, Jointly prepared by the Government of the Lao PDR and the United Nations, 2013.

, WHO malaria report, 2015.

P. Jorgensen, S. Nambanya, D. Gopinath, B. Hongvanthong, K. Luangphengsouk et al., High heterogeneity in Plasmodium falciparum risk illustrates the need for detailed mapping to guide resource allocation: a new malaria risk map of the Lao People's Democratic Republic, Malar J, vol.2010, issue.1, p.59

. Fao, Proceeding of the Asia Regional Workshop on the implementation, monitoring and observance: international code of conduct on the distribution and use of pesticide. Regional Office for Asia and the Pacific, 2005.

T. E. Nkya, I. Akhouayri, W. Kisinza, and J. P. David, Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects, Insect Biochemistry and Molecular Biology, vol.43, p.23123179, 2013.

T. E. Nkya, R. Poupardin, B. Batengana, F. Mosha, S. Magesa et al., Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania, Malaria Journal, vol.13, p.24460952, 2014.

A. W. Yadouleton, G. Padonou, A. Asidi, N. Moiroux, S. Bio-banganna et al., Insecticide resistance status in Anopheles gambiae in Southern Benin, Malaria Journal, vol.9, p.20334637, 2010.

A. Diabate, T. Baldet, F. Chandre, M. Akoobeto, T. R. Guiguemde et al., The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso, Am J Trop Med Hyg, vol.67, issue.6, p.12518852, 2002.

J. F. Trape, A. Tall, N. Diagne, O. Ndiath, A. Ly et al., Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bed-nets and artemisinin-based combination therapies: a longitudinal study, The Lancet Infectious Diseases, vol.11, p.21856232, 2011.

H. J. Overgaard, S. R. Sandve, and W. Suwonkerd, Evidence of anopheline mosquito resistance to agrochemicals in northern Thailand, Southeast Asian Journal of Tropical Medicine and Public Health, vol.36, issue.4, pp.148-153, 2005.

W. Van-bortel, H. D. Trung, K. Thuan-le, T. Sochantha, D. Socheat et al., The insecticide resistance status of malaria vectors in the Mekong region, Malar J, vol.7, p.18534006, 2008.

H. J. Overgaard, Malaria mosquito resistance to agricultural insecticides: Risk area mapping in Thailand, 2006.

V. Obsomer, P. Defourny, and M. Coosemans, The Anopheles dirus complex: spatial distribution and environmental drivers, Malaria Journal, vol.6, p.17341297, 2007.

V. Obsomer, P. Defourny, and M. Coosemans, Predicted Distribution of Major Malaria Vectors Belonging to the Anopheles dirus Complex in Asia: Ecological Niche and Environmental Influences, PLoS ONE, vol.7, issue.11, p.23226292, 2012.

W. Van-bortel, H. D. Trung, X. Hoi-le, . Vhn, N. Van-chut et al., Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control, Malar J, vol.9, issue.373, pp.10-1186, 2010.

R. O. Hayes, E. L. Maxwell, C. J. Mitchell, and W. Tl, Detection, identification and classification of mosquito larval habitats using remote sensing scanners in earth-orbiting satellites, Bull. World Health Org, vol.63, p.2861917, 1985.

J. Keating, K. Macintyre, C. M. Mbogo, J. I. Githure, and J. C. Beier, Characterization of potential larval havitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya. International Journal of Health Geographics, vol.3, p.15125778, 2004.

S. W. Lindsay, L. Parson, and T. Cj, Mapping the Ranges and Relative Abundance of the Two Principal African Malaria Vectors, Anopheles Gambiae Sensu Stricto and An. Arabiensis, Using Climate Data, Proceedings: Biological Sciences, vol.265, pp.847-854, 1399.

N. Minakawa, C. M. Mutero, J. I. Githure, J. C. Beier, and Y. G. , Spatial distribution and habitat characterization of Anopheline mosquito larvae in Western Kenya, Am. J. Trop. Med. Hyg, vol.61, issue.6, p.10674687, 1999.

L. Durnez, S. Mao, L. Denis, P. Roelants, T. Sochantha et al., Outdoor malaria transmission in forested villages of Cambodia, Malaria, vol.12, p.329, 2013.

T. Smith, J. D. Charlwood, W. Takken, M. Tanner, and D. J. Spiegelhalter, Mapping the densities of malaria vectors within a single village, Acta Tropica, vol.59, p.7785522, 1995.

R. P. Anderson, D. Lew, and A. T. Peterson, Evaluating predictive models of species' distributions: criteria for selecting optimal models, Ecological Modeling, vol.162, pp.211-232, 2003.

A. Charoenpanyanet, Simulation model for predicting Anopheles mosquitoes density based on remotely sensed data, 2010.

A. Guisan and Z. Ne, Predictive habitat distribution models in ecology, Ecological Modeling, vol.135, pp.147-186, 2000.

M. E. Sinka, M. J. Bangs, S. Manguin, T. Chareonviriyaphap, A. P. Patil et al., The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis, Parasites and Vectors, vol.4, p.21612587, 2011.

