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Zika virus (ZIKV) causes congenital microcephaly. Although ZIKV can impair

cell cycle progression and provoke apoptosis, which probably contributes

to disease aetiology through depletion of neural progenitor cells, additional

cellular mechanisms may be important. Here, we investigated whether

ZIKV infection alters centrosome number and spindle positioning, because

such defects are thought to be at the root of inherited primary autosomal reces-

sive microcephaly (MCPH). In addition to HeLa cells, in which centrosome

number and spindle positioning can be well monitored, we analysed retinal

epithelial cells (RPE-1), as well as brain-derived microglial (CHME-5) and

neural progenitor (ReN) cells, using immunofluorescence. We established

that ZIKV infection leads to supernumerary foci containing centriolar proteins

that in some cases drive multipolar spindle assembly, as well as spindle

positioning defects in HeLa, RPE-1 and CHME-5 cells, but not in ReN cells.

We uncovered similar phenotypes in HeLa cells upon infection with dengue

virus (DENV-2), another flavivirus that does not target brain cells and does

not cause microcephaly. We conclude that infection with Flaviviridae can

increase centrosome numbers and impair spindle positioning, thus potentially

contributing to microcephaly in the case of Zika.
1. Background
Zika virus (ZIKV) is a member of the Flaviviridae family of viruses that can infect

human beings [1]. Although adults infected by ZIKV usually suffer from mild

clinical symptoms, numerous cases of congenital microcephaly, in Brazil in par-

ticular, transformed the Zika threat into a worldwide public health emergency

[2,3]. Intrauterine infections with other viruses, including rubella virus, herpes

simplex virus and cytomegalovirus, can also cause microcephaly, but these

viruses impair the development of other organs in addition to that of the brain

[4,5]. By contrast, the impact of ZIKV on the fetus is essentially limited to causing

a small brain [6,7]. Intriguingly, such a brain-restricted impact is also observed in

primary autosomal recessive microcephaly (MCPH), the most prevalent genetic

cause of congenital microcephaly [8]. Whether ZIKV-mediated infection causes

similar cellular phenotypes as those observed in MCPH is not clear.

Most genes mutated in MCPH encode centrosomal proteins [8–10]. Centro-

somes are the primary microtubule organizing centre (MTOC) of animal cells

and contain centrioles surrounded by pericentriolar material (PCM) [11,12].

The centrosome notably directs cell polarity during interphase and bipolar spin-

dle assembly during mitosis. In tissue culture HeLa cells, depletion of MCPH

gene products can lead to the assembly of a bipolar spindle that is mispositioned

with respect to a reference substratum such as a fibronectin-coated surface [13,14].

In the developing mouse brain, such spindle mispositioning results in the
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depletion of neural progenitor cells [15,16], raising the

possibility that spindle positioning defects may contribute to

disease in microcephaly patients. Furthermore, experimental

induction of supernumerary centrioles in the developing

mouse brain results in the assembly of multipolar spindles,

leading to aneuploid daughter cells that undergo apoptosis

and thereby cause microcephaly [17].
blishing.org
Open
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2. Results and discussion
We set out to investigate whether ZIKV infection of cultured

human cells leads to abnormal centrosome numbers and spin-

dle positioning defects. We conducted initial experiments in

HeLa cells, which have been utilized previously to analyse

these processes in a range of other experimental settings. We

first tested whether HeLa cells could be infected by different

strains of ZIKV. Phylogenetic analysis shows that ZIKV origi-

nated from Uganda, from where it followed two major lines

of viral evolution, one in Africa and one in Asia, the latter

then yielding the Brazilian strain causing the current epidemic

outbreak [1]. Therefore, we included viral strains of both Afri-

can (strains Arb 15076 and Hd 78788) and Asian (Pf-25013-18)

origins. As reported in electronic supplementary material,

figure 1a, using immunofluorescence analysis of flavivirus

envelopes (4G2) as a readout, we found that HeLa cells can

indeed be infected by these three strains of ZIKV.

