or blood-meal by Culex quinquefasciatus Say (Diptera: Culicidae), Naturwissenschaften, vol.93, pp.551-557, 2006.

I. T. Barbarossa, P. Muroni, M. D. Setzu, and A. M. Angioy, Dose-dependent nonassociative olfactory learning in a fly, Chem Senses, vol.32, pp.535-576, 2007.

K. F. Sto, B. T. Hovemann, and J. R. Carlson, Olfactory Adaptation Depends on the Trp Ca 2+ Channel in Drosophila, J Neurosci, vol.19, pp.4839-4885, 1999.

V. Sfara, G. Mougabure-cueto, E. N. Zerba, and R. A. Alzogaray, Adaptation of the repellency response to DEET in Rhodnius prolixus, J Insect Physiol, vol.57, pp.1431-1437, 2011.

V. Sfara, G. A. Mougabure-cueto, G. , and P. A. , Modulation of the behavioral and electrical responses to the repellent DEET elicited by the preexposure to the same compound in Blattella germanica, PeerJ, vol.4, p.2150, 2016.

N. Chilaka, E. Perkins, and F. Tripet, Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto, Malar J, vol.11, p.27, 2012.

M. Ditzen, M. Pellegrino, and L. B. Vosshall, Insect odorant receptors are molecular targets of the insect repellent DEET, Science, vol.319, pp.1838-1880, 2008.

E. E. Davis, Insect repellents: concepts of their mode of action relative to potential sensory mechanisms in mosquitoes (Diptera: Culicidae), J Med Entomol, vol.22, pp.237-280, 1985.

M. Degennaro, C. S. Mcbride, L. Seeholzer, T. Nakagawa, J. Dennis et al., Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET, Nature, vol.498, pp.487-91, 2013.

Z. Syed and W. S. Leal, Mosquitoes smell and avoid the insect repellent DEET, Proc Natl Acad Sci USA, vol.105, pp.13598-603, 2008.

V. A. Sugiharto, J. P. Grieco, J. R. Murphy, C. H. Olsen, M. G. Colacicco-mayhugh et al., Behavior, chemical ecology effects of preexposure to DEET on the downstream blood-feeding behaviors of Aedes aegypti (Diptera: Culicidae) Mosquitoes, J Med Entomol, vol.53, pp.1100-1104, 2016.

V. Corbel, M. Stankiewicz, C. Pennetier, D. Fournier, J. Stojan et al., Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet, BMC Biol, vol.7, p.47, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409532

S. M. Williamson, C. Moffat, M. Gomersall, N. Saranzewa, C. N. Connolly et al., Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees, Front Physiol, vol.4, issue.13, 2013.

C. S. Jensen, L. Garsdal, and E. Baatrup, Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle Pterostichus cupreus. A linkage between biomarkers at two levels of biological complexity, Environ Toxicol Chem, vol.16, pp.1727-1759, 1997.

N. 'guessan, R. Knols, B. Pennetier, C. Rowland, and M. , DEET microencapsulation: a slow-release formulation enhancing the residual efficacy of bed nets against malaria vectors, Trans R Soc Trop Med Hyg, vol.102, pp.259-62, 2008.

J. Kitau, R. Oxborough, J. Matowo, F. Mosha, S. M. Magesa et al., Indoor residual spraying with microencapsulated DEET repellent (N, N-diethyl-mtoluamide) for control of Anopheles arabiensis and Culex quinquefasciatus, Parasit Vectors, vol.7, p.446, 2014.

N. M. Stanczyk, J. Brookfield, R. Ignell, J. G. Logan, and L. M. Field, Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function, Proc Natl Acad Sci USA, vol.107, pp.8575-80, 2010.

A. F. Read, P. A. Lynch, and M. B. Thomas, How to make evolution-proof insecticides for malaria control, PLoS Biol, vol.7, issue.4, p.1000058, 2009.

B. T. Jackson, C. C. Brewster, S. L. Paulson, B. T. Jackson, and C. C. Brewster, La Crosse virus infection alters blood feeding behavior in Aedes triseriatus and Aedes albopictus (Diptera: Culicidae), J Med Entomol, vol.49, pp.1424-1433, 2012.