A. Srivastava, B. N. Nagpal, R. Saxena, and S. Sk, Predictive habitat modelling for forest malaria vector species An. dirus in India-A GIS-based approach, Current Science, vol.80, issue.9, pp.1129-1134, 2001.

M. C. Thomson, S. J. Connor, D. 'alessandro, U. Rowlingson, B. Diggle et al., Predicting malaria infection in Gambian children from satellite data and bed-net use surveys: The importance of spatial correlation in the interpretation of results, Am. J. Trop. Med. Hyg, vol.61, issue.1, 1999.

A. W. Hightower, M. Ombok, R. Otieno, R. Odhiambo, A. J. Oloo et al., A geographic information system applied to a malaria field study in Western Kenya, Am. J. Trop. Med. Hyg, vol.58, issue.3, p.9546401, 1998.

R. Sithiprasasna, W. J. Lee, D. M. Ugsang, and L. Kj, Identification and characterization of larval and adult anopheline mosquito habitats in the Pepublic of Korea: potential use of remotely sensed data to estimate mosquito distributions, International Journal of Health Geographics, vol.4, p.16011809, 2005.

K. Morgan, P. Somboon, and C. Walton, Understanding Anopheles Diversity in Southeast Asia and Its Applications for Malaria Control, Anopheles mosquitoes-New insights into malaria vectors. Manguin Sylvie, 2013.

M. Thomson and R. C. , Studies on the behaviour of Anopheles minimus, Journal of the Malaria Institute of India, vol.3, pp.265-325, 1940.

H. J. Overgaard, B. Ekbom, W. Suwonkerd, and M. Takagi, Effect of landscape structure on anopheline mosquito density and diversity in northern Thailand: Implications for malaria transmission and control, Landscape Ecol, vol.18, pp.605-619, 2003.

J. A. Reid, Anopheline mosquitoes of Malaya and Borneo. Studies of the Institute of, Medical Research Malaysia, vol.31, pp.1-520, 1968.

R. Rosenberg and N. Maheswary, Forest malaria in Bangladesh II: Transmission by Anopheles dirus, Am J Trop Med Hyg, vol.31, p.7072883, 1982.

W. Suwonkerd, W. Ritthison, C. T. Ngo, K. Tainchum, M. J. Bangs et al., Vector biology and malaria transmission in Southeast Asia. Anopheles mosquitoes-New insights into malaria vectors, Manguin Sylvie, 2013.

J. Tangena, P. Thammavong, A. L. Wilson, P. T. Brey, and S. W. Lindsay, Risk and Control of Mosquito-Borne Diseases in Southeast Asian Rubber Plantations, Trends in parasitology, vol.32, issue.5, p.26907494, 2016.

J. Yasuoka and R. Levins, Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. The American journal of tropical medicine and hygiene, vol.76, p.17360867, 2007.

P. Messerli, A. Heinimann, M. Epprecht, S. Phonesaly, C. Thiraka et al., Socio-Economic Atlas of the Lao PDR-an Analysis based on the 2005 Population and Housing Census, 2008.

M. Epprecht, N. Minot, R. Dewina, P. Messerli, and A. Heinimann, The Geography of Poverty and Inequality in the Lao PDR, Swiss National Center of Competence in Research, 2008.

M. Souris, LAOS SavGIS Database [Data set, 2017.

. Zenodo,

K. L. Heong, M. M. Escala, S. V. Schiller, and J. , Insect management beliefs and practices of rice farmers in Laos, Agriculture, Ecosystem and Environment, vol.92, pp.137-145, 2001.

P. Damos and M. Savopoulou-soultani, Temperature-Driven Models for Insect Development and Vital Thermal Requirements, Psyche, 2012.

K. P. Paaijmans, R. L. Heinig, R. A. Seliga, J. I. Blanford, S. Blanford et al., Temperature variation makes ectotherms more sensitive to climate change, Glob Change Biol, vol.19, pp.2373-2380, 2013.

N. Moiroux, O. Boussari, A. Djènontin, G. Damien, and G. Cottrell, Dry season determinants of malaria disease and net use in Benin, west Africa, PLoS One, vol.7, p.22291987, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00692194

K. J. Beven and M. J. Kirkby, A physically-based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull, vol.24, issue.1, pp.43-69, 1979.

M. Santos-vega, M. J. Bouma, V. Kohli, and M. Pascual, Population Density, Climate Variables and Poverty Synergistically Structure Spatial Risk in Urban Malaria in India, PLoS Negl Trop Dis, vol.10, issue.12, p.27906962, 2016.

H. Atieli, D. Menya, A. Githeko, and T. Scott, House design modifications reduce indoor resting malaria vector densities in rice irrigation scheme area in western Kenya, Malar J, vol.8, p.19454025, 2009.