N. Wikan and D. R. Smith, Zika virus: history of a newly emerging arbovirus, Lancet Infect. Dis, vol.16, pp.119-126, 2016.

R. W. Driggers, Zika virus infection with prolonged maternal viremia and fetal brain abnormalities, New Engl. J. Med, vol.374, pp.2142-2151, 2016.

S. A. Rasmussen, D. J. Jamieson, M. A. Honein, and L. R. Petersen, Zika virus and birth defects-reviewing the evidence for causality, New Engl. J. Med, vol.374, 1981.

D. Alcantara and M. O'driscoll, Congenital microcephaly, Am. J. Med. Genetics Part C, vol.166, pp.124-139, 2014.

W. S. Webster, Teratogen update: congenital rubella, Teratology, vol.58, issue.1, pp.1096-9926, 1998.

B. De-paula-freitas, J. R. De-oliveira-dias, J. Prazeres, G. A. Sacramento, A. I. Ko et al., Ocular findings in infants with microcephaly associated with presumed Zika virus congenital infection in Salvador, Brazil, JAMA Ophthalmol, vol.134, pp.529-535, 2016.

L. R. Petersen, D. J. Jamieson, A. M. Powers, and M. A. Honein, Zika virus, N. Engl. J. Med, vol.374, pp.1552-1563, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01465099

G. K. Thornton and C. G. Woods, Primary microcephaly: do all roads lead to Rome?, Trends Genetics, vol.25, pp.501-510, 2009.

C. Arquint and E. A. Nigg, STIL microcephaly mutations interfere with APC/C-mediated degradation and cause centriole amplification, Curr. Biol, vol.24, pp.351-360, 2014.

M. S. Hussain, A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function, Am. J. Hum. Genetics, vol.90, pp.871-878, 2012.

J. Fu, I. M. Hagan, and D. M. Glover, The centrosome and its duplication cycle, Cold Spring Harb. Perspect. Biol, vol.7, p.15800, 2015.

P. Gönczy, Towards a molecular architecture of centriole assembly, Nat. Rev. Mol. Cell Biol, vol.13, pp.425-435, 2012.

D. Kitagawa, G. Kohlmaier, D. Keller, P. Strnad, F. R. Balestra et al., Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL, J. Cell Sci, vol.124, pp.3884-3893, 2011.

R. Nair, A. Singh, P. , S. Garcia, D. Rodriguez-crespo et al., The microcephaly-associated protein Wdr62/CG7337 is required to maintain centrosome asymmetry in drosophila neuroblasts, Cell Rep, vol.14, pp.1100-1113, 2016.

X. Wang, J. W. Tsai, J. H. Imai, W. N. Lian, R. B. Vallee et al., Asymmetric centrosome inheritance maintains neural progenitors in the neocortex, Nature, vol.461, pp.947-955, 2009.

J. Yingling, Y. H. Youn, D. Darling, K. Toyo-oka, T. Pramparo et al., , 2008.

, Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division, Cell, vol.132, pp.474-486

V. Marthiens, M. A. Rujano, C. Pennetier, S. Tessier, P. Paul-gilloteaux et al., Centrosome amplification causes microcephaly, Nat. Cell Biol, vol.15, pp.731-740, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01712239

J. Azimzadeh, P. Hergert, A. Delouvee, U. Euteneuer, E. Formstecher et al., 2009 hPOC5 is a centrin-binding protein required for assembly of full-length centrioles, J. Cell Biol, vol.185, pp.101-114

Z. Chen, V. B. Indjeian, M. Mcmanus, L. Wang, and B. D. Dynlacht, CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells, Dev. Cell, vol.3, pp.258-265, 2002.

K. Ikegami and M. Setou, Unique post-translational modifications in specialized microtubule architecture, Cell Struct. Funct, vol.35, pp.15-22, 2010.

S. D. Baker, R. M. Wadkins, C. F. Stewart, W. T. Beck, and M. K. Danks, Cell cycle analysis of amount and distribution of nuclear DNA topoisomerase I as determined by fluorescence digital imaging microscopy, Cytometry, vol.19, pp.134-145, 1995.