We restricted further analysis to 4G2 positive cells (elec-

tronic supplementary material, figure S1b), even though

other cells exhibited clear signs of infection, such as cell mem-

brane bags or cytoplasmic vacuoles (electronic supplementary

material, figure S1c). Moreover, we excluded cells that were

polyploid or that appeared compromised judging from their

DNA (electronic supplementary material, figure S1c,d ). Data

from 24 and 48 h post-infection were pooled because the

phenotypes of infected cells at the two time points were indis-

tinguishable (see electronic supplementary material, table S1

for all experimental conditions and outcome).

To monitor centrosome numbers, we used immunofluores-

cence of cells stained with antibodies against 4G2, to ascertain

infection status, as well as with antibodies against the centriolar

markers POC5, CP110 or polygluatmylated tubulin (PolyE).

Both POC5 and CP110 mark the distal part of centriolar cylin-

ders [18,19]. Depending on the cell cycle stage, there are

normally 2 or 4 foci of POC5 or CP110 per cell (figure 1a,b,

ctrl) [11]. PolyE labels centrioles as they mature [20], such that

two foci are present throughout the cell cycle (figure 1c, ctrl).

We began our analysis with interphase cells. We found that

infection of HeLa cells with ZIKV led to a significant augmen-

tation of foci harbouring centriolar markers, from

approximately 5% in control conditions to approximately 30–

35%, depending on the sample, in ZIKV-infected interphase

cells (figure 1a–d). Using nuclear area as a proxy for cell cycle

stage [21], we established that supernumerary foci with centrio-

lar proteins were apparent in interphase cells at any stage of the

cell cycle (electronic supplementary material, figure 2a).

We next set out to address whether supernumerary

centriolar protein foci can be detected during mitosis in ZIKV-

infected HeLa cells. As shown in figure 1e–g, we found this to

be the case. Furthermore, we found that these supernumerary

foci had microtubule organizing capacity, because ZIKV-

containing cells frequently assembled a multipolar spindle

during mitosis (figure 1e,f,h). Such multipolar figures are
expected to yield aneuploid daughter cells and result in cell

death, as upon the presence of supernumerary centrioles in

the developing mouse brain [17]. Taken together, these findings

lead us to conclude that infection with ZIKV leads, directly or

indirectly, to an augmentation of centriole numbers in HeLa

cells. These results are in line with observations in human neu-

roepithelial stem cells and radial glia [22], as well as in neural

progenitor cells in the mouse [23], which suggested the presence

of supernumerary centrosomes upon ZIKV infection.

HeLa cells are derived from a cervical cancer and harbour

an integrated human papilloma virus (HPV) viral genome

[24]. To explore whether the phenotypes reported above stem

merely from cells harbouring HPV, we expanded our analysis

to untransformed human retinal epithelia RPE-1 cells, which

are immortalized by hTert. Moreover, as the pathologic conse-

quences of ZIKV infection in human beings are restricted

primarily to the developing brain, we also tested the SV40-

transformed microglial cell line of embryonic origin CHME-5,

as well as the v-myc transformed neural progenitor cell line

ReN. The consequences of ZIKV infection on the number of

foci with centriolar markers during mitosis and on spindle posi-

tioning were analysed in these three cell lines 48 h following

infection by the Polynesian strain (Pf-25013-18), which is closest

to the Brazilian strain (see electronic supplementary material,

figure S1e for infection rates in those three cell lines and

table S1 for all experimental conditions and outcome).

Staining with antibodies against CP110 or POC5 estab-

lished that RPE-1 and CHME-5 cells also exhibited

supernumerary foci of centriolar proteins (figure 2a–d). Prob-

ably as a consequence, ZIKV-infected CHME-5 cells could

assemble a multipolar spindle during mitosis (figure 2g,h),

whereas this was not the case in ZIKV-infected RPE-1 cells

(figure 2i), perhaps because these cells possess a robust ability

to cluster supernumerary centrioles into two spindle poles

[25,26]. There was no statistically significant increase in foci

of centriolar proteins in ReN cells (figure 2e,f,j), which is sur-

prising considering the recent observations in related human

neuroepithelial stem cells and radial glia, as well as in neural

progenitor cells in the mouse [22,23]. Resolving the root of

this difference will require further work. Overall, we conclude

that ZIKV infection leads to supernumerary foci of centriolar

proteins in transformed HeLa and microglial cells (CHME-5),

as well as in non-transformed retinal epithelial cells (RPE-1).