M. Onorati, Zika virus disrupts phosphoTBK1 localization and mitosis in human neuroepithelial stem cells and radial glia, Cell Rep, vol.16, pp.2576-2592, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01739212

C. Li, Zika virus disrupts neural progenitor development and leads to microcephaly in mice, Cell Stem Cell, vol.19, 2016.

M. K. Diao, Integrated HPV genomes tend to integrate in gene desert areas in the CaSki, HeLa, and SiHa cervical cancer cell lines, Life Sci, vol.127, pp.46-52, 2015.

N. J. Ganem, S. A. Godinho, and D. Pellman, A mechanism linking extra centrosomes to chromosomal instability, Nature, vol.460, pp.278-282, 2009.

A. Milunovic-jevtic, P. Mooney, T. Sulerud, J. Bisht, and J. C. Gatlin, Centrosomal clustering contributes to chromosomal instability and cancer, Curr. Opin. Biotechnol, vol.40, pp.113-118, 2016.

F. Toyoshima and E. Nishida, Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1-and myosin X-dependent manner, EMBO J, vol.26, pp.1487-1498, 2007.

M. Perera-lecoin, L. Meertens, X. Carnec, and A. A. , Flavivirus entry receptors: an update, Viruses, vol.6, pp.69-88, 2014.

L. Meertens, X. Carnec, M. P. Lecoin, R. Ramdasi, F. Guivel-benhassine et al., The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry, Cell Host Microbe, vol.12, pp.544-557, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01110072

, rsob.royalsocietypublishing.org Open Biol, vol.7, p.160231

R. Hamel, Biology of Zika virus infection in human skin cells, J. Virol, vol.89, pp.8880-8896, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228435

J. B. Brault, Comparative analysis between flaviviruses reveals specific neural stem cell tropism for Zika virus in the mouse developing neocortex, EBioMedicine, vol.10, pp.71-76, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01441052

K. Borawake, P. Prayag, A. Wagh, and S. Dole, , 2011.

, Official Publication Of Indian Society Of Critical Care Medicine, vol.15, pp.190-193

S. K. Hendarto and S. R. Hadinegoro, Dengue encephalopathy, Acta Paediatrica Japonica, pp.350-357, 1992.

T. T. Yen, Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and promotes chromosome instability, Oncotarget, vol.26, pp.346-369, 2016.

P. Jr, J. M. Haller, K. Miyazato, A. Jeang, and K. T. , Abnormal centrosome amplification in cells through the targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1, 2005.

, Proc. Natl Acad. Sci. USA, vol.102, pp.974-992

J. Loncarek, P. Hergert, and A. Khodjakov, Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1, 2010.

, Curr. Biol, vol.20, pp.1277-1282

P. Strnad, S. Leidel, T. Vinogradova, U. Euteneuer, A. Khodjakov et al., Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle, Dev. Cell, vol.13, pp.203-213, 2007.

J. Kleylein-sohn, J. Westendorf, L. Clech, M. Habedanck, R. Stierhof et al., , 2007.

, Plk4-induced centriole biogenesis in human cells, Dev. Cell, vol.13, pp.190-202

K. Y. Wu, G. L. Zuo, X. F. Li, Q. Ye, Y. Q. Deng et al., Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice, Cell Res, vol.26, pp.645-654, 2016.

H. Tang, Zika virus infects human cortical neural progenitors and attenuates their growth, Cell Stem Cell, vol.18, 2016.

N. W. Hanners, J. L. Eitson, N. Usui, R. B. Richardson, E. M. Wexler et al., Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic effects, Cell Rep, vol.15, pp.2315-2322, 2016.

N. Janabi, S. Peudenier, B. Heron, K. H. Ng, and M. Tardieu, Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen, Neurosci. Lett, vol.195, issue.94, p.11792, 1995.

O. Faye, C. C. Freire, A. Iamarino, O. Faye, J. V. De-oliveira et al., Molecular evolution of Zika virus during its emergence in the 20(th) century, 2014.

N. Berthet, E. Nakoune, B. Kamgang, B. Selekon, S. Descorps-declere et al., Molecular characterization of three Zika flaviviruses obtained from sylvatic mosquitoes in the Central African Republic. Vector Borne Zoonotic Dis, vol.14, pp.862-865, 2014.

, rsob.royalsocietypublishing.org Open Biol, vol.7, p.160231