We then assayed spindle positioning in infected cells that

assembled a bipolar spindle. To this end, cells were plated on

fibronectin-coated coverslips, which provide a planar substra-

tum that normally directs spindle positioning parallel to it

(figure 3a) [27]. Upon siRNA-mediated depletion of com-

ponents critical for spindle positioning, such as LGN or

b-integrin [27], the spindle tends not to be positioned parallel

to the substratum, but instead at an angle from it (figure 3b).

Importantly, measurements of the angle between the bipolar

mitotic spindle and the substratum revealed striking defects

in spindle positioning upon infection of HeLa cells with

ZIKV (figure 3a,b). Moreover, we found that spindle position-

ing defects were not correlated with increases in the number

of foci with centriolar proteins, suggesting independent

mechanisms (electronic supplementary material, figure S2b).

Next, we measured spindle positioning in RPE-1, CHME-5

and ReN cells. As shown in figure 3c–h, this analysis uncov-

ered spindle-positioning defects in both RPE-1 and CHME-5

cells, but not in ReN cells. Overall, we conclude that ZIKV

infection can cause impaired spindle positioning.
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Figure 1. ZIKV infections lead to supernumerary foci of centriolar proteins and multipolar spindle assembly in HeLa cells. (a – c) Immunofluorescence images of
mock-treated (ctrl) and ZIKV-infected HeLa cells in interphase, stained with antibodies against the centriolar proteins POC5 (a), CP110 (b) or PolyE (c) (all shown in
purple), in combination with antibodies against the viral marker 4G2 (green). In this and other figures, DNA is shown in blue, scale bars correspond to 10 mm and
insets are three times magnified views of select planes in the indicated regions from the lower magnification image (unless stated otherwise); the specific ZIKV strain
is indicated in each case below the images. (d ) Average percentage of cells (+s.d. of three biological replicates for ctrl and two biological replicates for ZIKV)
exhibiting supernumerary foci of centriolar proteins, pooling the data from CP110, POC5 and PolyE stainings (n: total number of scored cells; see electronic sup-
plementary material, table S1 for details). Unpaired two-tailed, Student’s t-test comparing to control conditions: *p , 0.05. (e,f ) Immunofluorescence images of
mitotic HeLa cells infected by ZIKV and stained with antibodies against a-tubulin to mark spindle microtubules (green) and POC5 to mark centrioles (purple) (e), or
against PolyE, which also label spindle microtubules close to the spindle poles ( purple) and 4G2 (green) as an infection marker ( f ). Shown is a partial view of the
4G2 staining so as to not obliterate the DNA and centriolar signals. (g) Average percentage of mitotic cells (+s.d. of three biological replicates for ctrl and two
biological replicates for ZIKV) exhibiting supernumerary centriolar foci. Note that the average for both datasets with ZIKV (Arb 15076) is 50% of cells, thus explaining
the lack of standard deviation (n: total number of scored cells, see electronic supplementary material, table S1 for details). (h) Average percentage of mitotic cells
(+s.d. of three biological replicates for ctrl and two biological replicates for ZIKV, data independent from that in figure 1g) exhibiting multipolar metaphase
spindles. Unpaired two-tailed Student’s t-test, comparing to control conditions: *p , 0.05, **p , 0.01.
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In order to test whether the above phenotypes are specific to

ZIKV or instead represent more general characteristics of infec-

tion by Flaviviridae, we also tested the impact of dengue virus

(DENV, strain DENV-2) in HeLa cells. Although the two viruses

are closely related and can bind to similar cell surface receptors

[28–30], DENV is not neurotrophic and therefore does not

cause microcephaly [31,32]. After confirming that HeLa cells

can be infected with DENV-2 virus (electronic supplementary

material, figure S1a), we conducted analyses similar to those

performed for ZIKV. As shown in figure 4a–d, we likewise

found an increase in the number of centriolar foci in both

interphase and mitotic HeLa cells upon DENV infection.

As in the case of ZIKV, we also found an augmentation

in foci of centriolar proteins irrespective of cell cycle stage

upon DENV infection (electronic supplementary material,

figure S2c). Moreover, DENV infection led to mitotic cells

undergoing multipolar spindle assembly and impaired spindle
positioning (figure 4e–g), independently of the number of

centrioles (electronic supplementary material, figure S2d).

In conclusion, we have shown that ZIKV infection leads to

the presence of supernumerary foci of centriolar proteins as

well as to defects in spindle positioning in HeLa, RPE-1 and

CHME-5 cells. DENV has similar effects in HeLa cells. Viral

infection with ZIKV or DENV also decreased cell numbers in

all cell lines (data not shown), in line with the notion that

ZIKV and DENV infections lead to cell death [23,33]. It will

be interesting to address whether spindle-positioning pheno-

types are observed in animal models of ZIKV infection, as

well as in affected human fetuses. There are other documented

cases of viruses impacting centrosomes. For instance, mutated

pre-hepatitis B virus particles can lead to centriole amplifica-

tion through increased calcium entry [34], whereas human T

cell leukemia virus type-1 (HTLV-1) causes abnormal centro-

some fragmentation through the targeting of Ran-binding
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protein-1, leading to supernumerary centrioles [35]. Further

work is needed in the case of the Flaviviridae to elucidate the

mechanisms through which ZIKV and DENV alter the cen-

triole duplication cycle. Besides the possibility that these
phenotypes reflect a general non-specific cellular response,

which appears unlikely given that they are not observed in

ReN cells, potential mechanisms include the premature licen-

sing of centriole formation, as observed in cells held in the
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G2 phase of the cell cycle [36], or overexpression of com-

ponents driving centriole formation such as Plk4 or HsSAS-6

[37,38].

Together with previously established consequences of

ZIKV on cell cycle progression and cell survival [39–41],

the occurrence of multipolar and mispositioned spindles

could conceivably contribute to intrauterine microcephaly

caused by ZIKV infection. These findings offer a novel illus-

tration of the intricate cellular relationships between viruses

and their hosts, and should lead to a better understanding

of viral pathological mechanisms.
3. Material and methods
3.1. Cells and viruses
HeLa cells were purchased from ECACC (ECACC 93021013),

RPE-1 cells from ATCC (Manassas, VA; CRL-4000). CHME-5

cells were a kind gift of Ali Amara [42], ReN cells were a
gift of Chiara Sartori, who originally purchased them from

EMD Millipore (SCC008). Vero cells were used to titrate

viruses. HeLa, RPE-1, CHME-5 and Vero cells were cultured

in high-glucose DMEM medium with GlutaMAX (Invitro-

gen) or in DME-F12 (Vero cells, Invitrogen) medium, each

supplemented with 10% FCS, in a humidified 5% CO2 incu-

bator at 378C. ReN cells were cultivated in DMEM F12

(Gibco) containing Glutamax (2 mM), B-27 stem cell sup-

plement (Gibco) 1U ml21 Heparin (Sigma), 20 ng ml21

bFGF (Peprotech) and 20 ng ml21 EGF (Peprotech). ReN

cells were grown on Laminin (0.7 ug cm22, Sigma) coated

cell culture ware or coverslips.

Propagation of the ZIKV strains and DENV-2 was achieved

using A. albopictus C6/36 cells having undergone limited pas-

sages. C6/36 cells were grown in DMEM supplemented with

10% FCS and cultivated at 288C.

The following viruses were used: the clinical isolate Pf-

25013-18 [30]; the Hd 78788 strain obtained from a patient in

Senegal during routine surveillance in 1991 [43]; the Arb

15076 strain isolated from A. africanus in central African
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Republic [44]; and the DENV-2 Jamaica/N.1409 strain

(GenBank accession no. M20558.1).

We noticed upon immunofluorescence analysis that

HeLa cells were probably infected with mycoplasma. This is

unlikely to have influenced the outcome of the experiments

because the same batch of HeLa cells was analysed for control

and infected samples. Moreover, we tested RPE-1, CHME-5

and ReN cells, which were all mycoplasma-free (GATC Biotech

report no:737054).

3.2. Infection of cells
For infection, cells were seeded on glass- or fibronectin-coated

coverslips in six-well culture plates at a density of 100 000 cells

per well. Then, 24 h after seeding, cells were rinsed once with

phosphate-buffered saline (PBS), and viruses, which were

diluted to 5–10 multiplicity of infection (MOI), were added to

the cells. Cells were then incubated for 2 h at 378C with gentle

agitation every 30 min. Next, the inoculum was removed and

cells were washed twice with PBS. Culture medium was

added to each well, and cells were incubated at 378C and 5%

CO2 for the duration of the experiment. As a control, cells

were incubated with the culture supernatant from uninfected

C6/36 cells, referred to as mock treated -or control- cells.

3.3. Immunofluorescence, imaging and analysis
For immunofluorescence, cells were fixed in 2208C methanol

for 7–10 min and washed in PBS-0.05% Triton X-100 (PBST).

After blocking in 1% BSA in PBST for 1 h, cells were incubated

with primary antibodies at room temperature for 4 h. After

three washes in PBST for 5 min each, cells were incubated

with secondary antibodies for 1 h at room temperature, stained

with 1 mg ml21 Hoechst 33342 (Sigma-Aldrich), washed three

times 5 min in PBST, and mounted. Primary antibodies were

1 : 200 mouse anti-4G2 (MAB10216, Millipore), 1 : 1000 rabbit

anti-PolyE, (pAb IN105 Adipogen), 1 : 1000 rabbit anti-CP110

(127801-AP; ProteinTech Europe), 1 : 1000 rabbit anti-POC5

[18] and 1 : 200 mouse anti-a-tubulin (DM1a, Sigma-Aldrich).

Secondary antibodies were Alexa Fluor 488-coupled anti-

mouse and Alexa Fluor 568-coupled anti-rabbit, both used at

1 : 1000 (Life Technologies).

Images were acquired with a 63�, NA 1.0 oil objective on a

confocal microscope (LSM 700; Carl Zeiss, 526 � 526 pixel mini-

mal resolution), equipped with acharge-coupled device camera

(AxioCam MRm; Carl Zeiss), then processed and analysed in

IMAGEJ (National Institutes of Health). Relevant z-planes are

shown as maximum intensity projections; in insets, z-planes,

relevant for this particular centrosome are used for projections,

while in overview images z-planes relevant for all centrosomes

of the cell are used for projections. Data were analysed using

EXCEL and statistics performed with GRAPHPAD.

For analysis of centriolar protein foci and of spindle

positioning in HeLa cells, confocal images (using a 63� Plan-

Apochromat, NA 1.4 objective) were taken of 154 control cells

and 211 cells infected with one of the three viral strains in two

biological replicates for ZIKVs and three replicates for controls

as well as 90 cells infected with DENV-2 virus in three biological

replicates. For analysis of centriolar protein foci and of spindle

positioning in RPE-1, CHME-5 and ReN cells, confocal images

(using a 63� Plan-Apochromat, NA 1.4 objective) were taken

of cells on fibronectin-coated coverslips stained with CP110

and 4G2 antibodies (RPE-1: 39 ctrl and 36 infected cells,
CHME-5: 40 ctrl and 41 infected cells, ReN: 19 ctrl and 18

infected cells). Furtheranalysis of centriolar protein foci was con-

ducted on cells plated on glass coverslips, stained with either

CP110 and 4G2 or POC5 and 4G2 antibodies, using a 100�
objective (Plan-Apochromat, NA 1.4) at a wide-field microscope

(RPE-1: 96 ctrl, 37 infected, CHME-5: 95 ctrl, 111 infected, ReN:

75 ctrl and 35 infected cells). Data from 24 and 48 h post-infection

were pooled because the phenotypes of infected cells at the two

time points were indistinguishable for HeLa cells; only 48 h time

point following infection was analysed in the case of RPE-1,

CHME-5 and ReN cells (see electronic supplementary material,

table S1 for all experimental conditions and outcome).

To determine whether the spindle was bipolar or multipo-

lar, metaphase cells stained with PolyE or a-tubulin were

analysed using a 63� (Plan-Apochromat, NA 1.4) objective

at a wide-field microscope. This analysis was performed on

all cells, independent of 4G2 status, such that the actual frac-

tion of infected cells with a multipolar spindle may be higher

than what is reported. For HeLa cells, data from four (five for

ctrl) independent coverslips originating from two biological

replicates for ZIKV and three biological replicates for ctrl

and DENV-2 with indicated number of metaphase cells (n)

were analysed (n; control: 74, 101, 49, 52, 51; ZIKV (Hd

78788): 8, 10, 18, 3; ZIKV (Arb 15076): 54, 30, 20, 27; ZIKV

(Pf-25013-18): 17, 15, 37, 14; DENV-2: 13, 26, 20, 21, 25). For

RPE-1, CHME-5 and ReN cells, data from two technical repli-

cate with indicated numbers of metaphase cells (n) were

analysed (n; RPE-1 ctrl: 53, 25; RPE-1 ZIKV (Pf-25013-18):

19, 26; CHME-5 ctrl: 33, 31; CHME-5 ZIKV (Pf-25013-18):

39, 58; ReN ctrl: 50, 35; ReN ZIKV (Pf-25013-18): 23, 25).

Nuclear areas (in square micrometres) were measured

from maximum intensity projections of confocal images

using IMAGEJ.

We compared two conditions (ctrl versus infection) at a

time using unpaired, two-tailed Student’s t-test for samples

of unequal variances and sample sizes (also known as

Welch’s test). If normality test failed for one of the groups

within a comparison, Mann–Whitney-U test was applied as

stated in figure legends for each case.

3.4. siRNA treatment
For siRNA experiments, approximately 100 000 cells were

seeded on fibronectin-coated coverslips in six-well plates

and transfected with 20 nM of validated stealth siRNAs

(Qiagen) against b1-Integrin (accession number NM-033669,

nucleotide 167–189), LGN (50-GAACUAACAGCACGACUU

A-30, 50-CUUCAGGGAUGCAGUUAUA-30, 50-ACAGUGAA

AUUCUUGCUAA-30, 50-UGAAGGGUUCUUUGACUUA-30)

or scrambled siRNA (SI03650318) as per the manufacturer’s

instructions. In brief, 2.5 ml of 20 mM siRNA in 250 ml Optimem

and 7.5 ml Lipofectamin RNAi max (Invitrogen) in 250 ml

Optimem were incubated in parallel for 5 min, mixed for

20 min and then added to 2 ml of medium per well; cells

were incubated for 48 h before fixation and analysis.

3.5. Spindle positioning assay
To monitor spindle positioning, cells were grown on coverslips

uniformly coated with fibronectin (Neuvitro, GG-22-fibronectin).

After fixation and immunofluorescence, the angle of the meta-

phase spindle with respect to the fibronectin substratum was

determined as described [27]. In brief, cells were stained with
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POC-5, CP110 or PolyE antibodies to mark spindle poles and

counterstained with 1 mg ml21 Hoechst 33342 (Sigma-Aldrich)

to mark chromosomes. Stacks of confocal images 0.4 mm apart

were acquired. IMAGEJ was used to determine distances between

spindle poles in x, y and z, and the angle a calculated using a

custom-made IMAGEJ macro. Lower-most positions of spindle

poles were used to draw the connecting line between them (see

schematic in figure 3a). If centrioles within a given spindle pole

laid in different planes of the z-stack, the angle was measured

between the ones that were closest, to err on the side of caution.
g
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